Effects of Gelam Honey on Sperm Quality and Testis of Rat
(Kesan Madu Gelam ke atas Kualiti Sperma dan Testis Tikus)

N.S. SYAZANA, N.H. HASHIDA*, A.M. MAJID, H.A. DURRIYYAH
SHARIFAH & M.Y. KAMARUDDIN

ABSTRACT
The present study aimed to elucidate the possible protective effects of Gelam honey on sperm quality and testis histology against infertility related problems. Control and treated groups of 4 - 5 weeks old male Sprague-Dawley rats were force-fed daily with 1.0 mL/100 g body weight of normal saline (0.9%) and Gelam honey, respectively. After 60 days of treatments, reproductive organs of the anesthetized rats were removed to assess sperm parameters and histology of testis. Sperm count of treated group was significantly higher (18.85±3.72×10^5/mL) than control group (17.05±3.12×10^5/mL) (p<0.05). Based on sperm morphology, treated group showed significantly higher percentage of normal sperm (96.83±0.03%) as compared to control group (94.87±0.01%) (p<0.01). Head and tail abnormalities sperm were also significantly reduced in the treated rats (p<0.05). The number of spermatogenic cells in testis of treated group were abundant as compared to control group. Seminiferous tubules of treated group were densely packed with spermatogenic cells with small lumen filled up with sperm tail. This study suggested that Gelam honey has the potential to increase the fertility of male rats by increasing sperm count and number of sperm with normal morphology.

Keywords: Honey; sperm quality; Sprague Dawley rats; testis histology

INTRODUCTION
Environmental, physiological and genetic factors have been shown to have defective effects on male reproductive performance (Plas et al. 2000; Petrelli & Mantovani 2002). Honey with its nutrient rich content, e.g. sugars such as fructose and glucose; minerals such as magnesium, potassium, calcium, sodium chloride, sulphur, iron and phosphates; as well as vitamins B1, B2, C, B6, B5 and B3 (Estevinho et al. 2008), is a candidate of being a reproductive health protection substance. The great Muslim physician, Ibn Sina (980 – 1037) in his world-famous medical textbook ‘The Canon of Medicine’ reported the benefits of honey for treatment of various diseases and maintenance of health (Kamaruddin 1993) and due to its antibacteria, antioxidant and wound healing properties (Aljady et al. 2000). In Arab countries honey is considered to increase human male potency. It had been reported that honey increased spermatogenesis in rats (Abdul-Ghani et al. 2008). Abdelhafiz and Muhamad (2008) observed in vitro that diluted Egyptian bee honey and royal jelly had an enhancing effect on sperm motility, particularly in subnormal samples. Propolis was found to significantly increase testosterone level, body weight, relative weight of testis, relative weight of epididymis, semen characteristics and seminal plasma enzymes and decreased the levels of free radicals and lactate dehydrogenase (Yousef et al. 2010). A preliminary study involving a local Malaysian honey, Tualang honey, proposed that honey could enhance...
spermatogenesis if given at appropriate dose and also possibly reduced the toxic effect of cigarette smoke on rat spermatogenesis (Mahaneem et al. 2006).

To date, there is a lack of data concerning the medicinal use of honey on reproductive performance and testicular dysfunction. The present study aimed to determine the effects of two months oral administration of Malaysian Gelam honey on sperm quality and histology of testis of rats.

MATERIALS AND METHODS

Eighteen Sprague-Dawley male rats (4-5 weeks old) were randomly divided into two groups. Group 1 rats were forced fed with 1.0 mL/100 g normal saline (0.9%) for control and Group 2 rats with 1.0 mL/100 g Gelam honey for treatment. gelam honey was obtained from the most common Malaysian Apis mellifera (Melaluca cajuputi spp). The dose of gelam honey was calculated according to animal’s body weight on the week of specific treatment. Anesthetized rats were sacrificed and their reproductive organs were removed after 60 days of treatment. The testis weight, length and width were measured. Sperm were collected from cauda epididymis into Toyoda-Yokoyama-Hosi (TYH) medium (Ellis et al. 1985). The sperm suspension was incubated for 1 hour at 37°C under 5% CO₂. The sperm parameters were assessed for sperm count, viability and morphology with 5 replicates for each rat. Sperm morphology and viability were stained with eosin nigrosin staining method (NAFA and ESHRE-SIGA, Laboratory Manual 2002) and observed under light microscope according to the WHO laboratory manual (WHO 1999). Histological processing involved the testes fixed in Bouin’s solution prior to being processed with Haematoxylin and Eosin (H&E) staining technique. The experiment was performed in accordance with the Guidelines for Animal Experiments of the Medical Centre Research Committee, University Malaya [PASUM/16/11/2010/NHH(R)].

Sperm count, viability and morphology between the two groups were compared using PROC T TEST of the Statistical Analysis System (SAS 2006) package. The raw data were first transformed using the square root transformation before being analysed (Steel &Torrie 1980). The assumption that the rats in the two treatment groups were independent of each other was met because different rats were used in each group. The assumption of equal variances were tested by using the Folded F’ value to test for $H_0: \mu_1 = \mu_2$ against the alternative $H_A: \mu_1 \neq \mu_2$. In the case of equal variances, the two variances were pooled to obtain the t value. In the case of unequal variances, the two variances were used in calculating the t value (Satterthwaite 1946).

RESULTS

There were no significant differences for weight, length and width of testis between the groups (Table 1). However, sperm count of treated group was significantly higher (18.85±3.72×10⁵/mL) than control group (17.05±3.12×10⁵/mL) (p<0.05). Based on sperm morphology, treated group showed significantly higher percentage of normal sperm (96.83±0.03%) as compared to control group (94.87±0.01%) (p<0.01). Lower percentage of abnormal sperm head (0.77±0.33%) and tail (2.51±0.19%) were also observed in treated group as compared to control group (p<0.05) (Table 2). Spermatogenic cell layers of control showed less dense packing of spermatogenic cells than the honey treated group. The lumen of control was less densely filled as compared to that of honey treated group which was filled with sperm tail (Figure 1 and 2).

TABLE 1. Morphometric parameters of testis for control and honey treated groups

<table>
<thead>
<tr>
<th>Treatment Groups</th>
<th>Weight (g) (mean±SEM)</th>
<th>Length (mm) (mean±SEM)</th>
<th>Width (mm) (mean±SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n=9)</td>
<td>1.48±0.03ª</td>
<td>20.14±0.29ª</td>
<td>12.14±0.07ª</td>
</tr>
<tr>
<td>Honey treated (n=9)</td>
<td>1.43±0.03ª</td>
<td>20.08±0.48ª</td>
<td>12.38±0.19ª</td>
</tr>
</tbody>
</table>

ªsuperscript in the same column shows no significant difference (p≥0.05)

TABLE 2. Sperm parameters for control and honey treated groups

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Sperm count (x10⁵) (mean±SEM)</th>
<th>Morphology</th>
<th>Viability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal (%)</td>
<td>Head abnormalities (%)</td>
<td>Tail abnormalities (%)</td>
</tr>
<tr>
<td>Control (n=9)</td>
<td>17.05±3.12ª</td>
<td>94.87±0.01ª</td>
<td>1.33±0.14ª</td>
</tr>
<tr>
<td>Gelam honey (n=9)</td>
<td>18.85±3.72ª</td>
<td>96.83±0.03ª</td>
<td>0.77±0.33ª</td>
</tr>
</tbody>
</table>

ª,ª superscripts in the same column show significant difference (p<0.05)
Honey represents a natural product with many medicinal applications, including treating male infertility problems. The present results showed no significant difference in the width, length and weight of the testis between control and honey treated groups. This confirms a study by Mahaneem et al. (2006) who observed no significant differences for the percentage of body weight gain and for the absolute and relative weights of testis and male accessory reproductive organs such as prostate, epididymis and seminal vesicles among the groups. However, the present result was in contrast to the observation by Abdul-Ghani et al. (2008) where ingestion of 5% honey for 20 days would induce spermatogenesis in rats by increasing relative weight of the epididymis.

In the present result, several sperm parameters were positively affected by honey. Significantly higher sperm count, higher percentage of normal sperm and lower percentage of sperm head and tail abnormalities were observed in treated group in comparison to control group. Abdul-Ghani et al. (2008) also concluded that honey would induce spermatogenesis in rats by increasing epididymal sperm count and increasing sorbitol dehydrogenase activity. Sorbitol dehydrogenase is an enzyme in carbohydrate metabolism that converts sorbitol, the sugar alcohol form of glucose into fructose (El-Kabbani et al. 2004). Fructose concentration in the seminal plasma has been recommended as a marker of the secretory activity of the seminal vesicles (WHO 1999). Fructose is synthesized by these accessory sex organs under the influence of testosterone and energy for the sperm metabolism and motility (Mann 1964). Honey is also rich with antioxidant polyphenols such as flavonoids and phenolic acids (Gheldof & Engeseth 2002). Antioxidants are main defense against oxygen stress induced by the elevated levels of reactive oxygen species which affected sperm motility (Said et al. 2004; Sharma & Agarwal 1996).

Although the present study was conducted using local Malaysian gelam honey, the results obtained were similar to that reported by Yousef and Salama (2009) who used propolis. Propolis could provide protection against infertility by improving sperm production, motility, sperm count and quality and increased the process of steroidogenesis and, hence, testosterone production (Yousef & Salama 2009). Royal jelly treatments significantly boosted testosterone level, increased ejaculated volume, increased seminal plasma fructose, improved sperm motility, increased sperm total output, reduced number of abnormal and dead sperm (Elnagar 2010).

Previously, it had been shown that administration of honey at the appropriate dose might enhance the third stage of spermatogenesis in rats (Mahaneem et al. 2007). The histological sections of the current study showed abundant spermatogenic cells which indicated that spermatogenesis was positively facilitated by honey. Probably, honey acts as physiologic modulators of spermatogenic cells proliferation which influence the cell cycle of the seminiferous epithelium thus, increase spermatogenesis. A previous study reported that Sertoli cells play a major role in regulation of spermatogenesis and altering rates of sperm produced (Russell & Griswold 1993). Thus, it is possible that honey could have interacted with Sertoli cells and contributed positively to spermatogenesis. Garner and Hafez (2000) reported that restoration of spermatogenesis could be achieved in the hypophysectomized rat by treatment with both Follicle Stimulating Hormone (FSH) and Luteinizing Hormone (LH). Therefore, further study should be carried out to observe the interaction between honey, concentration of FSH and LH in blood serum, and established the exact mechanism leading to the changes of the spermatogenic cells which involved Sertoli and Leydig cells.
Currently, there is a lack of established data concerning the medicinal use of honey in treating infertility of human male. This preliminary study suggested that Gelam honey is potentially useful in increasing the fertility of male rats by increasing sperm count, percentage of normal sperm and reducing the percentage of sperm head and tail abnormalities. However, further works are needed to better understand the beneficial effects of honey on spermatogenesis and also to quantify the histological effects of honey on spermatogenic cells.

REFERENCES

Centre for Foundation Studies in Science
Universiti Malaya
50603 Kuala Lumpur
Malaysia

*Corresponding author; email: nhhpasum@um.edu.my

Received: 25 October 2010
Accepted: 26 April 2011