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Incorporating Optimisation Technique into Zadeh’s Extension Principle for 
Computing Non-Monotone Functions with Fuzzy Variable

(Menggabungkan Teknik Pengoptimuman ke dalam Prinsip Perluasan Zadeh untuk Komputeran 
Fungsi-Fungsi Tak Bermonoton dengan Pembolehubah Kabur)

M. Z. AHMAD* & M. K. HASAN

ABSTRACT

This paper proposes a new computational method for computing non-monotone functions that take a fuzzy interval as 
their arguments. The proposed method represents an implementation of optimisation technique into Zadeh’s extension 
principle. By taking into account the dependency problem that exists in fuzzy environment, the proposed method can 
avoid the effect of overestimation in computation. This problem usually arises when the same fuzzy interval is computed 
separately in fuzzy interval computation. The proposed method is simple to use and can be implemented in many practical 
applications. In order to show the capability of the proposed method, several non-monotone functions with trapezoidal 
fuzzy intervals are studied.
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ABSTRAK

Makalah ini mencadangkan satu kaedah komputasi baru untuk komputeran fungsi-fungsi tak bermonoton yang mengambil 
selang kabur sebagai pembolehubahnya. Kaedah yang dicadangkan merupakan suatu perlaksanaan teknik pengoptimuman 
di dalam prinsip perluasan Zadeh. Dengan mengambilkira masalah kebergantungan yang wujud di dalam persekitaran 
kabur, kaedah yang dicadangkan ini dapat mengelakkan masalah terlebih anggaran dalam pengiraan. Masalah ini 
biasanya wujud apabila selang kabur yang sama dikira secara berasingan di dalam komputasi selang kabur. Kaedah 
ini mudah untuk dilaksanakan dan dapat diterapkan di dalam pelbagai penggunaan praktikal. Untuk menunjukkan 
kebolehan kaedah yang dicadangkan, beberapa fungsi tak bermonoton dengan selang kabur trapezoid dikaji.

Kata kunci: Pengoptimuman; prinsip perluasan Zadeh; set kabur

INTRODUCTION

The mathematics of fuzzy set theory was coined in 1965 
by Zadeh (1965). Since its birth, the theory of fuzzy 
set has been rigorously developed and it has influenced 
in many fields of application. For example, it has been 
extensively used in control system, image processing, 
communication and integrated circuit manufacturing. One 
of the main fundamental principles in fuzzy set theory is 
the so called Zadeh’s extension principle (Zadeh 1965). 
It provides a mechanism of extending a real continuous 
function to a function accepting fuzzy set as its argument. 
In general, the computation of Zadeh’s extension principle 
is rather difficult tasks. The simplicity can only be found 
if the function to be extended is monotone. However, 
the difficulty arises when the function is non-monotone 
(Chalco-Cano et al. 2009). Without a proper method, 
the computation of Zadeh’s extension principle may not 
guarantee to have low computational complexity since it 
would require infinite numbers of computation. 
	 Today, several methods have been proposed in order 
to compute Zadeh’s extension principle. One of the earlier 
methods was proposed by Kaufmann and Gupta (1991), 

which based on the a – cuts and interval arithmetic. 
However, the results are not completely satisfying. In 
fact, the use of the straightforward interval arithmetic into 
computation leads to overestimation in the results. Due to 
this, many researchers have proposed some new techniques 
such as the requisite constraint (Klir 1997), the fuzzy 
weighted average (Dong & Wong 1987; Wood et al. 1992 
and Yang et al. 1993), the vertex method (Dong & Shah 
1987), the transformation method (Hanss 2002 & Klimke 
2003), and the spline approximation method (Chalco-Cano 
et al. 2009). However, these proposed methods increased 
computational complexity when applied to non-monotone 
functions as well. Therefore, a new computational method 
has to be proposed so that the computational complexity 
and overestimation in the results can be reduced. 
	 In this paper, we propose a new method for computing 
non-monotone functions that take fuzzy set as their 
arguments. This method is based on minimising and 
maximising of a function, which is finding the minimum 
and maximum at every level of a – cut. In this paper, we 
only consider the problem of finding the minimum, since 
the maximum can be easily found by noting that max g(x) 
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= – min (–g(x)), that is the maximum of g(x) is the negative 
of the minimum of –g(x). 
	 In order to solve the optimisation problems, we 
use Brent’s method (Brent 2002), which combines the 
golden section search with parabolic interpolation. One 
of the advantages of using this method is that it does not 
require the calculation of derivative. This is particularly 
useful when the derivative of a function, required by 
most non-monotone functions, is difficult or impossible 
to obtain analytically. The idea of Brent’s method is to 
find a minimum of a parabola through three points. If the 
function to be minimised is nicely parabolic near to the 
minimum, then the parabola fitted through any three points 
in a single leap to the minimum. In the worst possible case, 
where the parabolic interpolation is acceptable but useless, 
then the method will approximately alternate between 
parabolic interpolation and golden section search (Press 
et al. 2007). 
	 In case where the function is reduced to monotonically 
increasing or decreasing, then we find the minimum at the 
endpoints. These enormous varieties of geometry should 
be considered to reduce function evaluations during 
computation. Please note that Brent’s method will only 
find a local minimum and not a global minimum, unless 
the function is unimodal. By a unimodal function we 
mean there exists a unique number m ∈ [a, b] such that 
the function g(x) is monotonically decreasing on [a, m] 
and monotonically increasing on [m, b]. Even though the 
method of Simulated Annealing (Kirkpatrick et al. 1983) 
has been developed to find global minimum, but it is not a 
practical way for computing Zadeh’s extension principle. 
The reason is that the method requires a big computational 
effort during iteration and at the end we cannot guarantee 
that the global minimum found is the correct one.

BASIC CONCEPTS

In the following, we briefly elaborate some definitions and 
important concepts in fuzzy sets theory. 

FUZZY SETS

According to Zadeh (1965), a fuzzy set is a generalisation 
of a classical set that allows membership function to take 
any value in the unit interval [0, 1]. The formal definition 
of a fuzzy set is as follow:

Definition 1: Let  U be a universal set. A fuzzy set A in U 
is defined by a membership function A(x) that maps every 
element in  U to the unit interval [0, 1]. 
	 A fuzzy set A in  U may also be presented as a set of 
ordered pairs of a generic element x and its membership 
value, as shown in the following equation:

	 A = {x, A(x)) | x ∈ U}.	 (1)

Definition 2: Let A be a fuzzy set defined in U. The support 
of A is the crisp set of all elements in U such that the 
membership function of  A is non-zero, that is,

	 supp (A) = {x ∈ U | A(x) > 0}. 	 (2)

Definition 3: Let A be a fuzzy set defined in U. The core 
of A is the crisp set of all elements in U such that the 
membership value of A is 1, that is,

	 core (A) = {x ∈ U | A(x) = 1}. 	 (3)

Definition 4: Let A  be a fuzzy set defined in ℜ. A is called 
a fuzzy interval if

1.	 A is normal, that is there exists x0 ∈ ℜ such that 
A(x0) = 1; 

2.	 A is convex, that is for all x, y ∈ ℜ and 0 ≤ λ ≤ 1, it 
holds that

	 A(λx + (1 – λ)y) ≥ min(A(x), A(y));

3.	 A is upper semi-continuous, that is for any x0 ∈ ℜ. it 
holds that

	
4.	 [A]0 =  is a compact subset of ℜ.

Definition 5: Let A  be a fuzzy interval defined in ℜ. The  
α – cut of a is the crisp set [A]α that contains all elements 
in ℜ such that the membership values of A is greater than 
or equal to α, that is

 	 [A]α = {x ∈ ℜ | A(x) ≥ α},   α ∈ (0.1].	 (4)

For a fuzzy interval A, its α – cuts are closed intervals in  
ℜ and we denote them by

	 [A]α = [a1
α, a2

α],   α ∈ (0, 1].	 (5)

Definition 6: A fuzzy interval A is called a trapezoidal 
fuzzy interval if its membership function has the following 
form:

	 	 (6) 

and its α – cuts are simply 

	 [A]α = [a + α(b – a), d – α(d – c)],  α ∈ (0, 1].	 (7)

This definition asserts that the trapezoidal fuzzy interval A  
is defined by four numbers a < b < c < d,  where the core of  
A is the interval [b, c] and its support is the interval (a, d) 
Figure 1 shows the example of trapezoidal fuzzy interval. 
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In this paper the set of all trapezoidal fuzzy intervals will 
be denoted by F(ℜ).

	 Let F(X) and F(Y) be the sets of all fuzzy sets 
defined in X and Y, respectively and g : X → Y be a 
continuous function. The function g induces a mapping 
g : F(X) → F(Y) such that if A is a fuzzy set in X, then its 
range under g is a fuzzy set B = g(A) whose membership 
function is expressed as in the following equation 
(Zadeh 1975a, Zadeh 1975b and Zadeh 1975c):

	 	 (9)

where

	 g–1 (y) = {x ∈ X | g(x) = y}.

Román-Flores et al. (2001) have shown that if g : X → Y 
is a real continuous function, then g : F(X) → F(Y) is a 
well-defined function, and

	 [g(A)]α = g([A]α),	 (10)

for all α ∈ [0.1] and A ∈ F(X). 
	 In general, to find a fuzzy set B in Y is not an easy 
task. An exception occurs when g is monotone. If g is non-
monotone, the function values at the endpoints of fuzzy set 
A in X are not the correct endpoints of fuzzy set B in Y.

THE PROPOSED METHOD

In this section, we first study the concept of dependency 
problem that exists in fuzzy environment. Then, we present 
an example with different types of calculations for the same 
problem. Following this concept, we develop a new method 
for computing continuous functions that take trapezoidal 
fuzzy interval as its argument. The computational 
complexity of the proposed method is also studied.

THE DEPENDENCY PROBLEM

The dependency problem in fuzzy environment exists 
when the same fuzzy interval is computed separately in 
fuzzy interval computation. To understand this concept, 
we give an example. Given the trapezoidal fuzzy interval 
A(-1,0,1,2) with α – cuts are [A]α = [α–1,2–α] for α ∈ (0,1]. 
Suppose we use the function defined by g(x) = 5x2–2x+2 
and we want to find g(A), where g is a real continuous 
function and A is a trapezoidal fuzzy interval. There 
are two common ways to find g(A). First, we apply the 
straightforward fuzzy interval arithmetic, which is based 
on the α – cut of fuzzy interval:

	 g([A]α) = 5[α–1,2–α].[α–1,2–α]–2[α–1,2–α]+2

If α = 0, then we have:

	 g([A]0) = [–12, 24].	 (11)

ARITHMETIC OPERATIONS OF FUZZY INTERVAL

In this subsection, we recall some arithmetic operations 
of fuzzy interval. Arithmetic operations of fuzzy interval 
are generalisation of the operations of interval arithmetic 
introduced by Moore (1966). First, we recall the four basic 
arithmetic operations of real interval, namely: 
1.	 addition:	 [a, b] + [c, d] = [a + c, b + d];
2.	 subtraction:	 [a, b] - [c, d] = [a - d, b + c];
3.	 multiplication:	

[a, b].[c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)];

4.	 division:
	

	
	 where c and d ≠ 0.

	 Let A and B are two different fuzzy intervals and 
denote ‘*’ be any of the four basic arithmetic operations. 
For α ∈ (0,1], [A]α and [B]α are close intervals in ℜ (by 
definition). Hence, the basic arithmetic operations of fuzzy 
intervals A and B can be defined as follows:

	 [A*B]α = [A]α *[B]α.	 (8)

	 In this case the four standard arithmetic operations 
of real interval can be used directly for every level of α. 
For division of two different fuzzy intervals, we require 
that 0 ∉ [B]0. However, if A and B are the same fuzzy 
intervals, then the basic arithmetic operations are defined 
in different ways (see Klir 1997). 

THE EXTENSION PRINCIPLE

The idea of the extension principle is easy to understand. 
Let g be a function that maps from X to Y. The extension 
principle provides a mechanism to transform a fuzzy set 
defined in X to a fuzzy set defined in Y.

Figure 1. Trapezoidal fuzzy interval
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	 Second, we apply Zadeh’s extension principle by 
considering that the trapezoidal fuzzy interval is computed 
separately:

 	 g(A) = 5A2 – 2A + 2.	 (12)

For particular α = 0, the solution is therefore

	 g([A]0) = [–2, 24].	 (13)

	 Unfortunately, both solutions (see Eqs. (11) and (13)) 
are not correct because they do not represent the actual 
range of g(x) for x ∈ [–1, 2]. To get the correct result, we 
have to define the whole expression on the right hand side 
of g(x) as a new function. Then we apply Zadeh’s extension 
principle. We refer to the example discussed above and 
apply this idea to it then we have the following result:

	 g([A]0) = [9/5, 18],	 (14)

which is the actual range of g(x) for x ∈ [–1. 2]. This 
dependency problem can also be seen in numerical 
methods for differential equations with fuzzy initial values. 
However, many researchers did not take into account 
this problem when deriving the numerical methods for 
differential equations with fuzzy initial values (see Ma et 
al. 1999, Abbasbandy & Allahviranloo 2002, Abbasbandy 
& Allahviranloo 2004, Pederson & Sambandham 2007, 
Palligkinis et al. 2008 and Pederson & Sambandham 2008). 
Consequently, the diameters of the solutions of differential 
equations with fuzzy initial values increase as t increases. 
This is always the case when the same fuzzy interval is 
computed separately in fuzzy interval computation. This 
is shown in preliminary studies conducted by Ahmad and 
Hasan (2010).

DISCRETISATION OF TRAPEZOIDAL FUZZY INTERVALS

Let A(a,b,c,d) be a trapezoidal fuzzy interval with α – cuts 
are denoted by  [A]α = [a1

α, a2
α]  for all α ∈ (0,1],  where a1

α 
= a + α(b – a) and a2

α = d – α(d – c). First, we descretise α 
up to n points on the interval (0,1]. The points are equally 
spaced using Δh = 1/(n – 1). The discretisation points are 
given by αi = αi – 1 + Δh, for i = 2, …, n.  After discretisation, 
we have the following set of α with n elements of point:

	 α = {α1, …, αi, …, αn},	 (15)

where α1 = 0, αi = αi–1 + Δh and αn = 1 for i = 2, …, n.  From 
Eq. (15) and using Definition 5, we have the following set 
of intervals:

	 I = {[A]α1, …, [A]αi, …, [A]αn}.	 (16)

	 For the different α – cuts of A the following property 
holds:

	 [A]αi+1 ⊆ [A]αi, ∀αi, αi+1 ∈ (0,1] with αi ≤ αi+1		
(17)

for i = 1,2,...,n - 1. From (17), it is clear that the α – cut of 
A at αi+1 is subset of the α – cut of A at αi (see Figure 2). 

	 Due to this, the α – cut of A can also be constructed 
as the union of sub-intervals as shown in the following 
equations:

		  	 (18)

		

	 (19)

		

		  		
(20)

Let g : ℜ → ℜ be a real continuous function and we want 
to find a trapezoidal fuzzy interval B = g(A) that is induced 
by g . In this study, we compute B = g(A) at each level of αi  
for i = 1,2, ... ,n according to the following equations:

		  	 (21)

		  	 (22)

		

	 	(23)

		  	

Figure 2. α – discretisation of a trapezoidal fuzzy interval
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(24)

		
		

	

	 (25)

	 	
(26)

Here, and  are the minimum and maximum values 
which obtained from Eqs. (21) – (26), which finally turn 
out to be the endpoints of the α – cuts of trapezoidal fuzzy 
interval B. The optimisation problems in Eqs. (21) till (26) 
will be performed as follows: (1) if g(x) is decreasing or 
increasing on the sub-intervals, then the optimal solutions 
are obtained at the endpoints of the sub-intervals; (2) if 
g(x) is unimodal on the sub-intervals, then we use Brent’s 
method (Brent 2002). To test whether g(x) is decreasing, 
increasing or unimodal on the sub-intervals, we do 
monotonicity testing. In this test, we take any three points 
in the sub-intervals. For example, we take a, b and c as 
the three points in the interval [a, c]. These three points 
are more then enough because the interval [a, c] is a very 
small interval. Here, a is the lower bound of [a, c], b is 
the midpoint in the interval [a, c] and c is the upper bound 
of the interval [a, c]. In monotonicity testing, we have the 
following five possibilities: 

for every a < b < c,

1.	 if g(a) < g(b) < g(c), then g is increasing on the interval 
[a, c]. So, the minimum is g(a) and the maximum is 
g(c); 

2.	 if g(a) > g(b) > g(c), then g is decreasing on the interval 
[a, c]. So, the minimum is g(c) and the maximum is 
g(a); 

3.	 if g(a) > g(b) < g(c), then g is unimodal on the interval 
[a, c]. So, the minimum is predicted around g(b) and 
the maximum is max (g(a),g(c));

4.	 if g(a) < g(b) > g(c), then g is also unimodal on the 
interval [a, c]. So, the minimum is min (g(a),g(c)) and 
the maximum is predicted around g(b); or

5.	 if | g(a) - g(b) | < ε and | g(b) - g(c) | < ε, then g is 
closely horizontal. So, the minimum of g(x) is closely 
equals to the maximum of g(x) for x ∈ [a,c].

	 In order to have low computational complexity, we 
propose a new strategy to find the minimum and maximum 
values on the interval . We start from αn = 1 and 
continue downward until α1 = 0. For instance, at αi for i 
=1,2,…,n, we have 2 ̇  (2i – 1) optimisation problems to be 
solved (see Eqs. 23 and 24). However, we only consider 
the first and the last optimisation problems. The other 
optimisation problems have already been solved at αi+1.  
By taking the minimum (maximum) of all results of the 
optimisation problems, we have a new minimum value 
(a new maximum value). The minimum value (maximum 
value) at αi can be similar to or smaller (bigger) than the 
minimum (maximum) found at αi+1, depending on the 
function under consideration. This process is repeated 
for all levels of α. As a result, we have a set of intervals, 
which finally turns out to be a trapezoidal fuzzy interval as 
well. Next, we introduce the following error of computing 
B = g(A):

Definition 7: Let g : ℜ → ℜ  be a real continuous function. 
Given a trapezoidal fuzzy interval A on ℜ. The error of 
computing B = g(A) is given by

	 	 (27)

where and are the α – cuts 
of analytical solution and approximation solution, 
respectively.

COMPUTATIONAL COMPLEXICITY

The computational complexity of the proposed method 
can be determined by calculating the total number of 
function evaluations. It is also depending on the total 
number of α ∈ [0,1] that we have discretised. If g(x) is 
decreasing or increasing on the sub-intervals, then the 
computational complexity can be calculated as follow:

	 cp = 3 + 6(n – 1),	 (28)

where n is the total number of α ∈ [0,1]. 

NUMERICAL EXAMPLES

In this section, we use the proposed method to illustrate 
the approximation of Zadeh’s extension principle for 
some non-monotone functions. Please note that one 
requirement for Zadeh’s extension principle is that the 
functions chosen should be continuous on its domain. 
If the function is one-to-one mapping, the solution of 
Zadeh’s extension principle is straightforward. However, 
if the function is not one-to-one mapping, the problem 
arises when two or more distinct points in its domain are 
mapped into the same point in its image. In this case, we 
need to take the supremum (maximum) of two or more 
membership values (Zadeh 1975a, Zadeh 1975b and 
Zadeh 1975c).
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Example 1: We consider the following trapezoidal fuzzy 
interval A defined by

	

The α – cut of A is given by: 

	 [A]α = [4α/5+1,3 – 4α/5],   α ∈ (0,1].

Suppose we use the following function:

	 g(x) = 3x – x2

and we want to find g(A) = 3A – A2. The function g is 
continuous on the support of A and it has an extreme point 
at x = 1.5. The analytical solution of Zadeh’s extension 
principle is given by:

By using the method proposed in this paper, we obtain the 
approximation of g(A), which is exactly the same as the 
analytical solution (see Figure 3(c)). The approximation 
errors are listed in Table 1. The graphs of A(x), g(x)  
and g(A) are depicted in Figures 3(a), 3(b) and 3(c), 
respectively. 

	 In term of computational complexity, we observed 
that the total number of function evaluations required in 
this example is 63 with n = 11.

Example 2: We consider the following trapezoidal fuzzy 
interval A defined by:

Table 1. Approximation errors for Example 1 

α Error
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05

Figure 3(c). Comparison between analytical solution (solid 
line) and its approximation (circle mark)
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Figure 3(b). Function handle
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Figure 3(a). Fuzzy interval A
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The α – cut of A is given by: 

	

Suppose we use the following function:

	 g(x) = sin(x)

and we want to find g(A) = sin(A). The sine function is 
periodic with a period of 2π. Since it is defined on the 
support of A, then it has an extreme point at x = π/2. 
So, the correct range of g(A) is defined on the interval 

. From Zadeh’s extension principle, the analytical 
solution is given by:

	 By using the technique proposed in this paper, we 
obtain the approximation of g(A). The graphs of A(x), 
g(x) and g(A) are depicted in Figures 4(a), 4(b) and 
4(c), respectively. From the graph, we can see that the 
approximation solution is exactly equal to the analytical 
solution. The approximation errors are listed in Table 2. 
	 In term of computational complexity, we observed 
that the total number of function evaluations required in 
this example is 70 with n = 11.

CONCLUSIONS

We have proposed a new computational method for 
computing non-monotone functions that take a trapezoidal 
fuzzy interval as their arguments. The proposed method 
is based on minimising and maximising of a function, 
which is the function takes on the minimum and maximum 
values. In this paper, we have considered only the problem 
of finding the minimum, since the maximum can be easily 
found by noting that max g(x) = – min(–g(x)). The method 

proposed in this paper greatly improves the computational 
aspect, especially in handling non-monotone functions. 
In the future, the proposed method will be incorporated 
into classical numerical methods for solving non-linear 
differential equations with fuzzy initial values. 

Figure 4(a). Fuzzy interval A

A
lp

ha

x

Figure 4(b). Function handle

f(
x)

x

Figure 4(c). Comparison between analytical solution (solid 
line) and its approximation (circle mark)
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Table 2. Approximation errors for Example 2

α Error
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05
0.0E - 05


