Sains Malaysiana 47(6)(2018): 1189–1197


Influence of Poly (Ethylene Glycol) on the Characteristics of γ Radiation-Crosslinked Poly (Vinyl Pyrrolidone)-Low Molecular Weight Chitosan Network Hydrogels

(Kesan Poli(etilena glikol) ke atas Ciri-ciri Jaringan Hidrogel Kitosan Berjisim Molekul
Rendah-Poli(vinil pirolidon)Tertautsilang melalui Teknik Sinar Gamma)




1School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor Darul Ehsan, Malaysia


2Radiation Processing Technology Division, Malaysian Nuclear Agency

43000 Kajang, Selangor Darul Ehsan, Malaysia


3Medical Technology Division, Malaysian Nuclear Agency, 43000 Kajang, Selangor Darul Ehsan



Diserahkan: 9 Jun 2017/Diterima: 8 Januari 2018  



PEG at compositions of 10, 15 and 20 g were added into the initial formulation of hydrogel L, which was composed of 6 g low molecular weight chitosan (LMC) and 14 g poly (vinyl pyrrolidone) in 100 g of 2% lactic acid. The mixtures were moulded and exposed to γ radiation at 7 kGy. The hydrogels obtained were characterized in term of gel fraction, swelling property, syneresis effect, FTIR, XRD and cross section morphology. The results indicated PEG reduces almost 27% crosslinking density of the LMC-PVP hydrogel yet increased hydrogel’s water holding capacity from 450% and 480% to 750% and 650% in phosphate buffer solution (PBS) at pH5.5 and pH7.0, respectively. Also PEG enhanced the ability of LMC-PVP hydrogel to retain its moisture from dehydration at body temperature. The morphological study showed PEG developed thick pores wall and reduced the pores size of the hydrogels’ network.


Keywords: Covalent-crosslink; plasticizer; porosity; swelling-equilibrium; syneresis


PEG dengan komposisi yang pelbagai iaitu 10, 15 dan 20 g telah ditambah ke dalam formulasi asal hidrogel L yang telah disediakan melalui pengadunan 6 g kitosan berjisin molekul rendah (LMC) dengan 14 g poli (vinil pirolidon) dan 100 g asid laktik berkepekatan 2%. Semua adunan dimasukkan dalam acuan dan didedahkan kepada sinar γ pada dos 7kGy. Hidrogel yang diperoleh dibuat pencirian daripada aspek kandungan gel, sifat pembengkakan, kesan sineresis, FTIR, XRD dan morfologi hidrogel menggunakan mikroskop imbasan elektron (SEM). Keputusan pencirian menunjukkan 10 g PEG telah mengurangkan ketumpatan jaringan taut silangan hidrogel sebanyak 14% tetapi meningkatkan keupayaan memegang air daripada 450% dan 480% kepada 750% dan 650% masing-masing dalam larutan penimbal fosfat (PBS) pada pH5.5 dan pH7.0. PEG juga meningkatkan keupayaan hidrogel LMC-PVP untuk mengekalkan kelembapannya daripada terhidrat pada suhu badan. Kajian morfologi juga menunjukkan PEG telah membentuk satu jaringan hidrogel berliang lebih kecil dengan dinding liang yang lebih tebal.


Kata kunci: Keliangan; pembengkakan ekuilibrium; pemplastik; sineresis; taut silang kovalen




Abad, L.V., Relleve, L.S., Aranilla, C.T. & Rosa, A.M.D. 2003. Properties of radiation synthesized PVP-kappa carrageenan hydrogel blends. Radiation Physics and Chemistry 68: 901-908.

Ako, K. 2015. Influence of elasticity on the syneresis properties of Kappa-carrageenan gels. Carbohydrate Polymers 115:408-414.

Archana, D., Singh, B.K., Dutta, J. & Dutta, P.K. 2013. In vivo evaluation of chitosan – PVP – titanium dioxide nanocomposite as wound dressing material. Carbohydrate Polymers 95: 530-539.

Berger, J., Reist, M., Mayer, J.M., Felt, O., Peppas, N.A. & Gurny, R. 2004. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics 57: 19-34.

Can, H.K. 2005. Synthesis of persulfate containing poly (N -vinyl-2-pyrrolidone) (PVP) hydrogels in aqueous solutions by g -induced radiation. Radiation Physics and Chemistry 72: 703–710. radphyschem.2004.04.028.

Das, A., Gupta, B.K. & Nath, B. 2012. Mucoadhesive polymeric hydrogels for nasal delivery of Penciclovir. Journal of Applied Pharmaceutical Science 2: 158-166.

De Kruif, C.G.K., Anema, S.G., Zhu, C., Havea, P. & Coker, C. 2015. Food hydrocolloids water holding capacity and swelling of casein hydrogels. Food Hydrocolloids 44: 372-379.

Dergunov, S.A. & Mun, G.A. 2009. γ-irradiated chitosanpolyvinyl pyrrolidone hydrogels as pH-sensitive proteindelivery system. Radiation Physics and Chemistry 78: 65-68.

Dergunov, S.A., Nam, I.K., Mun, G.A., Nurkeeva, Z.S. & Shaikhutdinov, E.M. 2005. Radiation synthesisand characterization of stimuli-sensitive chitosan–polyvinyl pyrrolidone hydrogels. Radiation Physics and Chemistry 72: 619–623. radphyschem.2004.03.011.

Divoux, T., Mao, B. & Snabre, P. 2015. Syneresis and delayed detachment of agar plates. Soft Matter 11: 3677-3685. http://

Duy, N.N., Phu, D., Van Anh, N.T. & Hien, Q.N. 2011. Synergistic degradation to prepare oligochitosan by g -irradiation of chitosan solution in the presence of hydrogen peroxide.Radiation Physics and Chemistry 80: 848-853.

El-sherbiny, I.M. & Smyth, H.D.C. 2012. Poly (ethyleneglycol)– carboxymethyl chitosan-based pH-responsive hydrogels: Photo-induced synthesis, characterization, swelling, and in vitro evaluation as potential drug carriers. Carbohydrate Research 345: 2004-2012. http://doi. org/10.1016/j.carres.2010.07.026.

Farag, R.K. & Mohamed, R.R. 2012. Synthesis and characterization of carboxymethyl chitosan nanogels for swelling studies and antimicrobial activity.Molecules 18: 190-203. http://doi. org/10.3390/molecules18010190.

Hashemi, A., Mirzadeh, H., Imani, M. & Samadi, N. 2013. Chitosan/polyethylene glycol fumarate blend film: Physical and antibacterial properties. Carbohydrate Polymers 92: 48-56.

Hezaveh, H. & Muhamad, I.I. 2013. Controlled drug release via minimization of burst release in pH-response kappacarrageenan/ polyvinyl alcohol hydrogels. Chemical Engineering Research and Design 91: 508-519. http://doi.morg/10.1016/j.cherd.2012.08.014.

Hill, D.J.T., Whittaker, A.K. & Zainuddin. 2011. Water diffusion into radiation crosslinked PVA – PVP network hydrogels. Radiation Physics and Chemistry 80: 213-218. http://doi. org/10.1016/j.radphyschem.2010.07.035.

Jin, S., Liu, M., Zhang, F., Chen, S. & Niu, A. 2006. Synthesis and characterization of pH-sensitivity semi-IPN hydrogel based on hydrogen bond between poly (N-vinylpyrrolidone) and poly (acrylic acid).Polymer 47: 1526–1532. http://doi. org/10.1016/j.polymer.2006.01.009.

Mahmud, M., Daik, R. & Adam, Z. 2015. Properties of radiationsynthesized poly(vinyl pyrrolidone)/chitosan hydrogel blends. AIP Conference Proceedings. DOI: 10.1063/1.4931310.

Makuuchi, K. 2010. Critical review of radiation processing of hydrogel and polysaccharide.Radiation Physics and Chemistry 79: 267-271. radphyschem.2009.10.011.

Meena, R., Prasad, K. & Siddhanta, A.K.Ã. 2009. Food hydrocolloids development of a stable hydrogel network based on agar–kappa-carrageenan blend cross-linked with genipin. Food Hydrocolloids 23: 497-509. http://doi. org/10.1016/j.foodhyd.2008.03.008.

Nguyen, N. & Liu, J. 2013. Fabrication and characterization of poly (vinyl alcohol)/ chitosan hydrogel thin films via UV irradiation. European Polymer Journal 49: 4201-4211. http://

Park, J., Kim, H., Choi, J., Gwon, H., Shin, Y., Young, M., Lim, M., Khill, M.S. & Nho, Y. 2012. Effects of annealing and the addition of PEG on the PVA based hydrogel by gamma ray. Radiation Physics and Chemistry 81: 857-860. http://doi. org/10.1016/j.radphyschem.2012.02.005.

Park, K.R. & Nho, Y.C. 2003. Synthesis of PVA/PVP hydrogels having two-layer by radiation and their physical properties.Radiation Physics and Chemistry 67: 361-365. http://doi.  org/10.1016/S0969-806X(03)00067-7.

Park, S., Nah, J. & Park, Y. 2011. pH-Dependent mode of antibacterial actions of low molecular weight watersoluble chitosan (LMWSC) against various pathogens. Macromolecular Research 19: 853-860. http://doi. org/10.1007/s13233-011-0812-1.

Pasanphan, W., Rimdusit, P., Choofong, S., Thananchai, P. & Nilsuwankosit, S. 2010. Systematic fabrication of chitosan nanoparticle by gamma irradiation. Radiation Physics and Chemistry 79: 1095-1102.

Pollock, J.F. & Healy, K.E. 2010. Mechanical and swelling characterization of poly ( N -isopropyl acrylamide-comethoxy poly (ethylene glycol) methacrylate) sol – gels. Acta Biomaterialia 6: 1307-1318. actbio.2009.11.027.

Pu, X., Wei, K. & Zhang, Q. 2013. In situ forming chitosan /hydroxyapatite rods reinforced via genipin crosslinking. Materials Letters 94: 169-171. matlet.2012.12.009.

Riva, R., Ragelle, H., Rieux, des A., Duhem, N., Jerome, C. & Preat, V. 2011. Chitosan and chitosan derivatives in drug delivery and tissue engineering. Advance Polymer Science 244: 19-44.

Shameli, K., Ahmad, M.B., Zamanian, A., Sangpour, P., Shabanzadeh, P., Abdollahi, Y. & Zargar, M. 2012. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. International Journal of Nanomedicine 7: 5603-5610.

Simões, S., Figureueiras, A. & Veiga, F. 2012. Modular hydrogels for drug delivery. Journal of Biomaterials and Nanobiotechnology 3: 185-199.

Singh, B. & Pal, L. 2011. Radiation crosslinking polymerization of sterculia polysaccharide – PVA – PVP for making hydrogel wound dressings. International Journal of Biological Macromolecules 48: 501-510. ijbiomac.2011.01.013.

Sivaiah, K., Kumar, K.N., Naresh, V. & Buddhudu, S. 2011. Structural and optical properties of Li+: PVP & Ag+: PVP polymer films. Materials Sciences and Applications 2: 1688-1696.

Soler, D.M., Rodriguez, Y., Correa, H., Moreno, A. & Carrizales, L. 2012. Pilot scale-up and shelf stability of hydrogel wound dressings obtained by gamma radiation. Radiation Physics and Chemistry 81: 1249-1253. radphyschem.2012.02.024.

Tahtat, D., Mahlous, M., Benamer, S., Khodja, A.N. & Youcef, S.L. 2012. Effect of molecular weight on radiation chemical degradation yield of chain scission of γ -irradiated chitosan in solid state and in aqueous solution. Radiation Physics and Chemistry 81: 659-665. radphyschem.2012.02.036.

Tanuma, H., Saito, T., Nishikawa, K., Dong, T., Yazawa, K. & Inoue, Y. 2010. Preparation and characterization of PEG-crosslinked chitosan hydrogel films with controllable swelling and enzymatic degradation behavior. Carbohydrate Polymers 80: 260-265.

Yang, C., Xu, L., Zhou, Y., Zhang, X., Huang, X. & Wang, M. 2010. A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohydrate Polymers 82: 1297-1305.

Yuan, Y., Chesnutt, B.M., Utturkar, G., Haggard, W.O., Yang, Y., Ong, J.L. & Bumgardner, J.D. 2007. The effect of crosslinking of chitosan microspheres with genipin on protein release. Carbohydrate Polymers 68: 561-567.

Zhang, D., Zhou, W., Wei, B., Wang, X., Tang, R., Nie, J. & Wang, J. 2015a. Carboxyl-modified poly (vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. Carbohydrate Polymers 125: 189-199. http://doi. org/10.1016/j.carbpol.2015.02.034.

Zhang, J., Han, J., Zhang, X., Jiang, J., Xu, M. & Zhang, D. 2015b. Polymeric nanoparticles based on chitooligosaccharide as drug carriers for co-delivery of all- trans -retinoic acid and paclitaxel. Carbohydrate Polymers 129: 25-34. shttp://doi. org/10.1016/j.carbpol.2015.04.036.

Zhao, L., Xu, L., Mitomo, H. & Yoshii, F. 2006. Synthesis of pH-sensitive PVP / CM-chitosan hydrogels with improved surface property by irradiation. Carbohydrate Polymers 64: 473-480.



*Pengarang untuk surat-menyurat; email: