Sains Malaysiana 49(1)(2020): 19-27

http://dx.doi.org/10.17576/jsm-2020-4901-03

 

PEGylated Oleic Acid-Lecithin Liposomes (POLL) for Anticancer Drug Delivery

(Liposom Asid Olik-Lesitin BerPEG (POLL) untuk Penghantar Ubat Anti Barah)

 

VICIT RIZAL EH SUK1*, IVY CHUNG2 & MISNI MISRAN1

 

1Colloid Laboratory, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Diserahkan: 6 Mac 2019/Diterima: 8 Oktober 2019

 

ABSTRACT

Cancer is a major health issue, conferring to more than 14.5 million deaths worldwide. Liposomes, self-assembly amphiphilic bilayer molecules, served as excellent alternative vehicles due to their ability to encapsulate both hydrophobic and hydrophilic anticancer drugs. Conventional liposomes, comprised mainly phospholipids are cost-ineffective, unstable, and easily degraded by the external environment. In this study, we introduced PEGylated oleic acid-lecithin liposomes constructed by using C-18 monounsaturated fatty acids (oleic acid) and soy lecithin, in the presence of DOPEPEG2000 in pH7.4, above their glass transition temperature, Tg, by employing the simple thin layer lipid hydration method. FTIR spectrum of oleic acid, soy lecithin, and DOPEPEG2000 was studied. The average particle size without further mechanical interference was 1102.3 nm while the zeta potential value was -18 mV, which is compatible with the zeta potential of the red blood cell. The polydispersity index (PDI) was reduced by 46.2% with the incorporation of the DOPEPEG2000. The morphological study using OPM showed the presence of spherical shape liposomes that exhibit the birefringence effect under the light field and Maltese cross under the dark field. Encapsulation of folinic acid, methotrexate, doxorubicin, or irinotecan resulted in greater than 75% encapsulation efficiency (EE). Half-maximal inhibitory concentration, IC50, was significantly reduced in POLL as compared to free anticancer drugs. Our data demonstrate POLL may be a promising alternative vehicle to deliver various anticancer drugs to targeted tumour sites.

 

Keywords: Anticancer drugs; liposomes; oleic acid; POLL; soy lecithin

 

ABSTRAK

Barah merupakan isu kesihatan utama yang menyebabkan lebih 14.5 juta kematian di seluruh dunia. Liposom, iaitu molekul swabentuk dwilapis merupakan penghantar alternatif terbaik berikutan kebolehannya untuk mengkapsulkan ubatan anti barah hidrofobik dan hidrofilik. Liposom yang lazimnya diperbuat daripada fosfolipid adalah tidak efektif daripada segi kos, tidak stabil dan mudah terurai oleh persekitaran luar. Dalam kajian ini, kami memperkenalkan liposom asid olik-lesitin berPEG yang terdiri daripada asid lemak tak tepu C-18 (asid olik) dan lesitin soya, dengan kehadiran DOPEPEG2000 dalam pH7.4, pada suhu lebih tinggi daripada suhu peralihan gelas Tg, menggunakan metod hidrasi lapisan nipis lipid. Spektrum FTIR asid olik, lesitin soya, dan DOPEPEG2000 juga turut dikaji. Purata saiz partikel adalah 1102.3 nm manakala keupayaan zeta adalah -18 mV, sesuai dengan keupayaan zeta sel darah merah. Indeks polisebaran telah berkurang sebanyak 46.2% dengan penambahan DOPEPEG2000. Kajian morfologi menggunakan Mikroskop Optikal Pengutuban menunjukkan kewujudan liposom berbentuk sfera yang menghasilkan kesan dwibiasan pada medan cerah dan silang Maltese pada medan gelap. Pengkapsulan asid folinik, metotreksat, doksorubisin atau irinotecan menghasilkan lebih 75% kecekapan pengkapsulan. Kepekatan separa rencatan, IC50, telah berkurang dengan signifikan pada POLL berbanding ubatan anti barah. Data menunjukkan POLL mungkin berpotensi untuk menjadi penghantar ubatan anti barah ke tempat yang ditujui.

 

Kata kunci: Asid olik; lesitin soya; liposom; POLL; ubatan anti barah

 

RUJUKAN

Anderson, W., Kozak, D., Coleman, V.A., Jämting, Å.K. & Trau, M. 2013. A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions. Journal of Colloid and Interface Science 405: 322-330.

Bae, Y.H., Mrsny, R.J. & Park, K. 2013. Cancer Targeted Drug Delivery: An Elusive Dream. New York: Springer.

Banerjee, R., Tyagi, P., Li, S. & Huang, L. 2004. Anisamide-targeted stealth liposomes: A potent carrier for targeting doxorubicin to human prostate cancer cells. Int. J. Cancer https://doi.org/10.1002/ijc.20452.

Bansal, D., Gulbake, A., Tiwari, J. & Jain, S.K. 2016. Development of liposomes entrapped in alginate beads for the treatment of colorectal cancer. International Journal of Biological Macromolecules 82: 687-695.

Beaglehole, R., Bonita, R. & Magnusson, R. 2011. Global cancer prevention: An important pathway to global health and development. Public Health 125(12): 821-831.

Boeckel, D.G., Shinkai, R.S.A., Grossi, M.L. & Teixeira, E.R. 2014. In vitro evaluation of cytotoxicity of hyaluronic acid as an extracellular matrix on OFCOL II cells by the MTT assay. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 117(6): e423-e428.

Bray, F. & Shield, K.D. 2017. Cancer: Global burden, trends, and projections. International Encyclopedia of Public Health. 2nd ed. Oxford: Academic Press. pp. 347-368.

Chun, S.G., Skinner, H.D. & Minsky, B.D. 2017. Radiation therapy for locally advanced esophageal cancer. Surgical Oncology Clinics of North America 26(2): 257-276.

Chylińska, M., Szymańska-Chargot, M. & Zdunek, A. 2016. FT-IR and FT-Raman characterization of non-cellulosic polysaccharides fractions isolated from plant cell wall. Carbohydrate Polymers 154: 48-54.

Ciani, L., Ristori, S., Bonechi, C., Rossi, C. & Martini, G. 2007. Effect of the preparation procedure on the structural properties of oligonucleotide/cationic liposome complexes (lipoplexes) studied by electron spin resonance and Zeta potential. Biophysical Chemistry 131(1-3): 80-87.

Crompton, T.R. 2006. Polymer Reference Book. Rapra Technology Limited.

Deygen, I.M. & Kudryashova, Е.V. 2016. New versatile approach for analysis of PEG content in conjugates and complexes with biomacromolecules based on FTIR spectroscopy. Colloids and Surfaces B: Biointerfaces 141: 36-43.

Dollinger, M., Tempero, M. & Mulvihill, S. 2002. Everyone's Guide to Cancer Therapy: How Cancer Is Diagnosed, Treated, and Managed Day to Day. 4th ed. Kansas: Andrews McMeel Publishing.

Duh, Y.S., Lee, C.Y., Chen, Y.L. & Kao, C.S. 2016. Characterization on the exothermic behaviors of cathode materials reacted with ethylene carbonate in lithium-ion battery studied by differential scanning calorimeter (DSC). Thermochimica Acta 642: 88-94.

Eh Suk, V.R. & Misran, M. 2017. Preparation, characterization and physicochemical properties of DOPE-PEG2000 stabilized oleic acid-soy lecithin liposomes (POLL). Colloids and Surfaces A: Physicochemical and Engineering Aspects 513: 267-273.

Eh Suk, V.R. & Misran, M. 2016. Development and characterization of DOPEPEG2000 coated oleic acid liposomes encapsulating anticancer drugs. Journal of Surfactants and Detergents 20(2): 321-329.

Fameau, A.L., Arnould, A. & Saint-Jalmes, A. 2014. Responsive self-assemblies based on fatty acids. Current Opinion in Colloid & Interface Science 19(5): 471-479.

Feng, Z., Wen, H., Bi, R., Yang, W. & Wu, X. 2016. Prognostic impact of the time interval from primary surgery to intravenous chemotherapy in high grade serous ovarian cancer. Gynecologic Oncology 141(3): 466-470.

Frazier, J.M. 1992. In-Vitro Toxicity Testing: Applications to Safety Evaluation. Boca Raton: CRC Press.

Gebicki, J.M. & Hicks, M. 1973. Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature 243(5404): 232-234.

Gulati, M., Grover, M., Singh, S. & Singh, M. 1998. Lipophilic drug derivatives in liposomes. International Journal of Pharmaceutics 165(2): 129-168.

Gupta, M., Sharma, V. & Chauhan, N.S. 2017. Nanotechnology for oral delivery of anticancer drugs: An insight potential A2-Andronescu, Ecaterina. In. Nanostructures for Oral Medicine, edited by Andronescu, E. & Grumezescu, A. Elsevier. pp. 467-510.

Hamzah, M.A.A.M., Aruldass, C.A., Ahmad, W.A. & Setu, S.A. 2017. Effects of surfactants on antibacterial drugs-A brief review. Malaysian Journal of Fundamental and Applied Sciences 13(2): 118-123.

Heshmat, M. & Eltawil, A. 2017. A new sequential approach for chemotherapy treatment and facility operations planning. Operations Research for Health Care 18: 33-40.

Hsu, W.H., Liu, S.Y., Chang, Y.J., Chang, C.H., Ting, G. & Lee, T.W. 2014. The PEGylated liposomal doxorubicin improves the delivery and therapeutic efficiency of 188Re-Liposome by modulating phagocytosis in C26 murine colon carcinoma tumor model. Nuclear Medicine and Biology 41(9): 765-771.

Immordino, M.L., Franco, D. & Cattel, L. 2006. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. International Journal of Nanomedicine 1(3): 297-315.

Ishida, T., Kirchmeier, M.J., Moase, E.H., Zalipsky, S. & Allen, T.M. 2001. Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells. Biochimica et Biophysica Acta (BBA) - Biomembranes 1515(2): 144-158.

Jøraholmen, M.W., Basnet, P., Acharya, G. & Škalko-Basnet, N. 2017. PEGylated liposomes for topical vaginal therapy improve delivery of interferon alpha. European Journal of Pharmaceutics and Biopharmaceutics 113: 132-139.

Kanicky, J.R. & Shah, D.O. 2002. Effect of degree, type, and position of unsaturation on the pKa of long-chain fatty acids. Journal of Colloid and Interface Science 256(1): 201-207.

Lai, K.W. & Dewi, D.E.O. 2015. Medical Imaging Technology: Reviews and Computational Applications. Singapore: Springer Singapore.

Lasic, D.D. 1992. Mixed micelles in drug delivery. Nature 355: 279-280.

Lehtinen, J., Magarkar, A., Stepniewski, M., Hakola, S., Bergman, M., Róg, T., Yliperttula, M., Urtti, A. & Bunker, A. 2012. Analysis of cause of failure of new targeting peptide in PEGylated liposome: Molecular modeling as rational design tool for nanomedicine. European Journal of Pharmaceutical Sciences 46(3): 121-130.

Levchenko, T.S., Rammohan, R., Lukyanov, A.N., Whiteman, K.R. & Torchilin, V.P. 2002. Liposome clearance in mice: The effect of a separate and combined presence of surface charge and polymer coating. International Journal of Pharmaceutics 240(1-2): 95-102.

Lewis, H.L. & Bloomston, M. 2016. Hepatic artery infusional chemotherapy. Surgical Clinics of North America 96(2): 341-355.

Martinez-Pastor, B. & Mostoslavsky, R. 2012. Sirtuins, metabolism, and cancer. Frontiers in Pharmacology 3: 22.

Mehta, S.K. & Jindal, N. 2013. Mixed micelles of lecithin-tyloxapol as pharmaceutical nanocarriers for anti-tubercular drug delivery. Colloids and Surfaces B: Biointerfaces 110: 419-425.

Menon, P., Yin Yin, T. & Misran, M. 2015. Preparation and characterization of liposomes coated with DEAE-Dextran. Colloids and Surfaces A: Physicochemical and Engineering Aspects 481: 345-350.

Muthukumaran, T. & Philip, J. 2016. Effect of phosphate and oleic acid capping on structure, magnetic properties and thermal stability of iron oxide nanoparticles. Journal of Alloys and Compounds 689: 959-968.

Naeem, S., Kiew, L.V. & Chung, L.Y. 2016. Liposomes as amphiphilic carriers: Encapsulation and stability aspects. Sains Malaysiana 45(1): 71-77.

Napia, L.M.A., Rahman, I.A., Hamzah, M.Y., Mohamed, F., Mohd, H.M.K., Bastamam, I.S.A., Sharin, S., Hidzir, N.M. & Radiman, S. 2018. Effect of gamma irradiation on the physical stability of DPPC liposomes. Sains Malaysiana 47(6): 1235-1240.

Nii, T. & Ishii, F. 2005. Encapsulation efficiency of water-soluble and insoluble drugs in liposomes prepared by the microencapsulation vesicle method. International Journal of Pharmaceutics 298(1): 198-205.

Ninomiya, K., Yamashita, T., Tanabe, Y., Imai, M., Takahashi, K. & Shimizu, N. 2016. Targeted and ultrasound-triggered cancer cell injury using perfluorocarbon emulsion-loaded liposomes endowed with cancer cell-targeting and fusogenic capabilities. Ultrasonics Sonochemistry 28: 54-61.

Ohnishi, N., Yamamoto, E., Tomida, H., Hyodo, K., Ishihara, H., Kikuchi, H., Tahara, K. & Takeuchi, H. 2013. Rapid determination of the encapsulation efficiency of a liposome formulation using column-switching HPLC. International Journal of Pharmaceutics 441(1-2): 67-74.

Paini, M., Daly, S.R., Aliakbarian, B., Fathi, A., Tehrany, E.A., Perego, P., Dehghani, F. & Valtchev, P. 2015. An efficient liposome based method for antioxidants encapsulation. Colloids and Surfaces B: Biointerfaces 136: 1067-1072.

Sercombe, L., Veerati, T., Moheimani, F., Wu, S.Y., Sood, A.K. & Hua, S. 2015. Advances and challenges of liposome assisted drug delivery. Frontiers in Pharmacology 6: 286. https://doi.org/10.3389/fphar.2015.00286.

Singh, V.K., Pandey, P.M., Agarwal, T., Kumar, D., Banerjee, I., Anis, A. & Pal, K. 2016. Development of soy lecithin based novel self-assembled emulsion hydrogels. Journal of the Mechanical Behavior of Biomedical Materials 55: 250-263.

Soares, P.I.P., Laia, C.A.T., Carvalho, A., Pereira, L.C.J., Coutinho, J.T., Ferreira, I.M.M., Novo, C.M.M. & Borges, J.P. 2016. Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications. Applied Surface Science 383: 240-247.

Stevenson-Abouelnasr, D., Husseini, G.A. & Pitt, W.G. 2007. Further investigation of the mechanism of doxorubicin release from P105 micelles using kinetic models. Colloids and Surfaces B: Biointerfaces 55(1): 59-66.

Sun, L., Zhou, D.S., Zhang, P., Li, Q.H. & Liu, P. 2015. Gemcitabine and γ-cyclodextrin/docetaxel inclusion complex-loaded liposome for highly effective combinational therapy of osteosarcoma. International Journal of Pharmaceutics 478(1): 308-317.

Suzuki, T., Ichihara, M., Hyodo, K., Yamamoto, E., Ishida, T., Kiwada, H., Ishihara, H. & Kikuchi, H. 2012. Accelerated blood clearance of PEGylated liposomes containing doxorubicin upon repeated administration to dogs. International Journal of Pharmaceutics 436(1-2): 636-643.

Tan, H.W. & Misran, M. 2013. Polysaccharide-anchored fatty acid liposome. International Journal of Pharmaceutics 441(1-2): 414-423.

Teo, Y.Y., Misran, M., Low, K.H. & Zain, S.M. 2011. Effect of unsaturation on the stability of C18 polyunsaturated fatty acids vesicles suspension in aqueous solution. Bulletin of the Korean Chemical Society 32(1): 59-64.

Varga, Z., Mihály, J., Berényi, S. & Bóta, A. 2013. Structural characterization of the poly(ethylene glycol) layer of sterically stabilized liposomes by means of FTIR spectroscopy. European Polymer Journal 49(9): 2415-2421.

Vijayakumar, M.R., Kosuru, R., Vuddanda, P.R., Singh, S.K. & Singh, S. 2016. Trans resveratrol loaded DSPE PEG 2000 coated liposomes: An evidence for prolonged systemic circulation and passive brain targeting. Journal of Drug Delivery Science and Technology 33: 125-135.

Vlasova, M.A., Rytkönen, J., Riikonen, J., Tarasova, O.S., Mönkäre, J., Kovalainen, M., Närvänen, A., Salonen, J., Herzig, K.H., Lehto, V.P. & Järvinen, K. 2014. Nanocarriers and the delivered drug: Effect interference due to intravenous administration. European Journal of Pharmaceutical Sciences 63: 96-102.

Vorbeck, C.S., Vogelius, I.R., Banner-Voigt, M.L.V.C., Mathiesen, H.F. & Mirza, M.R. 2017. Survival and failure types after radiation therapy of vulvar cancer. Clinical and Translational Radiation Oncology 5: 20-27.

Xu, Z.X.J. 2013. New Concept and New Way of Treatment of Cancer. Indiana: AuthorHouse.

Yang, Y., Lu, Y., Wu, Q.Y., Hu, H.Y., Chen, Y.H. & Liu, W.L. 2015. Evidence of ATP assay as an appropriate alternative of MTT assay for cytotoxicity of secondary effluents from WWTPs. Ecotoxicology and Environmental Safety 122: 490-496.

Yom, S.S. 2015. Radiation treatment of head and neck cancer. Surgical Oncology Clinics of North America 24(3): 423-436.

Zhang, T., Li, Y. & Mueller, A. 2011. Phase structure of liposome in lipid mixtures. Chemistry and Physics of Lipids 164(8): 722-726.

Zhao, L., Temelli, F., Curtis, J.M. & Chen, L. 2015. Preparation of liposomes using supercritical carbon dioxide technology: Effects of phospholipids and sterols. Food Research International 77(1): 63-72.

Zofka, A., Board, N.R.C.T.R. & Program, S.S.H.R. 2013. Evaluating Applications of Field Spectroscopy Devices to Fingerprint Commonly Used Construction Materials. Washington, D.C.: Transportation Research Board.

 

*Pengarang untuk surat-menyurat; email: vicitrizal@um.edu.my

 

 

 

 

sebelumnya