Sains Malaysiana 48(5)(2019): 983–990

http://dx.doi.org/10.17576/jsm-2019-4805-06

 

Transformation of Melinjo Seed Micropowders into Nanopowders Enhances Extractability of Phenolic Compounds and Tyrosinase Inhibitory Activity

(Transformasi Serbuk Mikro Biji Melinjo kepada Serbuk Nano Meningkatkan Pengekstrakan Sebatian Fenolik dan Merencat Aktiviti Tirosinase)

VIENNA SARASWATY1,2, NI WAYAN WULAN PRAWERTI SUPARTA1, HENRY SETIYANTO3, HENI RACHMAWATI1 & I KETUT ADNYANA1*

 

1School of Pharmacy, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, Indonesia

 

2Research Unit for Clean Technology, Indonesian Institute of Sciences, Jalan Cisitu Sangkuriang Gd. 50, Bandung, Indonesia

 

3Analytical Chemistry Research Group, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, Indonesia

 

Diserahkan: 20 September 2018/Diterima: 20 Mac 2019

 

ABSTRACT

Melinjo (Gnetum gnemon L.) seed powder extract exhibited antioxidant and tyrosinase inhibitory activity, thus showing potential as a dietary supplement or nutraceutical to prevent aging or hyperpigmentation. Previously, we found that particle size plays important role in extraction of bioactive compounds and influences their bioactivity. Thus, it is important to determine a certain particle size for the extraction process. In this study, we investigated the effects of transformation of melinjo seed micropowders into nanopowders by nanomilling using a high-energy ball mill (shaker mill). The effects of melinjo seed powders particle size on its physicochemical characteristics, extraction efficiency and release of phenolic compounds, as well as tyrosinase inhibitory activity were observed. The nanomilling successfully transformed melinjo seed micropowders into nanopowders within 90 min of milling. Particle size analysis showed that melinjo seed nanopowders were produced with a mean particle diameter of ~675 nm (PI 0.270). Scanning electron microscope (SEM) images of the melinjo seed nanopowders obviously showed a smaller particle size, a smooth surface, amorphous shapes and irregular edges. The melinjo seed nanopowders at mean particle diameter of ~675 nm exhibited the highest extraction yield and phenolic compounds release. As a consequence, the tyrosinase inhibitory activity of the melinjo seed nanopowders was 4.5 times higher than that of the melinjo seed micropowders. Based on the results obtained in this study, transformation of melinjo seed micropowders into nanopowders is very promising for improving the efficacy of melinjo seed as tyrosinase inhibitor.

 

Keywords: Extractability; melinjo; nanopowders; tyrosinase

 

ABSTRAK

Ekstrak serbuk biji Melinjo (Gnetum gnemon L.) mengeluarkan antioksidan dan merencat aktiviti tirosinase sekali gus menunjukkan potensi sebagai makanan tambahan atau nutraseutik untuk mencegah penuaan atau hiperpigmentasi. Sebelum ini, kami mendapati bahawa saiz zarah memainkan peranan penting dalam pengekstrakan sebatian bioaktif dan mempengaruhi kemujaraban mereka. Oleh itu, adalah penting untuk menentukan saiz zarah tertentu untuk proses pengekstrakan. Dalam kajian ini, kami mengkaji kesan transformasi serbuk mikro biji melinjo kepada serbuk nano oleh pengisaran nano yang menggunakan sebuah kilang pengisar bola tenaga tinggi (kilang penggoncang). Kesan saiz zarah serbuk biji melinjo ke atas ciri-ciri fizikokimia, kecekapan pengekstrakan dan pengeluaran sebatian berfenol, serta merencat aktiviti tirosinase diperhatikan. Pengisaran nano yang berjaya berubah serbuk mikro biji melinjo menjadi serbuk nano dalam 90 min masa pengilangan. Analisis saiz zarah menunjukkan bahawa serbuk nano biji melinjo dihasilkan dengan diameter zarah min ~ 675 nm (PI 0.270). Imej-imej mikroskop elektron (SEM) serbuk nano biji melinjo jelas menunjukkan saiz zarah yang lebih kecil, bentuk amorfus, permukaan licin dan tepi tidak teratur. Serbuk nano biji melinjo pada diameter zarah min ~ 675 nm menunjukkan hasil perahan yang tertinggi dan sebatian fenol lepas. Akibatnya, aktiviti merencat tirosinase serbuk nano biji melinjo adalah sebanyak 4.5 kali lebih tinggi daripada serbuk mikro biji melinjo. Berdasarkan keputusan yang diperoleh dalam kajian ini, transformasi serbuk mikro biji melinjo kepada serbuk nano sangat berpotensi untuk memperbaiki keberkesanan biji melinjo sebagai perencat tirosinase.

 

Kata kunci: Melinjo; pengekstrakan; serbuk nano; tirosinase

RUJUKAN

Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D.G. & Lightfoot, D.A. 2017. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 6: 42.

Barua, C.C., Haloi, P. & Barua, I.C. 2015. Gnetum gnemon Linn.: A comprehensive review on its biological, pharmacological and pharmacognostical potentials. International Journal of Pharmacognosy and Phytochemical Research 7(3): 531-539.

Borhan, M.Z., Ahmad, R., Rusop, M. & Abdullah, S. 2013a. Green extraction: Enhanced extraction yield of asiatic acid from Centella asiatica (L.) nanopowders. Journal of Applied Chemistry 2013: 1-7.

Borhan, M.Z., Ahmad, R., Rusop, M. & Abdullah, S. 2013b. Optimization of ball milling parameters to produce Centella asiatica herbal nanopowders. Journal of Nanostructure in Chemistry 3: 79.

Brinkmann, A., Chen, M., Couillard, M., Jakubek, Z.J., Leng, T. & Johnston, L.J. 2016. Correlating cellulose nanocrystal particle size and surface area. Langmuir 32(24): 6105-6114.

Couteau, C. & Coiffard, L. 2016. Overview of skin whitening agents: Drugs and cosmetic products. Cosmetics 3: 27.

D’Mello, S.A., Finlay, G.J., Baguley, B.C. & Askarian- Amiri, M.E. 2016. Signaling pathways in melanogenesis. International Journal of Molecular Sciences 17(7): 1144.

Deng, X., Huang, Z., Wang, W. & Davé, R.N. 2016. Investigation of nanoparticle agglomerates properties using monte carlo simulations. Advanced Powder Technology 27(5): 1971-1979.

Gao, M.W. & Forssberg, E. 1993. A study on the effect of parameters in stirred ball milling. International Journal of Mineral Processing 37(1-2): 45-59.

Hartley, P.A., Parfitt, G.D. & Pollack, B. 1985. The role of the Van Der Waals force in the agglomeration of powders containing submicron particles. Powder Technology 42(1): 35-46.

Huang, X., Huang, X., Gong, Y., Xiao, H., McClements, D.J. & Hu, K. 2016. Enhancement of curcumin water dispersibility and antioxidant activity using core-shell protein-polysaccharide nanoparticles. Food Research International 87: 1-9.

Ikeda, E., Ikeda, Y., Wang, Y., Fine, N., Sheikh, Z., Viniegra, A., Barzilay, O., Ganss, B., Tenenbaum, H.C. & Glogauer, M. 2018. Resveratrol derivative-rich melinjo seed extract induces healing in a murine model of established periodontitis. Journal of Periodontology 89(5): 586-595.

Kato, E., Tokunaga, Y. & Sakan, F. 2009. Stilbenoids isolated from the seeds of melinjo (Gnetum gnemon L.) and their biological activity. Journal of Agricultural and Food Chemistry 57(6): 2544-2549.

Kuziora, P., Wyszyńska, M., Polanski, M. & Bystrzycki, J. 2014. Why the ball to powder ratio (BPR) is insufficient for describing the mechanical ball milling process. International Journal of Hydrogen Energy 39(18): 9883-9887.

Li, M., Azad, M., Davé, R. & Bilgili, E. 2016. Nanomilling of drugs for bioavailability enhancement: A holistic formulation-process perspective. Pharmaceutics 8(2): 17.

Loh, Z.H., Samanta, A.K. & Heng, P.W.A. 2014. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian Journal of Pharmaceutical Sciences 10(4): 255-274.

Namdari, M., Eatemadi, A., Soleimaninejad, M. & Hammed, A.T. 2017. A brief review on the application of nanoparticle enclosed herbal medicine for the treatment of infective endocarditis. Biomedicine & Pharmacotherapy 87: 321-331.

Ohguchi, K., Tanaka, T., Iliya, I., Ito, T., Iinuma, M., Matsumoto, K., Akao, Y. & Nozawa, Y. 2003. Gnetol as a potent tyrosinase inhibitor from genus gnetum. Bioscience, Biotechnology, and Biochemistry 67(3): 663-665.

Onodera, T., Kuriyama, I., Andoh, T., Ichikawa, H., Sakamoto, Y., Lee-Hiraiwa, E. & Mizushina, Y. 2015. Influence of particle size on the in vitro and in vivo anti-inflammatory and anti-allergic activities of a curcumin lipid nanoemulsion. International Journal of Molecular Medicine 35(6): 1720- 1728.

Peltonen, L. & Hirvonen, J. 2010. Pharmaceutical nanocrystals by nanomilling: Critical process parameters, particle fracturing and stabilization methods. Journal of Pharmacy and Pharmacology 62(11): 1569-1579.

Rasmussen, J.W., Matinez, E., Louka, P. & Wingett, D.G. 2010. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Journal of Expert Opinion on Drug Delivery 7(9): 1063-1077.

Robinson, K., Mock, C. & Liang, D. 2015. Pre-formulation studies of resveratrol. Drug Development and Industrial Pharmacy 41(9): 1464-1469.

Saleh, I.A., Kamal, S.A., Shams, K.A., Abdel-Azim, N.S., Aboutabl, E.A. & Hammouda, F.Z. 2015. Effect of particle size on total extraction yield and silymarin content of Silybum marianum L. seeds. Research Journal of Pharmaceutical, Biological and Chemical Sciences 6(2): 803-809.

Saraswaty, V., Adnyana, I.K., Pudjiraharti, S., Mozef, T., Insanu, M., Kurniati, N.F. & Rachmawati, H. 2017a. Fractionation using adsorptive macroporous resin HPD-600 enhances antioxidant activity of Gnetum gnemon L. seed hard shell extract. Journal of Food Science and Technology 54(10): 3349-3357.

Saraswaty, V., Risdian, C., Primadona, I., Andriyani, R., Andayani, D.G.S. & Mozef, T. 2017b. Pineapple peel wastes as a potential source of antioxidant compounds. In IOP Conference Series: Earth and Environmental Science. Volume 60. https:// iopscience.iop.org/articles/10.1088/1755-1315/60/1/012013/ pdf. Accessed on 27 April 2018.

Sung, J.J., Luo, D., Wu, J.C., Ching, J., Chan, F.K., Lau, J.Y., Mack, S., Ducharme, R., Surti, V.C., Okolo, P.I., Canto, M.I., Kallo, A.N. & Giday, S.A. 2010. S1575: Nanopowders are highly effective in achieving hemostasis in severe peptic ulcer bleeding: An interim report of a prospective human trial. Gastrointestinal Endoscopy 71(5): AB198.

Teixeira, R.S., Rocha, P.R., Polonini, H.C., Brandão, M.A.F., Chaves, M.G.A.M. & Raposo, N.R.B. 2012. Mushroom tyrosinase inhibitory activity and major fatty acid constituents of amazonian native flora oils. Brazilian Journal of Pharmaceutical Sciences 48(3): 399-404.

Tian, Y., Wang, X., Xi, R., Pan, W., Jiang, S., Li, Z., Zhao, Y., Gao, G. & Liu, D. 2014. Enhanced antitumor activity of realgar mediated by milling it to nanosize. International Journal of Nanomedicine 9(1): 745-757.

Wank, A. & Wielage, B. 2003. High energy ball milling - A promising route for production of tailored thermal spray consumables. Conference on Modern Wear and Corrosion Resistant Coatings Obtained by Thermal Spraying, Warsaw, P. November 20th- 21st, 2003. https://www.gtv-mbh.com/_old/ gtv-mbh-englisch/www.gtv-mbh.de/cms/upload/ publikat/ Wank/ english/2003_05_eng.pdf.

Yanagihara, M., Yoshimatsu, M., Inoue, A., Kanno, T., Tatefuji, T. & Hashimoto, K. 2012. Inhibitory effect of gnetin C, a resveratrol dimer from melinjo (Gnetum gnemon), on tyrosinase activity and melanin biosynthesis. Biological & Pharmaceutical Bulletin 35(6): 993-996.

Yen, F.L., Wu, T.H., Tzeng, C.W., Lin, L.T. & Lin, C.C. 2010. Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. Journal of Agricultural and Food Chemistry 58(12): 7376-7382.

Yoneshiro, T., Kaede, R., Nagaya, K., Saito, M., Aoyama, J., Elfeky, M., Okamatsu-Ogura, Y., Kimura, K. & Terao, A. 2018. Melinjo (Gnetum gnemon L.) seed extract induces uncoupling protein 1 expression in brown fat and protects mice against diet-induced obesity, inflammation, and insulin resistance. Nutrition Research 58: 17-25.

 

*Pengarang untuk surat-menyurat; email: ketut@fa.itb.ac.id

 

 

 

 

sebelumnya