Sains Malaysiana 48(2)(2019): 369–375

http://dx.doi.org/10.17576/jsm-2019-4802-14

 

Growth and Magnetic Behaviours of La0.7Sr0.3MnO3 Nanoparticles Synthesized via Thermal

Treatment Method

(Tingkah Laku Pertumbuhan dan Magnetik Nanopartikel La0.7Sr0.3MnO3 Disintesis melalui Kaedah Rawatan Terma)

 

PAN KAI YAP, ABDUL HALIM SHAARI*, HUSSEIN BAQIAH, CHEN SOO KIEN, JUMIAH HASSAN, MOHD MUSTAFA AWANG KECHIK, LIM KEAN PAH & ZAINAL ABIDIN TALIB

 

Department of Physics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 16 Julai 2018/Diterima: 20 September 2018

 

ABSTRACT

La0.7Sr0.3MnO3 (LSMO) nanoparticles were synthesized by thermal treatment method using water as solvent and polyvinyl pyrollidone (PVP) as capping agent. The as prepared precursor was calcined at various temperatures ranging from 500°C to 1000°C. Structural characterization using X-rays diffractions (XRD) showed that the LSMO nanoparticles, calcined at temperature 600°C, have single phase of La0.7Sr0.3MnO3 with rhombohedral crystal structure without any secondary phases being detected. The average particle size of nanoparticles increased gradually from 23 to 163 nm for samples calcined at 500 to 1000°C. Magnetic measurement at room temperature using vibrating sample magnetometer (VSM) indicated that the LSMO nanoparticles had soft ferromagnetic behaviour with coercivity ranged from 3.43 to 33.78 G. The magnetic saturation (Ms) of nanoparticles increased with the increment of particle size. From Electron Spin Resonance (ESR) measurement, the g-value of LSMO nanoparticles increased with the increasing of calcination temperature. The ESR indicated a coexistence of ferromagnetic and paramagnetic phases in LSMO nanoparticles below Curie temperature (Tc). The Tc was in the range of 50-80°C for LSMO calcined at 500°C and it is in the range of 80-110°C for LSMO calcined 600, 700, 800, 900, and 1000°C.

 

Keywords: Electron resonance; magnetic properties; nanostructures; Rietveld analysis; thermal treatment

 

ABSTRAK

Zarah nano La0.7Sr0.3MnO3 (LSMO) telah disintesis melalui kaedah rawatan terma menggunakan air sebagai pelarut dan polivinil pirolidon (PVP) sebagai agen penyalutan. Prekursor yang disediakan telah melalui pengkalsinan pada suhu yang berbeza dari 500°C hingga 1000°C. Pencirian struktur menggunakan pembelauan sinar-X (XRD) mendedahkan bahawa zarah nano LSMO, dikalsinkan pada suhu 600°C, mempunyai struktur fasa tunggal tanpa sebarang fasa sekunder yang dikesan. Purata saiz zarah bagi zarah nano meningkat secara beransur-ansur daripada 23 hingga 163 nm untuk sampel yang dikalsin pada suhu 500 hingga 1000°C. Pengukuran sifat magnet pada suhu bilik menggunakan magnetometer sampel bergetar (VSM) menunjukkan bahawa zarah nano LSMO mempunyai kelakuan feromagnet lembut dengan koersiviti berjulat antara 3.43 hingga 33.78 G. Ketepuan magnet (Ms) zarah nano meningkat dengan kenaikan saiz zarah. Daripada pengukuran resonans spin elektron (ESR), nilai g bagi zarah nano LSMO meningkat dengan peningkatan suhu kelembapan pengkalsinan. ESR juga menunjukkan kewujudan bersama fasa feromagnet dan paramagnet dalam zarah nano LSMO di bawah suhu Curie (Tc). Tc berada dalam lingkungan antara 50-80°C untuk LSMO yang dikalsin pada suhu 500°C dan ia berada dalam lingkungan antara 80-110°C untuk LSMO yang dikalsinkan pada suhu 600, 700, 800, 900 dan 1000°C.

 

Kata kunci: Analisis Rietveld; nanostruktur; rawatan terma; resonans elektron; sifat magnetik

RUJUKAN

Andrade, V.M., Caraballo Vivas, R.J., Pedro, S.S., Tedesco, J.C.G., Rossi, A.L., Coelho, A.A., Rocco, D.L. & Reis, M.S. 2016. Magnetic and magnetocaloric properties of La0.6Ca0.4MnO3 tunable by particle size and dimensionality. Acta Materialia 102: 49-55.

Daengsakul, S., Thomas, C., Siri, S., Thomas, I., Amornkitbamrung, V., Maensiri, S. & Mongkolkachit, C. 2009a. A simple thermal decoposition synthesis, magnetic properties and cytotoxicity of La0.7Sr0.3MnO3 nanoparticles. Applied Physics A: Materials Science & Processing 96: 691-699.

Daengsakul, S., Thomas, I., Mongkolkachit, C., Siri, S., Amornkitbamrung, V., Maensiri, S. & Thomas, C. 2009. Magnetic and cytotoxicity properties of La1-xSrxMnO3 (0<×<0.5) nanoparticles prepared by a simple thermal hyro-decomposition. Nanoscle Research Letter 4: 839-845.

Drofenik, V. & Uskokovie, M. 2007. Four novel co-precipitation procedures for the synthesis of lanthanum strontium manganites. Materials and Design 28: 667-672.

Du, Y.K., Mou, Z.G., Hua, N.P., Jiang, L. & Yang, P. 2006. Thermal decomposition behaviors of PVP coated on platinum nanoparticles. Journal of Applied Polymer Science 99: 23-26.

Dutta, A., Gayathri, N. & Ranganathan, R. 2003. Effect of particle size on the magnetic and transport properties of La0.875Sr0.125MnO3. Physical Review B 68: 54432-54438.

Dyakonov, V.A., Ślawska-Waniewska, N., Nedelko, E., Zubov, V., Mikhaylov, K., Piotrowski, A., SzytuŁ, S.B., Bazela, W., Kravchenko, Z., Aleshkevich, P., Pashchenko, A., Dyakonov, K., Varyukhin, V. & Szymczaka, H. 2010. Magnetic, resonance and transport properties of nanopowder of La0.7Sr0.3MnO3 manganites. Journal of Magnetism and Magnetic Materials 322(20): 3072-3079.

Ehi-Eromosele, C.O., Ita, B.I., Iweala, E.E.J., Ogunniran, K.O., Adekoya, J.A. & Ehi-Eromosele, F.E. 2016. Structural and magnetic characterization of La0.7Sr0.3MnO3 nanoparticles obtained by the citrate-gel combustion method: Effect of fuel to oxidizer ratio. Ceramics International 42(1, Part A): 636-643.

Fujishiro, H., Fukase, T. & Ikebe, M. 1998. Charge ordering and sound velocity anomaly in             LaxSr1-XMnO3 (×≥0.5). Journal of the Physical Society of Japan 67: 2582-2585.

Ghosh, A., Gulnar, A.K., Suri, A.K. & Sahu, A.K. 2005. Synthesis and characterization of lanthanum strontium manganite. Scripta Materialia 52: 1305-1309.

Gupta, A. & Sun, J.Z. 1999. Spin-polarized transport and magnetoresistance in magnetic oxides. Journal of Magnetism and Magnetic Materials 200(1-3): 24-43.

Hwang, H.Y., Cheong, S.W., Ong, N.P. & Batlogg, B. 1996. Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3. Physical Review Letters 77(10): 2041-2044.

Karthikeyan, S. & Ravi, A. 2014. Effect of calcination temperature on La0.7Sr0.3MnO3 nanoparticles synthesized with modified sol-gel route. Physics Procedia 54: 45-54.

Lee, S.M., Chon, G.B., Lee, C.G., Koo, B.H. & Lim, H.S. 2006. Hydrothermal reaction for the preparation of La0.7Ca0.3MnO3 and La0.7Sr0.3MnO3. Journal of the Korean Physical Society 48: 1409-1412.

Lopez-Quintela, M.A., Rivas, J., Rivadulla, F. & Hueso, L.E. 2003. Intergranular magnetoresistance in nanomanganites. Nanotechnology 14: 212-219.

Millis, A.J., Littlewood, P.B. & Shramin, B.I. 1995. Double exchange alone does not explain the resistivity of La2/3Sr1/3MnO3. Physical Review Letters 74: 5144-5147.

Moradi, J., Ghazi, M.E., Ehsani, M.H. & Kameli, P. 2014. Structural and magnetic characterization of La0.8Sr0.2MnO3 nanoparticles prepared via a facile microwave-assisted method. Journal of Solid State Chemistry 215: 1-7.

Naseri, M.G., Elias, B.S., Mansor, H., Abdul Halim, S. & Hossein Abasstabar, A. 2011a. Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method. Solid State Communications 151(14-15): 1031-1035.

Naseri, M.G., Elias B.S., Hossein Abbastabar, A., Mansor, H. & Abdul Halim, S. 2011b. Simple preparation and characterization of nickel ferrite nanocrystals by a thermal treatment method. Powder Technology 212(1): 80-88.

Pan, K.Y., Lim, K.P., Daud, W.M., Chen, S.K. & Halim, S.A. 2012. Effect of sintering temperature on microstructure, electrical and magnetic properties of La0.85K0.15MnO3 prepared by sol-gel method. Journal of Superconductivity and Novel Magnetism 25: 1177-1183.

Papaefthymiou, G.C. 2009. Nanoparticle magnetism. Nano Today 4(5): 438-447.

Rajagopal, R., Mona, J., Kale, S.N., Bala, T., Pasricha, R., Poddar, P., Sastry, M., Prasad, B.L.V., Kundaliya, D.C. & Ogale, S.B. 2006. La0.7Sr0.3MnO3 nanoparticles coated with fatty amine. Applied Physics Letters 89(2): 23107.

Shivakumara, C., Prakash, A.S., Vasanthacharya, N.Y. & Belakki, M.B. 2007. Rapid synthesis of ferromagnetic La1-XNaxMnO3 (0.00 ≤×≤ 0.25) by the Solution Combustion Method. Journal of the American Ceramic Society 90: 3852-3858.

Teng, F. 2009. Hydrothermal synthesis and their catalytic properties of manganites nanowires. Solid State Sciences 11: 1643-1648.

Thorat, N.D., Pawar, S.H., Barick, K.C., Betty, C.A., Ningthoujam, R.S. & Shinde, K.P. 2012. Polyvinyl alcohol: An efficient fuel for synthesis of superparamagnetic LSMO nanoparticles for biomedical apllication. Dalton Transactions 41: 3060-3071.

Urushibara, A., Arima, T., Asamitsu, A., Kido, G., Tokura, Y. & Moritomo, Y. 1995. Insulator-metal transition and giant magnetoresistance in La1-XSrxMnO3. Physical Review B 51: 14103-14109.

Varma, A. & Gaur, G.D. 2006. Sintering temperature effect on electrical transports and magnetoresistance of nanophasic La0.7Sr0.3MnO3. Journal of Physics: Condensed Matter 18: 8837-8846.

Wu, J.H. & Lin, J.G. 2006. Study on the phase separation of La0.7Sr0.3MnO3 nanoparticles by electron magnetic resonance. Journal of Magnetism and Magnetic Materials 304(1): e7-e9.

Zahari, R.M., Shaari, A.H., Abbas, Z., Baqiah, H., Chen, S.K., Lim, K.P. & Kechik, M.M.A. 2017. Simple preparation and characterization of bismuth ferrites nanoparticles by thermal treatment method. Journal of Materials Science: Materials in Electronics 28(23): 17932-17938.

Zener, C. 1951. Interaction between the d-Shell in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Physical Review 82: 403.

Zhang, Y., Weiwei, P., Dong, J., Wang, Z., Liu, Q. & Wang, J. 2013. Morphology dependence of electron spin resonance investigation on structure controllable hollow La0.7Sr0.3MnO3 nanofibres. Journal of Physics D: Applied Physics 46(10): 105001.

 

*Pengarang untuk surat-menyurat; email: ahalim@upm.edu.my

 

 

 

 

 

sebelumnya