Sains Malaysiana 48(5)(2019): 937–944

http://dx.doi.org/10.17576/jsm-2019-4805-02

 

Effects of Silver Nanoparticle Exposure on Germination and Early Growth of Pinus sylvestris and Alnus subcordata

(Kesan Pendedahan Nanozarah Perak kepada Percambahan dan Pertumbuhan Awal Pinus sylvestris dan Alnus subcordata)

 

VILMA BAYRAMZADEH1*, MARYAM GHADIRI2 & MOHAMMAD HOSSEIN DAVOODI3

 

1Department of Wood Sciences Faculty of Agricultural Sciences and Natural Resources, Karaj Branch, Islamic Azad University, Karaj, Iran

 

2M.Sc. Department of Soil Sciences, Faculty of Agricultural Sciences and Natural Resources, Karaj Branch, Islamic Azad University, Karaj, Iran

 

3Soil and Water Research Institute, Karaj, Iran

 

Diserahkan: 9 Jun 2018/Diterima: 12 Mac 2019

 

ABSTRACT

The possible ecological toxicity of silver nanoparticles (AgNP) was evaluated based on germination and growth characteristics of Pinus sylvestris and Alnus subcordata. Seeds were exposed to different concentrations of AgNP in soil (0, 10, 20, 40, 80 and 100 mg/kg) and aqueous suspension (0, 10 and 20 mg/L). Then, seed germination percentage (GP%), speed of germination (S.G), seedling length (SL), as well as fresh and dry weights (FW and DW) were measured. The results showed that low concentration of AgNP (under 80 mg/kg) could be used without detrimental effects on the germination characteristics of P. sylvestris in the soil. Nevertheless, inhibitory effect of AgNP was observed at 10 mg/L for P. sylvestris in aqueous suspension. The dissimilar results in soil and aqueous suspension were due to the organic matters and clay minerals in the soil. There was no significant difference (p<0.01) among the treatments of A. subcordata, not only in soil but also in the aqueous suspension.

 

Keywords: Aqueous suspension; inhibitory effect; seed germination; silver nanoparticles; soil; woody plants

ABSTRAK

Ketoksikan ekologi nanozarah perak (AgNP) dinilai berdasarkan ciri-ciri percambahan dan pertumbuhan Pinus sylvestris dan Alnus subcordata. Benih didedahkan kepada kepekatan berbeza AgNP dalam tanah (0, 10, 20, 40, 80 dan 100 mg/kg) dan gantungan akues (0, 10 dan 20 mg/L). Kemudian, peratusan percambahan biji benih (GP%), kelajuan percambahan (S.G), panjang semaian (SL), serta berat kering dan segar (FW dan DW) diukur. Hasil kajian menunjukkan bahawa kepekatan rendah AgNP (di bawah 80 mg/kg) boleh digunakan tanpa kesan-kesan yang memudaratkan terhadap ciri-ciri percambahan P. sylvestris dalam tanah. Walau bagaimanapun, kesan rencatan AgNP diperhatikan pada 10 mg/L bagi P. sylvestris pada penggantungan akues. Keputusan yang berbeza dalam tanah dan penggantungan akues adalah disebabkan oleh bahan organik dan mineral tanah liat dalam tanah. Tiada perbezaan yang signifikan (p<0.01) bagi rawatan A. subcordata, di dalam tanah mahupun di dalam penggantungan akues.

 

Kata kunci: Kesan rencatan; penggantungan akues; percambahan benih; nanozarah perak; tanah; tumbuhan berkayu

RUJUKAN

Association of Official Seed Analysts. 1970. Rules for testing seed. Association Seed Analysts 60: 1-116.

Bayramzadeh, V., Funada, R. & Kubo, T. 2008. Relationships between vessel element anatomy and physiological as well as morphological traits of leaves in Fagus crenata seedlings originating from different provenances. Trees 22(2): 217-224.

Brant, J.A., Labille, J., Bottero, J.Y. & Wiesner, M.R. 2007. Nanoparticle transport, aggregation and deposition. In Environmental Nanotechnology, Applications and Impacts of Nanomaterials, edited by Wiesner, M.R. & Bottero, J.Y. New York: McGraw. pp. 231-294.

Christian, P., von der Kammer, F., Baalousha, M. & Hofmann, T.H. 2008. Nanoparticles structure, properties, preparation and behavior in environmental media. Ecotoxicology 17(5): 326-343.

El-Temsah, Y.S. & Joner, E. 2010. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environmental Toxicology 27(1): 42-49.

EPA. 2007. Nanotechnology White Paper. Washington: U.S. Environmental protection agency report EPA 100/B-07/001.

Gee, G.W. & Bauder, J.W. 1986. Particle size analysis. In Methods of Soil Analysis, edited by Klute, A. Wisconsin: Soil Science Society of America, Madison. pp. 383-411.

Gharachorlou, A., Kiadalivi, H., Adeli, E. & Alijanpoor, A. 2010. Studying quantity and quality of coniferous species in Arasbaran Forests (Case study: Heresar and Kalaleh Regions). World Applied Sciences Journal 8: 334-338.

Handy, R.D. & Shaw, B.J. 2007. Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology. Health, Risk and Society 9(2): 125-144.

Hwang, M.G., Katayama, H. & Ohgaki, S. 2007. Inactivation of Legionella pneumophila and Pseudomonas aeruginosa: Evaluation of the bactericidal ability of silver actions. Water Research 41(18): 4097-4104.

International Seed Testing Association. 1976. International rules for seed testing 1976. Seed Science and Technology 4: 1-177.

Jiang, H., Li, M., Chang, F., Li, W. & Yin, L. 2012. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrrhiza. Environmental Toxicology and Chemistry 31(8): 1880-1996.

Klaine, S.J., Alvarez, P.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J. & Lead, J.R. 2008. Nanomaterials in the environment: Behaviour, fate, bioavailability and effects. Environmental Toxicology and Chemistry 27(9): 1825-1851.

Kumari, M., Mukherjee, A. & Chandrasekaran, N. 2009. Genotoxicity of silver nanoparticle in Allium cepa. Science of the Total Environment 407(19): 5243-5246.

Lee, W.M., Kwak, J.I. & An, Y.J. 2012. Effect of silver nanoparticles in crop plants Phaseolus radiates and Sorghum bicolour: Media effect on phytotoxicity. Chemosphere 86(5): 491-499.

Limbach, L.K., Wick, P., Manser, P., Grass, R.N., Bruinink, A. & Stark, W.J. 2007. Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environmental Science and Technology 41(11): 4158-4163.

Lin, D. & Xing, B. 2007. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution 150(2): 243-250.

Lombi, E., Zhao, F.J., Zhan, G., Sun, B., Fitz, W., Zhang, H. & McGrath, S.P. 2002. In situ fixation of metals in soils using bauxite residue: Chemical assessment. Environmental Pollution 118(3): 435-443.

Luoma, N.S. 2008. Silver nanotechnologies and the environment: Old problems or new challenges? Woodrow Wilson International Centre for Scholars: Scholars Project on Emerging Nanotechnologies, Washington, DC. p. 26.

Maguire, J.O. 1962. Speed of germination-aid in selection and evaluation for seedling emergence and vigour. Crop Science 2(1): 176-177.

Maynard, A.D., Aitken, R.J., Butz, T., Colvin, V., Donaldson, K., Oberdörster, G., Philbert, M. A., Ryan, J., Seaton, A., Stone, V., Tinkle, S.S., Tran, L., Walker, N.J. & Warheit, D.B. 2006. Safe handling of nano technology. Nature 444(7117): 267-269.

Munzuroglu, O. & Geckil, H. 2002. Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch Environmental Contamination and Toxicology 43(2): 203- 213.

Navarro, E., Boun, A., Behra, R., Hartmann, N.B., Filser, J., Mioo, A.O., Quigg, A., Santschi, P.H. & Sigg, L. 2008. Environmental behaviour and ecotoxicity of engineered nanoparticles on algae, plants and fungi. Ecotoxicology 17(5): 372-386.

Purcell, T.W. & Peter, J.J. 1998. Sources of silver in the environmental. Environmental Toxicology and Chemistry 17(4): 539-546.

Roberts, A.P., Mount, A.S., Seda, B., Souther, J., Qiao, R., Lin, S., Ke, P.C., Rao, A.M. & Klaines, J. 2007. In vivo bio-modification of lipid-coated carbon nano-tubes by Daphnia magna. Environmental Science and Technology 41(8): 3025-3029.

Richards, L.A. 1954. Diagnosis and improvement of saline and alkali soils. Agronomy Journal 60: 65-86.

Roschewitz, I., Gabriel, D., Tscharntke, T. & Thies, C. 2005. The effects of landscape complexity on arable weed diversity in organic and conventional farming. Journal of Applied Ecology 42(5): 873-882.

Seeger, E., Baun, A., Kastner, M. & Trapp, S. 2009. Insignificant acute toxicity of TiO2 nanoparticles to willow trees. Journal of Soils and Sediments 9(1): 46-53.

Stampoulis, D., Sinha, S.K. & White, J.C. 2009. Assay-dependent phytotoxicity of nanoparticles to plant. Environmental Science and Technology 43(24): 9473-9479.

Steven, H.M. & Carlisle, A. 1959. The Native Pinewoods of Scotland. Edinburgh: Oliver and Boyd Publications. p. 368.

Tabari, M., Salehi, A. & Ali-Arab, A.R. 2008. Effects of waste water application on heavy metals (Mn, Fe, Cr and Cd) contamination in a black locust stand in semi-arid zone of Iran. Research Journal of Environmental Sciences 7(4): 382-388.

Tabari, M., Rostamabadi, A. & Salehi, A. 2011. Comparison of plant diversity and stand characteristics in Alnus subcordata C.A. Mey and Taxodium distichum (L.) L.C. Rich. Ecologia Balkanica 3(2): 15-24.

Walkley, A. & Black, I.E. 1934. An examination of the degtjareff method for three determining soil organic mother and a proposed modification of the chromic acid titration method. Soil Science 37(1): 29-38.

Wang, X.D., Sun, C., Gao, S.X., Wang, L.S. & Han, S.K. 2001. Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus. Chemosphere 44(8): 1711-1721.

Wiesner, M.R., Lowry, G.V., Alvarez, P., Dionysiou, D. & Biswas, P. 2006. Assessing the risks of manufactured nanomaterials. Environmental Science and Technology 40(14): 4336-4345.

Yin, L., Cheng, Y., Espinasse, B., Colman, B.P., Auffan, M. & Wiesner, M. 2011. More than the ions: The effects of silver nanoparticles on Lolium multiflorum. Environmental Science and Technology 45(6): 2360-2367.

 

*Pengarang untuk surat-menyurat; email: vbayramzadeh@gmail.com

 

 

 

 

sebelumnya