Sains Malaysiana 47(8)(2018): 1693–1700

http://dx.doi.org/10.17576/jsm-2018-4708-08

 

Responses of Four Citrus Plants to Phytophthora-Induced Root Rot

(Tindak Balas Empat Tumbuhan Sitrus kepada Reput Akar Diinduksi dengan Phytophthora)

 

LI TIAN1, QIANG-SHENG WU1*, KAMIL KUČA2 & MOHAMMED MAHABUBUR RAHMAN3

 

1College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China

 

2Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003m Czech Republic

 

3Brix' N Berries, Leduc, Alberta, Canada

 

Diserahkan: 2 Mac 2018/Diterima: 4 April 2018

 

ABSTRACT

China is one of the largest citrus producers in Asia, where Phytophthora parasitica infection has become the major threat in sustaining long term citrus production. The proposed study examined the effects of P. parasitica on Citrus junos, C. limon, C. tangerina and Poncirus trifoliata to evaluate the resisted rootstock to Phytophthora root rot. P. parasitica infection notably decreased plant growth, root morphology and activities of pathogenesis-related proteins (PRs) in C. limon and C. tangerina. Root β-1,3-glucanase, chitinase and phenylalanine ammonialyase activities significantly increased in C. junos and P. trifoliata after infection with P. parasitica. P. parasitica infection notably decreased root salicylic acid concentrations in C. limon, C. tangerina and P. trifoliata, while increasing it in C. junos. An opposite trend was observed in root jasmonic acid levels after infection with P. parasitica, relative to root salicylic acid. Root nitric oxide and calmodulin concentrations were significantly increased in P. parasitica-infected C. junos, C. tangerina and P. trifoliata, while C. limon exhibited a decrease. These results demonstrated that citrus species like C. junos and P. trifoliata displayed a much higher resistance to Phytophthora-induced root rot, and C. limon and C. tangerina showed a comparatively lower degree of resistance.

 

Keywords: Citrus junos; pathogenesis-related protein; Phytophthora parasitica; poncirus trifoliata

 

ABSTRAK

Negara China ialah salah sebuah negara pengeluar sitrus terbesar di Asia dengan jangkitan Phytophthora parasitica telah menjadi ancaman utama dalam mengekalkan pengeluaran sitrus berjangka panjang. Kajian yang dicadangkan untuk mengkaji kesan P. parasitica pada Citrus junos, C. limon, C. tangerina dan Poncirus trifoliata bagi menilai akar umbi yang ditentang terhadap reput akar Phytophthora. Jangkitan P. parasitica terutamanya menurunkan pertumbuhan tumbuhan, morfologi akar dan aktiviti protein yang berkaitan patogenesis (PR) pada C. limon dan C. tangerina. Akar β-1,3-glukanase, kitinase and fenilalanina ammonia-liase meningkat dengan ketara pada C. junos dan P. trifoliata selepas jangkitan P. parasitica. P. parasitica terutamanya menurunkan kepekatan asid salisilik akar dalam C. limon, C. tangerina dan P. trifoliata manakala meningkatkannya dalam C. junos. Tren yang bertentangan telah diperhatikan pada peringkat asid jasmonik akar selepas jangkitan dengan P. parasitica berbanding dengan asid salisilat akar. Kepekatan nitrik oksida dan kalmodulin akar meningkat dengan ketara pada P. parasitica yang dijangkiti C. junos, C. tangerina dan P. trifoliata manakala C. limon menunjukkan suatu penurunan. Keputusan ini menunjukkan bahawa spesies sitrus seperti C. junos dan P. trifoliata menunjukkan rintangan yang lebih tinggi terhadap reput akar diinduksi dengan Phytophthora serta C. limon dan C. tangerina menunjukkan tahap rintangan yang agak rendah.

 

Kata kunci: Citrus junos; Phytophthora parasitica; Poncirus trifoliata; protein yang berkaitan pathogenesis

RUJUKAN

Bari, R. & Jones, J.D. 2009. Role of plant hormones in plant defence responses. Plant Molecular Biology 69(4): 473-488.

Bonnet, J., Danan, S., Boudet, C., Barchi, L., Sage-Palloix, A. & Caromel, B. 2007. Are the polygenic architectures of resistance of Phytophthora capsici and P. parasitica independent in pepper? Theoreticao & Appied Genetic 115(2): 253-264.

Davis, R.M. & Menge, J.A. 1980. Influence of Glomus fasciculatus and soil phosphorus on Phytophthora root rot of citrus. Phytopathology 70(5): 447-452.

Dixon, R.A., Achnine, L., Kota, P., Liu, C.J., Reddy, M.S. & Wang, L. 2002. The phenylpropanoid pathway and plant defence-a genomics perspective. Molecular Plant Pathology 3(5): 371-390.

Esquerré-Tugayé, M.T., Boudart, G. & Dumas, B. 2000. Cell wall degrading enzymes, inhibitory proteins, and oligosaccharides participate in the molecular dialogue between plants and pathogens. Plant Physiology and Biochemistry 38(1): 157- 163.

Glazebrook, J. 2001. Genes controlling expression of defense responses in Arabidopsis-2001 status. Current Opinion in Plant Biology 4(4): 301-308.

Gray, M.A., Hao, W., Forster, H. & Adaskaveg, J.E. 2017. Effect of new Oomycete-specific fungicides on tree health, fruit yields and Phytophthora root rot of citrus. Phytopathology 107: 186.

Hu, N., Tu, X.R., Li, K.T., Ding, H., Li, H., Zhang, H.W., Tu, G.Q. & Huang, L. 2017. Changes in protein content and chitinase and β-1,3-glucanase activities of rice with blast resistance induced by Ag-antibiotic 702. Plant Diseases and Pests 8(4): 33-36.

Kim, D.S. & Hwang, B.K. 2014. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. Journal of Experimental Botany 65(9): 2295- 2306.

Kim, M.C., Chung, W.S., Yun, D.J. & Cho, M.J. 2009. Calcium and calmodulin-mediated regulation of gene expression in plants. Molecular Plant 2(1): 13-21.

Klarzynski, O., Plesse, B. & Joubert, J.M. 2000. Linear β-1,3- glucans are elicitors of defense responses in tobacco. Plant Physiology 124: 1027-1037.

Latijnhouwers, M., De Wit, P.J. & Govers, F. 2003. Oomycetes and fungi: Similar weaponry to attack plants. Trends in Microbiology 11(10): 462-469.

Li, Y.Z., Zheng, X.H., Tang, H.L., Zhu, J.W. & Yang, J.M. 2003. Increase of β-1,3-glucanase and chitinase activities in cotton callus cells treated by salicylic acid and toxin of Verticillium dahliae. Acta Botanica Sinica 45(7): 802-808.

Lindermayr, C., Saalbach, G. & Durner, J. 2005. Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiology 137(3): 921-930.

Liu, J.J. & Yin, G.Y. 1993. Study on the root rot and yellow leaf disease of citrus in Jiangsu and Hubei provinces. Journal of Nanjing Agricultural University 16(1): 38-44 (in Chinese with English abstract).

Mozzetti, C., Ferraris, L., Tamietti, G. & Matta, A. 1995. Variation in enzyme activities in leaves and cell suspensions as markers of incompatibility in different Phytophthora-pepper interactions. Physiological and Molecular Plant Pathology 46(2): 95-107.

Queiroz, B.P.V. & Melo, I.S. 2006. Antagonism of Serratia marcescens towards Phytophthora parasitica and its effects in promoting the growth of citrus. Brazilian Journal of Microbiology 37(4): 448-450.

Robert-Seilaniantz, A., Grant, M. & Jones, J.D. 2011. Hormone crosstalk in plant disease and defense: More than just jasmonate-salicylate antagonism. Annual Review of Phytopathology 49: 317-343.

Sanders, P.M., Lee, P.Y., Biesgen, C., Boone, J.D., Beals, T.P., Weiler, E.W. & Goldberg, R.B. 2000. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. The Plant Cell 12(7): 1041-1061.

Shiraishi, T., Yamada, T., Nicholson, R.L. & Kunoh, H. 1995. Phenylalanine ammonia-lyase in barley: Activity enhancement in response to Erysiphe graminis f. sp. Hordei  (race 1) a pathogen, and Erysiphe pisi, a nonpathogen. Physiological and Molecular Plant Pathology 46(2): 153- 162.

Song, Y.Y., Zeng, R.S., Xu, J.F., Li, J., Shen, X. & Yihdego, W.G. 2010. Interplant communication of tomato plants through underground common mycorrhizal networks. PloS ONE 5(10): e13324.

Vallad, G.E. & Goodman, R.M. 2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science 44(6): 1920-1934.

Wasternack, C. & Parthier, B. 1997. Jasmonate-signalled plant gene expression. Trends in Plant Science 2(8): 302-307.

Yan, H.X., Zhong, Y., Jiang, B., Zhou, B.R., Wu, B. & Zhong, GY. 2017. Guanggan (Citrus reticulata) shows strong resistance to Phytophthora nicotianae. Scientia Horticulturae 228: 141-149.

Zhang, L., Wei, L., Tang, X.F., Wang, W.W., Yu, Z.Y. & Liu, L.J. 2017. Bioinformatics analysis of soybean β-1,3-glucanase (GmBG1) and its homologous proteins. Genomics and Applied Biology 36(3): 1035-1042.

Zhou, C.H. 1999. Resistance identification of citrus somatic cell hybrid to Phytophthora parasitica and study of Phytophthora parasitica toxin. Doctoral dissertation, Wuhan: Huazhong Agricultural University (Unpublished).

 

 

*Pengarang untuk surat-menyurat; email: wuqiangsh@163.com

 

 

 

 

 

sebelumnya