Sains Malaysiana 48(1)(2019): 61–68

http://dx.doi.org/10.17576/jsm-2019-4801-07

 

Effects of Organic Amendment on Soil Organic Carbon in Treated Soft Clay in Paddy Cultivation Area

(Kesan Bahan Pembaik Pulih Organik ke atas Karbon Organik Tanah dalam Tanah Jerlus Terawat di Kawasan Penanaman)

MUHAMMAD RENDANA1, WAN MOHD RAZI IDRIS2*, SAHIBIN ABDUL RAHIM3, ZULFAHMI ALI RAHMAN2, TUKIMAT LIHAN2 & HABIBAH JAMIL4

 

1Postgraduate Programme, Universitas Sriwijaya, 30139 Bukit Besar, Palembang, Indonesia

 

2School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Environmental Sciences Programme, Faculty of Science and Natural Resources Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

 

4School of Geology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 18 Februari 2018/Diterima: 10 Ogos 2018

 

ABSTRACT

Soft clay soil has become a major problem in paddy cultivation area. Nearly half of the total paddy field in Kedah State, Malaysia cannot be utilized for paddy cultivation because of soft clay soil. The problem is related to the presence of weak hardpan structure that permits the soil to experience continuous wet condition. The soil also causes in the alteration of many processes soil organic carbon sequestration and turnover, but the main effect on the land is decrease in soil fertility. To investigate the effects of soft clay soil on soil organic carbon content, stock and change rate, the trial has been conducted in Alor Senibong paddy field area in Kedah, Malaysia examining the problematic paddy field that associated with soft clay soil problem. Hasil Tani Organic Compound (HTOC) was an organic soil amendment that used to enhance soil organic carbon in this study. Paddy field with the presence of soft clay soil showed a low soil organic carbon content and stock around 0.67% and 1.01 t·ha-1, respectively (depth 0-15 cm). The reduction of soil organic carbon content in soft clay soil was likely because of the waterlogged soil environment, the stability of soil aggregates and decline in humification process which then reduced soil organic carbon input. After being treated with HTOC, soil organic carbon content and carbon stock in soft clay soil have significantly increased by 0.67-3.14% and 1.01-4.76 t·ha-1 (depth 0-15 cm), respectively, yielding a mean monthly carbon change rate of 4.36 g C kg−1·mth.−1 (depth 0-15 cm). As whole, the succession of HTOC application to improve soil organic carbon content in this study could be employed in other paddy field areas that associated with soft clay soil problem.

 

Keywords: Organic amendment; soft clay soil; soil fertility; soil organic carbon

 

ABSTRAK

Tanah jerlus telah menjadi masalah utama di kawasan penanaman padi. Hampir separuh daripada jumlah sawah padi di Negeri Kedah, Malaysia tidak boleh digunakan untuk penanaman padi kerana tanah jerlus. Masalah ini adalah berkaitan dengan kewujudan struktur lapisan keras tanah lemah yang membolehkan tanah mengalami keadaan basah secara berterusan. Tanah jerlus juga menyebabkan perubahan banyak kepada proses penyerapan atau kehilangan karbon organik tanah, tetapi kesan utama pada tanah adalah penurunan kesuburan tanah. Untuk mengkaji kesan tanah jerlus pada kandungan karbon organik tanah, stok karbon tanah dan kadar perubahan kandungan karbon organik tanah, sebuah kajian telah dilakukan di kawasan sawah Alor Senibong, Kedah, Malaysia yang menghadapi masalah tanah jerlus. Sebatian Organik Hasil Tani (HTOC) adalah bahan pembaik pulih tanah yang digunakan dalam kajian ini untuk meningkatkan kandungan karbon organik dalam tanah. Plot sawah yang bermasalah tanah jerlus menunjukkan kandungan karbon organik tanah dan stok karbon yang rendah sekitar 0.67% dan 1.01 t·ha-1 (kedalaman tanah 0-15 cm). Pengurangan kandungan karbon organik tanah dalam tanah jerlus dijangkakan disebabkan oleh persekitaran tanah yang berair, kestabilan agregat tanah dan penurunan proses penghumusan yang kemudiannya mengurangkan input karbon organik tanah. Selepas dirawat dengan HTOC, kandungan karbon organik tanah dan stok karbon dalam tanah jerlus meningkat dengan ketara sebanyak 0.67-3.14% dan 1.01-4.76 t·ha-1 (kedalaman tanah 0-15 cm), dengan kadar perubahan purata bulanan karbon sekitar 4.36 g C kg-1·mth.-1 (kedalaman tanah 0-15 cm). Secara keseluruhan, kejayaan aplikasi HTOC untuk meningkatkan kandungan karbon organik tanah dalam kajian ini boleh digunakan di kawasan sawah lain yang berkaitan dengan masalah jerlus.

 

Kata kunci: Bahan pembaik pulih organik; karbon organik tanah; kesuburan tanah; tanah jerlus

RUJUKAN

Adnan, N.S., Mohsin, T., Shahzad, B., Guozheng, Y., Shah, F., Saif, A., Muhammad, A.B., Shahbaz, A.T., Abdul, H. & Biangkham, S. 2017. Soil compaction effects on soil health and crop productivity: An overview. Environ. Sci. Pollut. Res. 10: 1-13.

Aimrun, W., Amin, M.S.M., Ezrin, M.H. & Mastura, M. 2011. Paddy soil properties and yield characteristics based on apparent electrical conductivity zone delineation for a humid tropical rice farm. African Journal of Agricultural Research 6: 5339-5350.

Anlei, C., Xiaoli, X., Tida, G., Haijun, H., Wei, W., Wenxue, W. & Yakov, K. 2017. Rapid decrease of soil carbon after abandonment of subtropical paddy fields. Plant Soil 415: 203-214.

Avery, B.W. & Bascomb, C.L. 1982. Soil Survey Laboratory Methods, Soil Survey Technical Monograph. United Kingdom: Soil Survey of England and Wales.

Azizul, G. 2008. Soil hardpan improvement technique using vibrator subsoiler for rice mechanization farm. Buletin Teknologi Tanaman 5: 1-4.

Chivenge, P., Vanlauwe, B. & Six, S. 2011. Does the combined application of organic and mineral nutrient sources influence maize productivity? A metaanalysis. Plant Soil 342: 1-30.

Claudia, M.B.F.M., Etelvino, N., Tatiana, F.R. & Michael, H.B.H. 2013. Soil organic matter: Chemical and physical characteristics and analytical methods. A Review. Current Organic Chemistry 17: 2985-2990.

Eduardo, C.S.N., Marcos, G.P., Júlio, C.F.F. & Thaís, A.C.N. 2016. Aggregate formation and soil organic matter under different vegetation types in Atlantic Forest from Southeastern Brazil. Semina: Ciencias Agrarias 37: 3927-3940.

Fageria, N.K., Moreira, A. & Coelho, A.M. 2011. Yield and yield components of upland rice as influenced by nitrogen sources. Journal of Plant Nutrition 34: 361-370.

FAO. 2016. Statistical Databases. Food and Agriculture Organization of the United Nations. http://www.fao.org/ faostat/en/#data.

Ghimire, R., Norton, J.B. & Pendall, E. 2014. Alfalfa-grass biomass, soil organic carbon, and total nitrogen under different management approaches in an irrigated agroecosystem. Plant and Soil 374: 173-184.

Kirkby, M.J. 1980. Soil Erosion: Soil Loss Estimation. New York: John Wiley & Sons.

Liu, C., Lu, M., Cui, J., Li, B. & Fang, C.M. 2014. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Chang. Biol. 20: 1366-1138.

Liu, X.W., Wang, H.Y., Zhou, J.M., Hu, F.Q., Zhu, D.J., Chen, Z.M. & Liu, Y.Z. 2016. Effect of N fertilization pattern on rice yield, N use efficiency and fertilizer-N fate in the Yangtze River Basin, China. PLoS One 11: 1-6.

MAFF. 1970 Modern Farming and the Soil. Report of the Advisory Council on Soil Structure and Soil Fertility. HMSO, London.

Maggie, R.D., Bruno, J.R.A., Douglas, L.K., Keith, L.K., Marcelo, G. & Dana, A. 2018. Review of soil organic carbon measurement protocols: A U.S. and Brazil comparison and recommendation. Sustainability 10: 1-20.

MARDI. 2002. Manual for Rice Cultivation. Serdang: Malaysian Agricultural Research and Development Institute.

Marrenjo, G.J., Pádua, E.J.D., Silva, C.A., Soares, P.C. & Zinn, Y.L. 2016. Impacts of long-term cultivation of fooded rice in gley sols. Pesquisa Agropecuária Brasileira 51: 967-977.

Massey, D.M. & Windsor, G.W. 1967. Report. Glasshouse Crops Res. Inst. p. 72.

Meng, Y.L., Qing, R.C., Yan, B.Q., Jing, L. & Tao, C. 2014. Aggregation and soil organic carbon fractions under different land uses on the tableland of the Loess Plateau of China. Catena 115: 19-28.

Metson, A.J. 1956. Methods of Chemical Analysis for Soil Survey Samples. New Zealand: New Zealand Department of Scientific and Industrial Research.

Munawar, A. & Wanti, M. 2016. Effect of humic acid on soil chemical and physical characteristics of embankment. MATEC Web of Conferences 58: 1-6.

Murphy, B.W. 2015. Impact of soil organic matter on soil properties-A review with emphasis on Australian soils. Soil Research 53: 605-635.

Nittaya, C. & Sirintornthep, T. 2011. Variation of soil organic carbon stock in abandoned rice field managed by crop rotation. 3rd iLEAPS Science Conference Garmisch- Partenkirchen, 18-23 September, Germany.

Paramananthan, S. 1987. Field Legend for Soil Surveys in Malaysia. Serdang: UPM Press.

Peng, W., Zeng, Y., Qinghua, S. & Shan, H. 2017. Responses of rice yield and the fate of fertilizer nitrogen to soil organic carbon. Plant Soil Environ. 63: 416-421.

Persson, J.A. 2008. Handbook for Kjeldahl Digestion. 4th ed. Denmark: FOSS, DK-3400 Hilleroed.

Ping, Y. & Wei, Z. 2013. The exploitation of rice paddy field and its ecological protection. Intelligent System Design and Engineering Applications (ISDEA), Third International Conference, 16-18 January, Hong Kong, China.

Prabhat, P. & Pil, J.K. 2014. Fractionation and characterization of humic acids fromorganic amended rice paddy soils. Science of the Total Environment 466: 952-956.

Razi, W.M.I., Sahibin, A.R., Zulfahmi, A.R., Tukimat, L., Habibah, J., Rendana, M. & Fazahar, M.N. 2017. Total organic carbon and stock carbon in the soil at paddy field area Alor Senibong, Langgar, Kedah, Malaysia. Proceedings of Geography and Environment. September 26-27. pp. 274-280.

Rodriguez, O.D., Guevara, H.J.P., Ruíz, C.R.G., Barrientos, J.H. & Shevnin, V. 2011. Determination of hydraulic conductivity and fines content in soils near an unlined irrigation canal in Guasave, Sinaloa, Mexico. Journal of Soil Science and Plant Nutrition 11: 13-31.

Russell, E.W. & Balcerek, W. 1944. The determination of the volume and airspace of soil clods. J. Agric. Sci. 34: 123-132.

Sahibin, A.R., Mohd Razi, W.I., Tukimat, L., Jamil, H., Rendana, M., Asmadi, I. & Zulfahmi, A.R. 2016. Effects of Hasil Tani Organic Compound Product (HTOC) on the physico-chemical properties of paddy soils in MADA. Proceeding of the Soil Science Conference of Malaysia. April 5-7. Terengganu. pp. 339-344.

USDA. 1971. Guide for Interpreting Engineering uses of Soils. Washington, D.C: U.S. Government Printing Office.

Wang, W., Xie, X., Chen, A., Yin, C. & Chen, W. 2013. Effects of long-term fertilization on soil carbon, nitrogen, phosphorus and rice yield. J. Plant Nutr. 36: 551-561.

Watanabe, K., Hong, M.L. & Kazuyuki, N. 2017. Effects of the continuous application of rice straw compost and chemical fertilizer on soil carbon and available silicon under a double rice cropping system in the Mekong Delta, Vietnam. JARQ. 51: 233-239.

Watanabe, T., Kimura, M. & Asakawa, S. 2007. Dynamics of methanogenic archaeal communities based on rRNA analysis and their relation to methanogenic activity in Japanese paddy field soils. Soil Biol. Biochem. 39: 77-87.

Wissing, L., Kolbl, A., Hausler, W., Schad, P., Cao, Z.H. & Kogel- Knabner, I. 2013. Management-induced organic carbon accumulation in paddy soils: The role of organo-mineral associations. Soil Tillage Res. 126: 60-71.

Xiao, L.X., Wei, W., Wen, W.T. & Ke, J.X. 2017. Waterlogging accelerates the loss of soil organic carbon from abandoned paddy felds in the hilly terrain in subtropical China. Scientific Reports 7: 1-6.

Zhao, Y.N., He, X.H., Huang, X.C., Zhang, Y.Q. & Shi, X.J. 2016. Increasing soil organic matter enhances inherent soil productivity while offsetting fertilization effect under a rice cropping system. Sustainability 8: 879.

Zhang, X.B., Sun, N., Wu, L.H., Xu, M.G., Bingham, I.J. & Li, Z.F. 2016. Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: Evidence from long-term experiments with wheat-maize cropping systems in China. Science of the Total Environment 562: 247-259.

Zulfahmi, A.R., Sabturo, M.S.A., Idris, W.M.R., Lihan, T. & Rendana, M. 2017. Effect of organic fertilizer on atterberg limit and strength of problematic clay soil. Proceedings of Geography and Environment. September 26-27. Perak. pp. 338-344.

 

*Pengarang untuk surat-menyurat; email: razi@ukm.edu.my

 

 

 

 

 

sebelumnya