Sains Malaysiana 48(2)(2019): 401–406

http://dx.doi.org/10.17576/jsm-2019-4802-18

 

Kesan Pemendapan Elektroforesis Gam Arab terhadap Halaju Kakisan pada Aluminium 5052

(Electrophoresis Deposition Arabic Gum Effect on Aluminium 5052 Reduce Corrosion)

 

I GUSTI AYU ARWATI1,3, EDY HERIANTO MAJLAN1*, WAN RAMLI WAN DAUD1,2, LOH KEE SHYUAN1, KHUZAIMAH BINTI ARIFIN1, TEUKU HUSAINI1, SAGIR ALVA3 & NABILAH AFIQAH MOHD RADZUAN1

 

1Institut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Pusat Penyelidikan Teknologi Proses Mampan, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Mechanical Engineering Department, Engineering Faculty, Mercu Buana University, 11650 Jakarta, Indonesia

 

Diserahkan: 9 Julai 2018/Diterima: 29 September 2018

 

ABSTRAK

Plat dwikutub adalah salah satu komponen utama sel fuel membran pertukaran proton (PEMFC). Aloi aluminium (Al5052) merupakan salah satu logam yang digunakan sebagai plat dwikutub kerana mempunyai kekonduksian yang tinggi dan ringan. Namun, sistem PEMFC yang berasid (pH3-6) adalah mudah untuk bahan Al5052 mengalami kakisan sehingga dapat mengurangkan prestasi PEMFC. Oleh itu, bagi mengurangkan halaju kakisan yang berlaku, kajian ini menggunakan perencat hijau gam Arab dengan kaedah pemendapan elektroforesis (EPD). Kesan kakisan plat Al5052 bersalut 0.5 gL-1 gam Arab di dalam larutan sulfurik asid diuji menggunakan kaedah elektrokimia dan ujian morfologi. Hasil ujian morfologi permukaan Al5052 yang bersalut gam Arab terlihat lebih halus dan homogen berbanding permukaan yang tidak disalut serta hasil keratan rentas ketebalan salutan adalah antara 7.5 μm sehingga 8.8 μm. Kesan peningkatan suhu (30ºC sehingga 90ºC) terhadap nilai rintangan hubungan antara muka (ICR) pada Al5052 yang tidak bersalut akan menurun daripada 11.8552 sehinggs 9.9042 mΩ cm2 manakala yang bersalutkan gam Arab mempunyai nilai daripada 13.3497sehingga 11.812 mΩ cm2. Keputusan menunjukkan bahawa gam Arab dapat memberikan perlindungan terhadap permukaan logam yang apabila pengujian menggunakan kaedah polarisasi linear tafel dalam larutan 0.5 M H2SO4 (pH4) menunjukkan nilai ketumpatan arus kakisan (Icorr) semakin menurun daripada 0.00264 kepada 0.00012 μA cm-2. Selain itu, halaju kakisan turut menurun daripada 3.06 × 10-5 mpy kepada 1.61 × 10-6 mpy setelah disalut gam Arab. Kesimpulannya, gam Arab dan kaedah salutan EPD boleh digunakan bagi mengurangkan halaju kakisan pada plat Al5052, supaya jangka hayat bahan ini lebih panjang dan boleh mencapai piawai yang ditetapkan oleh DOE untuk plat dwikutub.

 

Kata kunci: Aluminium 5052; ketumpatan arus kakisan; pemendapan elektroforesis; perencat hijau gam arab; plat dwikutub; rintangan hubungan antara muka

 

ABSTRACT

Bipolar plates are one of the main components of proton exchange membrane fuel cells (PEMFC). Aluminum alloy (Al5052) is one of the metals used as a bipolar plate because it has a high conductivity, light weight. However, the acidic PEMFC system (pH3-6) is easy for Al5052 ingredients to experience corrosion so as to reduce PEMFC achievement. Therefore, in order to reduce the prevailing sidewalks, this study used a green Arabic gum inhibitor with an electrophoresis deposition (EPD). The impression of a 0.5 gL-1 Arabic gum-coated Al5052 plate sidewalk in the sulphuric acid solution was tested using an electrochemical method and a morphological test. The surface morphology of Al5052 coated with Arabic gum appeared to be smoother and homogeneous compared to uncoated surface and the cross section of the coating thickness was between 7.5 μm and 8.8 μm. Effect of temperature increase (30ºC - 90ºC) on the interfacial contact resistance (ICR) value of the uncoated Al5052 will decrease from 11.8552 to 9.9042 mΩ cm2 where the Arabic gum coated has a value of 13,3497 to 11,812 mΩ cm2. The results showed that Arabic gum can provide protection against metal surfaces where the test using linear tafel polarization technique in 0.5 M H2SO4 (pH4) solution with corrosion current value (Icorr) decreased from 0.00264 to 0.00012 μA cm-2. Despite that, the corrosion rate reduced from 3.06 × 10-5 mpy to 1.61 × 10-6 mpy as being coted with Arabic gum. It can be concluded that Arabic gum and coating techniques with EPD can be used to reduce corrosion on the Al5052 plate, therefore, the life span of this material is longer and may reach the targets set by the DOE for bipolar plates.

 

Keywords: Aluminium 5052; bipolar plates; corrosion current density; electrophoresis deposition; green inhibitor arabic gum; interfacial contact resistance

RUJUKAN

Antonelli, E., Silva, R.S., Bernardi, M.I.B. & Hernandes, A.C. 2013. Electrophoretic deposition of BaTi0.85Zr0.15O3 nano powders. Materials Research 16(6): 1344-1349.

Antunes, R.A., de Oliveira, M.C.L., Ett, G. & Ett, V. 2011. Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance. Journal of Power Sources 196(6): 2945-2961.

Antunes, R.A., Oliveira, M.C.L., Ett, G. & Ett, V. 2010. Corrosion of metal bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy 35(8): 3632-3647.

Ameh, P.O. 2014. Inhibitory action of Albizia zygia gum on mild steel corrosion in acid medium. African Journal of Pure and Applied Chemistry 8(2): 37-46.

Ameh, P.O., Magaji, L. & Salihu, T. 2012. Corrosion inhibition and adsorption behaviour for mild steel by Ficus glumosa gum in H2SO4 solution. African Journal of Pure and Applied Chemistry 6(7): 100-106.

Asri, N.F., Husaini, T., Abdullah, A.R., Sulong, A.B., Ramli, W.D.W. & Majlan, E.H. 2017. Interfacial contact resistance for Ti-6Al-4V and SUS 316L plates as bipolar plates in PEMFC. Journal of Mechanical Engineering, Electrical Engineering 24(4): 1436-1442.

Asri, N.F., Husaini, T., Sulong, A.B., Majlan, E.H. & Daud, W.R.W. 2016. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review. International Journal of Hydrogen Energy 42(14): 1-14.

Babu, R.S., de-Barros, A.L.F., de-Almeida, M.M., da-Motta, S.D., Balamurugan, J. & Lee, J.H. 2018. Novel polyaniline/ manganese hexacyanoferrate nanoparticles on carbon fiber as binder-free electrode for flexible supercapacitors. Composites Part B: Engineering. 143: 141-147.

Besra, L. & Liu, M. 2006. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52(1): 1-61.

Bhakat, D., Barik, P. & Bhattacharjee, A. 2018. Electrical conductivity behavior of gum Arabic biopolymer-Fe3O4 nanocomposites. Journal of Physics and Chemistry of Solids 112: 73-79.

Chiang, T.Y., Ay-Su, Tsai, L.C., Sheu, H.H. & Lu, C.E. 2014. Corrosion resistance of 5052 Al-alloy with a Zirconia-rich conversion coating used in bipolar plates in PEMFCs. International Journal of Electrochemical Science 9(11): 5850-5863.

Dadfar, M., Salehi, M., Golozar, M.A. & Trasatti, S. 2016. Surface modification of 304 stainless steels to improve corrosion behavior and interfacial contact resistance of bipolar plates. International Journal of Hydrogen Energy 41(46): 21375- 21384.

De Oliveira, M.C.L., Ett, G. & Antunes, R.A. 2012. Materials selection for bipolar plates for polymer electrolyte membrane fuel cells using the Ashby approach. Journal of Power Sources 206: 3-13.

Feng, K., Li, Z., Sun, H., Yu, L., Cai, X., Wu, Y. & Chu, P.K. 2013. Short communication C/CrN multilayer coating for polymer electrolyte membrane fuel cell metallic bipolar plates. Journal of Power Sources 222: 351-358.

García, M.A.L. & Smit, M.A. 2006. Study of electrodeposited polypyrrole coatings for the corrosion protection of stainless steel bipolar plates for the PEM fuel cell. Journal of Power Sources 158(1): 397-402.

Hermann, A., Chaudhuri, T. & Spagnol, P. 2005. Bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy 30(12): 1297-1302.

Hou, K.H. 2011. Analysis on the corrosion behavior of Al-alloy bipolar plate and pH value of water product for the PEMFC. International Conference on Environment Science and Engineering 8: 313-317.

Huang, N.B., Yu, H., Xu, L.S., Zhan, S., Sun, M. & Kirk, D.W. 2016. Corrosion kinetics of 316L stainless steel bipolar plate with chromiumcarbide coating in simulated PEMFC cathodic environment. Results in Physics 6: 730-736.

Mehta, V. & Cooper, J. 2003. Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources 114(1): 32-53.

Radzuan, N.A.M., Zakaria, M.Y., Sulong, A.B. & Sahari, J. 2017. The effect of milled carbon fibre filler on electrical conductivity in highly conductive polymer composites. Composites Part B: Engineering 110: 153-160.

Mokhtar, L. 2016. Electric conductivity of gum arabic from Acacia senegal. International Journal of Science and Research 5(2): 583-593.

Othman, A., Abu-Dalo, M.A. & Al-Rawashdeh. 2012. Exudate gum from acacia trees as green corrosion inhibitor for mild steel in acidic media. International Journal of Electrochemical Science 7: 9303-9324.

Patni, N., Agarwal, S. & Shah, P. 2013. Greener approach towards corrosion inhibition. Chinese Journal of Engineering 2013: 1-10.

Pech-Rodríguez, W.J., González-Quijano, D., Vargas-Gutiérrez, G. & Rodríguez-Varela, F.J. 2014. Electrophoretic deposition of polypyrrole/Vulcan XC-72 corrosion protection coatings on SS-304 bipolar plates by asymmetric alternating current for PEM fuel cells. International Journal of Hydrogen Energy 39(29): 16740-16749.

Peter, A. & Sanjay, I.B.O. 2015. Use of natural gums as green corrosion inhibitors: An overview. International Journal of Industrial Chemistry 6(3): 153-164.

Raddaha, N.S., Cordero-Arias, L., Cabanas-Polo, S., Virtanen, S., Roether, J.A. & Boccaccini, A.R. 2014. Electrophoretic deposition of chitosan/h-BN and chitosan/h-BN/TiO2 composite coatings on stainless steel (316L) substrates. Materials 7(3): 1814-1829.

Rani, B.E.A. & Basu, B.B.J. 2012. Green inhibitors for corrosion protection of metals and alloys: An overview. International Journal of Corrosion 2012: Article ID 380217.

Sangeetha, M., Rajendran, S., Muthumegala, T.S. & Krishnaveni. 2011. Green corrosion inhibitors - an overview. Zastita Materijala 52: 3.

Shahram, K., Norman, F., Bronwyn, R. & Frank, R. 2012. A review of metallic bipolar plates for proton exchange membrane fuel cell: Materials an fabrication methods. J. Advances in Materials Science 2012: Article ID 828070.

Tawfik, H., Hung, Y. & Mahajan, D. 2007. Metal bipolar plates for PEM fuel cell - A review. Journal of Power Sources 163(2): 755-767.

Umoren, S.A., Obot, I.B. & Ebenso, E.E. 2008a. Corrosion inhibition of aluminium using exudate gum from Pachylobus edulis in the presence of halide ions in HCl. E-Journal of Chemistry 5(2): 355-364.

Umoren, S.A., Obot, I.B., Ebenso, E.E. & Okafor, P.C. 2008b. Eco-friendly inhibitors from naturally occurring exudate gums for aluminium corrosion inhibition in acidic medium. Portugaliae Electrochimica Acta 26(3): 267-282.

Wang, X.Z., Muneshwar, T.P., Fan, H.Q., Cadien, K. & Luo, J.L. 2018. Achieving ultrahigh corrosion resistance and conductive zirconium oxynitride coating on metal bipolar plates by plasma enhanced atomic layer deposition. Journal of Power Sources 397: 32-36.

Woodman, A.S., Anderson, E.B., Jayne, K.D., Kimble, M.C. & Kimble, M.C. 1999. Development of corrosion-resistant coatings for fuel cell bipolar plates. Physical Sciences 978: 1-9.

Yang, Y., Guo, L. & Liu, H. 2010. Corrosion characteristics of SS316L as bipolar plate material in PEMFC cathode environments with different acidities. International Journal of Hydrogen Energy 36(2): 1654-1663.

 

*Pengarang untuk surat-menyurat; email: edyhm71@gmail.com

 

 

 

 

 

sebelumnya