Sains Malaysiana 48(3)(2019): 599–605

http://dx.doi.org/10.17576/jsm-2019-4803-12

 

Coconut Oil Based Microemulsion Formulations for Hair Care Product Application

(Mikroemulsi Berasaskan Minyak Kelapa untuk Kegunaan Produk Penjagaan Rambut)

SAFIAH MOHAMAD JA'AFAR, ROZIDA MOHD. KHALID, RIZAFIZAH OTHAMAN, WAN NUR AINI WAN MOKHTAR & SURIA RAMLI*

 

Centre for Advanced Materials and Renewable Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 46300 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 15 September 2018/Diterima: 28 November 2018

 

ABSTRACT

Coconut oil in microemulsion is a better option than conventional practice since it can incorporate bioactive ingredients with a stable control release property, especially for hair care products. This work aims to develop microemulsion systems based on coconut oil with the addition of Tween 20, Tween 40, and Tween 80 as non-ionic surfactants (S), and propylene glycol as a co-surfactant (CoS). The determination of microemulsion regions in the ternary phase diagram was carried out by water titration method and the properties of the microemulsion were analysed. Based on the results, the microemulsion system of coconut oil with Tween 80 produced the largest microemulsion region compared to Tween 40 and Tween 20. Microemulsion systems of coconut oil/Tween 80 with the addition of propylene glycol with the ratio of S/CoS at Km = 3:1, 2:1, and 1:1 resulted in a decrement of microemulsion regions compared to using merely Tween 80. The microemulsion system of coconut oil/Tween 80/water at the ratio of oil: surfactant = 1:9 was chosen for further characterisations. Viscosity and electrical conductivity studies showed that the microemulsion system was water-in-oil (w/o) type as there was no phase transition to bicontinuous (BC) or oil-in-water (o/w) type due to low percentage of water content. Stability studies showed that the microemulsion system remained clear and stable at 25 and 40°C upon one-month storage except at 4°C where the system became cloudy and turbid. For particle size analysis, the microemulsion system possessed particle size less than 100 nm.

 

Keywords: Coconut oil; microemulsion; ternary phase diagram; Tween surfactants

 

ABSTRAK

Minyak kelapa sebagai mikroemulsi adalah lebih baik daripada penggunaannya secara konvensional kerana ia dapat menambah bahan bioaktif untuk dilepaskan dalam keadaan terkawal dan stabil untuk kegunaan produk penjagaan rambut. Tujuan kajian ini dijalankan adalah untuk menghasilkan sistem mikroemulsi berasaskan minyak kelapa dengan surfaktan jenis Tween 20, Tween 40 dan Tween 80 sebagai surfaktan bukan ionik (S) dan penambahan propilena glikol sebagai ko-surfaktan (CoS). Rantau pembentukan mikroemulsi pada rajah fasa ternari ditentukan dengan menggunakan kaedah penitratan air dan sifat mikroemulsi tersebut dianalisis. Keputusan menunjukkan sistem mikroemulsi minyak kelapa dengan Tween 80 menghasilkan rantau mikroemulsi paling luas berbanding Tween 40 dan Tween 20. Sistem mikroemulsi minyak kelapa/Tween 80 dengan penambahan propilena glikol dengan nisbah S/KoS pada Km=3:1, 2:1 dan 1:1 menunjukkan pengurangan rantau mikroemulsi berbanding menggunakan Tween 80 secara tunggal. Sistem mikroemulsi minyak kelapa/Tween 80/air pada nisbah minyak:surfaktan=1:9 dipilih bagi pencirian selanjutnya. Ujian konduktiviti elektrik dan kelikatan menunjukkan jenis sistem mikroemulsi air-dalam-minyak (w/o) dan tiada fasa transisi kepada sistem dwiselanjar (BC) disebabkan kandungan peratusan air yang rendah. Ujian kestabilan menunjukkan sistem mikroemulsi kekal jernih dan stabil pada suhu penyimpanan 25ºC dan 40ºC selama sebulan kecuali pada suhu 4°C kerana sistem menjadi kabur dan keruh. Bagi analisis saiz zarah, sistem mikroemulsi mempunyai saiz zarah kurang daripada 100 nm.

 

Kata kunci: Mikroemulsi; minyak kelapa; rajah fasa ternary; surfaktan Tween

RUJUKAN

Akter, N., Radiman, S., Mohamed, F. & Ramly, N.B. 2014. Investigation of the gelation mechanism between amino acid surfactant based microemulsion and kappa-carrageenan gel network. Sains Malaysiana 43(2): 203-209.

Azeem, A., Rizwan, M., Ahmad, F.J., Khan, Z.I., Khar, R.K., Aqil, M. & Talegaonkar, S. 2008. Emerging role of microemulsions in cosmetics. Recent Patents on Drug Delivery & Formulation 2(3): 275-289.

Basheer, H.S., Noordin, M.I. & Ghareeb, M.M. 2013. Characterization of microemulsions prepared using isopropyl palmitate with various surfactants and co-surfactants. Tropical Journal of Pharmaceutical Research 12(3): 305-310.

Cho, Y.H., Kim, S., Bae, E.K., Mok, C.K. & Park, J. 2008. Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures. Journal of Food Science 73(3): E115-E121.

Constantinides, P.P. & Scalart, J.P. 1997. Formulation and physical characterization of water-in- oil microemulsions containing long- versus medium-chain glycerides. International Journal of Pharmaceutics 158(1): 57-68.

Garti, N., Avrahami, M. & Aserin, A. 2006. Improved solubilization of celecoxib in U-type nonionic microemulsions and their structural transitions with progressive aqueous dilution. Journal of Colloid and Interface Science 299(1): 352-365.

Gavazzoni Dias, M.F.R. 2015. Hair cosmetics: An overview. Int. J. Trichology 7(1): 2-15.

Grimwood, B.E., Ashman, F., Dendy, D.A.V., Jarman, C.G., Little, E.C.S. & Timmins, W.H. 1975. Coconut palm products - Their processing in developing countries. Rome: FAO. ISBN 978-92-5-100853-9. p. 193.

Joshi, S.S. & Bhagwat, S.S. 2013. Physicochemical behaviour of ternary system based on coconut oil/C2E8/n-pentanol/water. Journal of Surface Science and Technology 29(1-2): 1-13.

Ke, W.T., Lin, S.Y., Ho, H.O. & Sheu, M.T. 2005. Physical characterizations of microemulsion systems using tocopheryl polyethylene glycol 1000 succinate (TPGS) as a surfactant for the oral delivery of protein drugs. Journal of Controlled Release 102(2): 489-507.

Kogan, A., Aserin, A. & Garti, N. 2007. Improved solubilization of carbamazepine and structural transitions in nonionic microemulsions upon aqueous phase dilution. Journal of Colloid and Interface Science 315(2): 637-647.

Lawrence, M.J. & Rees, G.D. 2012. Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews 64(0): 175-193.

Lv, F.F., Li, N., Zheng, L.Q. & Tung, C.H. 2006. Studies on the stability of the chloramphenicol in the microemulsion free of alcohols. European Journal of Pharmaceutics and Biopharmaceutics 62(3): 288-294.

Marina, A.M., Che Mana, Y.B. & Amin, I. 2009. Virgin coconut oil: Emerging functional food oil. Trends in Food Science & Technology 20: 481-487.

Mahdi, E.S., Sakeena, M.H.F., Abdulkarim, M.F., Abdullah, G.Z., Sattar, M.A. & Noor, A.M. 2011. Effect of surfactant and surfactant blends on pseudoternary phase diagram behavior of newly synthesized palm kernel oil esters. Drug Design, Development and Therapy 5: 311-323.

Man, Y.B.C. & Manaf, M.A. 2006. Medium-chain triacylglycerols. Dlm Nutraceutical and Specialty Lipids and Their Co- Products. Boca Raton: CRC Press. p. 27.

Mehta, S.K., Dewan, R.K. & Bala, K. 1994. Percolation phenomenon and the study of conductivity, viscosity, and ultrasonic velocity in microemulsions. Physical Review E 50(6): 4759-4762.

Mohd Nadzir, M., Fen, T.W., Mohamed, A.R. & Hisham, S.F. 2017. Size and stability of curcumin niosome from combinations of tween 80 and span 80. Sains Malaysiana 46(12): 2455-2460.

Norhayati, Y., Afzan, A., Jannah, S. & Nurul, W. 2016. Antioxidative responses of Cocos nucifera against infestation by the Red Palm Weevil (RPW), Rhynchophorus ferrugineus, a new invasive coconut pest in Malaysia. Sains Malaysiana 45(7): 1035-1040.

Paul, B.K. & Moulik, S.P. 2001. Uses and applications of microemulsions. Current Science 80(8): 990-1001.

Podlogar, F., Gašperlin, M., Tomšič, M., Jamnik, A. & Rogač, M.B. 2004. Structural characterisation of water-Tween 40®/ Imwitor 308®–isopropyl myristate microemulsions using different experimental methods. International Journal of Pharmaceutics 276(1-2): 115-128.

Ramli, S. 2013. Surfactant protein B-based microemulsion as transdermal drug carrier for anti-acne agent. PhD Thesis. The University of Queensland Australia (Unpublished).

Ramli, S., Norhman, N., Zainuddin, N., Mohd Ja’afar, S. & Abdul Rahman, I. 2017. Nanoemulsion based palm olein as vitamin E carrier. Malaysian Journal of Analytical Sciences 21(6): 1399-1408.

Ramli, S., Mohd Ja’afar, S., Abdul Sisak, M.A., Zainuddin, N. & Abdul Rahman, I. 2015. Formulation and physical characterization of microemulsion based carboxymethyl cellulose as vitamin C carrier. Malaysian Journal of Analytical Sciences 19(1): 275-283.

Ramli, S., Ross, B.P. & Gentle, I.R. 2009. Formulation and physical characterization of microemulsions containing isotritenoin. International Conference on Biomedical and Pharmaceutical Engineering. pp. 1-7.

Rukmini, A., Raharjo, S. & Supriyadi, S. 2012. Formulation and stability of water-in-virgin coconut oil microemulsion using ternary food grade nonionic surfactants. International Food Research Journal 19(1): 259-264.

Sanjeewani, N.A. & Sakeena, M.H.F. 2013. Formulation and characterization of virgin coconut oil (VCO) based emulsion. International Journal of Scientific and Research Publications 3(12): 1-6.

Spernath, A. & Aserin, A. 2006. Microemulsions as carriers for drugs and nutraceuticals. Advances in Colloid and Interface Science 128-130: 47-64.

Syed, H.K. & Peh, K.K. 2014. Identification of phases of various oil, surfactant/co-surfactants and water system by ternary phase diagram. Acta Poloniae Pharmaceutica-Drug Research 71(2): 301-309.

Talbot, G. 2016. The stability and shelf life of fats and oils. In The Stability and Shelf Life of Food. 2nd ed., Persis Subramaniam & P. Wareing (Eds.). Cambridge: Woodhead Publishing. pp. 461-503.

Talegaonkar, S., Azeem, A., Ahmad, F.J., Khar, R.K., Pathan, S.A. & Khan, Z.I. 2008. Microemulsions: A novel approach to enhanced drug delivery. Recent Patents on Drug Delivery & Formulation 2(3): 238-257.

Tubtimsri, S., Limmatvapirat, C., Sriamornsak, P. & Limmatvapirat, S. 2014. Determination of required hydrophile-lipophile balance value of modified coconut oil. Advanced Materials Research 1060: 172-175.

Villarino, B.J., Dy, L.M. & Lizada, C.C. 2007. Descriptive sensory evaluation of virgin coconut oil and refined, bleached and deodorized coconut oil. LWT 40: 193-199.

Warisnoicharoen, W., Lansley, A.B. & Lawrence, M.J. 2000. Nonionic oil-in-water microemulsions: The effect of oil type on phase behaviour. International Journal of Pharmaceutics 198(1): 7-27.

Zainuddin, N., Ahmad, I., Abdul Rahman, I. & Ramli, S. 2017. Kesan penambahan limonene terhadap mikroemulsi asid oleic/Cremophor Rh 40/Transcutol/Air. Sains Malaysiana 46(10): 1797-1805.

 

*Pengarang untuk surat-menyurat; email: su_ramli@ukm.edu.my

 

 

 

 

 

sebelumnya