Distribution of *Aedes* Mosquitoes in Three Selected Localities in Malaysia

(Taburan Nyamuk *Aedes* di Tiga Lokaliti Terpilih di Malaysia)

ABSTRACT

Aedes aegypti and *Aedes albopictus* are the principle dengue vectors in Malaysia. The presence and distribution of *Aedes* larvae were studied in three different localities in Kelantan, Terengganu and Sabah, Malaysia in October 2008, November 2008 and June 2009. Two hundred (200) ovitraps per locality were placed randomly indoors and outdoors, depending on the environment of each locality. The highest mean number of *Ae. aegypti* and *Ae. albopictus* larvae per recovered ovitrap for both indoors and outdoors was obtained from Kg. Paya Rambai, Kelantan. The indoor populations of *Ae. aegypti* as well as the indoor and outdoor populations of *Ae. albopictus* in Kg. Paya Rambai, Kelantan were significantly higher than the other two study sites (p<0.05) by 1.03- and 4.67-folds, 2.36- and 5.84-folds and 1.98- and 4.00-folds, respectively. Both *Ae. aegypti* and *Ae. albopictus* were also found to breed within the same ovitraps placed indoors and outdoors in all study sites ranging from 15.22% to 31.82% of the total positive ovitraps. This study showed that both species could serve as the vectors of dengue in all study sites as indicated by the high populations recorded. The reliability and sensitivity of ovitraps in *Aedes* surveillance was also proven.

Keywords: Dengue; Malaysia; mixed breeding; ovitrap surveillance

INTRODUCTION

Dengue is a serious public health problem in many countries throughout the world including Malaysia. Global incidence of dengue has grown dramatically in recent decades (WHO 2009). In Malaysia, dengue cases are reported in all states each year. Up to 19th May 2012, 9,607 dengue cases with 20 deaths were recorded in Malaysia, compared to 7,963 dengue cases with 12 deaths for the same duration in 2011 (Ministry of Health Malaysia 2012).

Aedes aegypti and *Aedes albopictus* are the principal dengue vectors (Rudnick et al. 1965). These dengue vectors are widely distributed in Malaysia (Nazni et al. 2009). *Ae. aegypti* tends to breed in water storage containers and any variety of assorted water-holding containers found in and around homes (Lenhart et al. 2005), whereas *Ae. albopictus* breeds in both man-made containers and in natural containers (Perich et al. 2003).

Ovitraps are important surveillance tool used in detecting and monitoring *Aedes* populations. The ovitrap has been proven to be more sensitive in detecting *Aedes* mosquito, as well as being cost-effective and operationally viable in vector surveillance (Braga et al. 2000). Hence, the objective of this study was to provide updated baseline information on the presence and density of *Aedes* in selected dengue prone areas by utilizing the ovitraps.
STUDY SITES
Ovitrap surveillance was conducted in dengue prone areas of three states in Malaysia: Kg. Paya Rambai in Kota Bharu, Kelantan; Kg. Ladang-Pasir Panjang in Kuala Terengganu, Terengganu; and Sepanggar-Karamunsing in Kota Kinabalu, Sabah. The selection of these areas were based on the frequent dengue cases reported annually as provided by the vector borne-diseases control programme (VBDCP) of each state.

OVITRAP SURVEILLANCE
Standardized ovitraps as described by Lee (1992) had been utilized in this study. The ovitrap comprises of 300 mL black plastic container. The opening was 6.8 cm in diameter, the base diameter was also 6.8 cm and 9.1 cm in height. An oviposition paddle made from hardboard (10 cm × 2.5 cm × 0.3 cm) consisting of two different types of surfaces was placed diagonally into each ovitrap with the rough surface of the oviposition paddle upwards. Each ovitrap was filled with tap water to a level of 5.5 cm. These ovitraps were used in accordance to the guidelines of Ministry of Health, Malaysia (1997). All ovitraps were placed in proximity to other potential breeding containers with minimum physical and environmental disturbance. Two hundred (200) ovitraps per locality were placed randomly indoors and outdoors which were either partially or totally shaded to avoid from direct sunlight and heavy rain that may cause water spillage. In this study, ‘indoors’ refers to the interior of the premise (house, flat), while ‘outdoors’ refers to the outside of the premise but confined to the immediate vicinity of the house.

As this study was originally performed to provide baseline data of Aedes in all study sites to VBDCP of respective states, therefore only one ovitrap surveillance was conducted in each study site selected. The ovitrap surveillance were conducted in October 2008, November 2008 and June 2009.

IDENTIFICATION OF LARVAE
All ovitraps were collected after 5 days of deployment and brought back to the laboratory. The contents were poured into individual plastic containers, together with the paddle and topped up with fresh water. A mixture of liver powder, cereals and yeast as well as a small piece of partially-cooked cow liver were added into each container as larval food. The containers were kept covered to avoid other mosquitoes in the vicinity from ovipositing in the containers. All hatched larvae were reared and subsequently counted and identified at fourth instar larvae. The larval numbers were recorded individually for every positive ovitrap.

ANALYSIS OF DATA
Data obtained in this study were analyzed as:
1. Ovitrap Index (OI): the percentage of positive ovitraps to the total number of recovered ovitraps for each study site
2. Mean number of Ae. aegypti and / or Ae. albopictus larvae per recovered ovitrap

Available statistical programme was used in performing the one-way ANOVA analysis. All levels of statistical significance were determined at p = 0.05.

RESULTS AND DISCUSSION
Table 1 shows the ovitrap index (OI), the mean number of larvae per recovered ovitrap and the ratio of Ae. aegypti to Ae. albopictus collected in every study site. Kg. Paya Rambai, Kelantan had the highest OI for both indoors and outdoors with 65.12% and 77.19%, respectively. Our results showed that both Aedes species in all study sites preferred to breed outside rather than inside the premises which supported similar findings by Chareonviriyaphap et al. (2003) in Thailand. In parallel to this, the highest mean number of Ae. aegypti and Ae. albopictus larvae per recovered ovitrap for both indoors and outdoors was also obtained from Kg. Paya Rambai, Kelantan. There

<table>
<thead>
<tr>
<th>Study site</th>
<th>Ovitrap placement</th>
<th>Ovitrap Index (OI) (%)</th>
<th>Mean number larvae per recovered ovitrap</th>
<th>Ae. aegypti : Ae. albopictus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kg. Paya Rambai, Kelantan</td>
<td>Indoors</td>
<td>65.12</td>
<td>4.06 ± 0.81</td>
<td>1.00 : 1.84</td>
</tr>
<tr>
<td></td>
<td>Outdoors</td>
<td>77.19</td>
<td>3.07 ± 0.58</td>
<td>1.00 : 3.44</td>
</tr>
<tr>
<td>Kg. Ladang-Pasir Panjang, Terengganu</td>
<td>Indoors</td>
<td>39.00</td>
<td>3.96 ± 0.89</td>
<td>1.25 : 1.00</td>
</tr>
<tr>
<td></td>
<td>Outdoors</td>
<td>50.00</td>
<td>3.18 ± 0.55</td>
<td>1.20 : 1.00</td>
</tr>
<tr>
<td>Sepanggar-Karamunsing, Sabah</td>
<td>Indoors</td>
<td>23.36</td>
<td>0.87 ± 0.27</td>
<td>1.00 : 1.48</td>
</tr>
<tr>
<td></td>
<td>Outdoors</td>
<td>73.02</td>
<td>2.52 ± 1.05</td>
<td>1.00 : 2.12</td>
</tr>
</tbody>
</table>

a (F = 8.88, p<0.05, df = 2)
b (F = 0.21, p>0.05, df = 2)
c (F = 20.87, p<0.05, df = 2)
d (F = 24.55, p<0.05, df = 2)
was no significant difference for outdoor populations of *Ae. aegypti* among all study sites selected (*p* > 0.05). In contrast, the indoor populations of *Ae. aegypti* as well as the indoor and outdoor populations of *Ae. albopictus* in Kg. Paya Rambai, Kelantan were significantly higher than other study sites by 1.03- and 4.67-folds, 2.36- to 5.84-folds and 1.98- to 4.00-folds, respectively (*p* < 0.05). The population ratios of *Ae. aegypti* to *Ae. albopictus* larvae in Kg. Paya Rambai, Kelantan and Sepanggar-Karamunsing, Sabah were generally different to one another for both indoors and outdoors, respectively, but not for indoor and outdoor populations in Kg. Ladang-Pasir Panjang, Terengganu. These results showed that *Ae. albopictus* in Kg. Paya Rambai, Kelantan and Sepanggar-Karamunsing, Sabah were generally different to one another for both indoors and outdoors, respectively, but not for indoor and outdoor populations in Kg. Ladang-Pasir Panjang, Terengganu. In other words, an early invasion of outdoor and outside the premises in Kg. Ladang-Pasir Panjang, Terengganu. In contrast, the indoor populations of *Ae. aegypti* were more dominant compared to *Ae. albopictus* populations in Kg. Paya Rambai, Kelantan and Sepanggar-Karamunsing, Sabah. These results indicated that the populations of *Ae. albopictus* in Kg. Paya Rambai, Kelantan and Sepanggar-Karamunsing, Sabah were more dominant compared to *Ae. aegypti* populations. In contrast, *Ae. aegypti* populations have been found to be more dominant than *Ae. albopictus* populations inside and outside the premises in Kg. Ladang-Pasir Panjang, Terengganu. In other words, an early invasion of outdoor populations by *Ae. aegypti* had been observed in Kuala Terengganu, Terengganu. These results also showed that although ovitraps were placed indoors, some of the gravid females of *Ae. aegypti* still preferred to lay eggs outdoors and enter the houses just for the blood feeding (Dibo et al. 2005). *Ae. aegypti* may eventually replace *Ae. albopictus* if this process is allowed to continue (Lee 1992). This is because previous experience had shown that *Ae. aegypti* appeared to be replacing *Ae. albopictus* in such major centres as Bangkok, Manila and Singapore (Rudnick 1967).

Ae. aegypti and *Ae. albopictus* are sympatric species which occupy similar ecological niches (Klowden 1993). In line with this, mixed breeding was found in both indoor and outdoor populations in all study sites which was from 15.22% to 31.82% of the total positive ovitraps respectively. These results were not much different with 20.00% mixed population from 75 positive ovitraps recovered from Kg. Banjar, a settlement area in Selangor, Malaysia as reported by Chen et al. (2006) as well as the studies by Chareonviriyaphap et al. (2003) who also found the overlapping of *Ae. aegypti* and *Ae. albopictus* habitats, mainly in the south of Thailand with approximately 20.00%. However, results obtained in this study were much higher than the findings by Chang and Jute (1994) who reported only 9.00% of shared breeding between *Ae. aegypti* and *Ae. albopictus* larvae in house surveys. In contrast, results obtained from this study were not as much as 55.40% extensive sharing from the total positive ovitraps recorded by Yap and Thiruvengadam (1979). Other than that, these results also indirectly showed that ovitrap is a sensitive tool to attract more than one species of gravid female mosquitoes to lay eggs in the container (Chen et al. 2006). As reported by Masu et al. (2008), the use of ovitraps had been proven as a practical mean to collect *Aedes* eggs.

In general, all study sites selected in this study shared some similarities on mosquito populations although the environment of every study site was quite different. For instance, both Kg. Ladang-Pasir Panjang, Terengganu and Kg. Paya Rambai, Kelantan are the villages with wooden- and brick-made houses while Sepanggar-Karamunsing, Sabah comprises a floating settlement area with wooden-made houses as well as few on-land blocks of flats. Both Kg. Ladang-Pasir Panjang, Terengganu and Kg. Paya Rambai, Kelantan shared almost a similar suburban environment.

Table 2 describes the distribution of *Aedes* larvae in positive ovitraps collected from all study sites. Higher percentages of positive ovitraps with only *Ae. albopictus* populations have been observed in both indoor and outdoor populations in Kg. Paya Rambai, Kelantan and Sepanggar-Karamunsing, Sabah but not for Kg. Ladang-Pasir Panjang, Terengganu. An equal number of positive ovitraps consisting only *Ae. aegypti* or *Ae. albopictus* larvae was recorded for indoor populations in Kg. Ladang-Pasir Panjang, Terengganu (35.90%) while the outdoor populations were dominated by *Ae. aegypti* (50.00% positive ovitraps). These results indicated that the populations of *Ae. albopictus* in Kg. Paya Rambai, Kelantan and Sepanggar-Karamunsing, Sabah were more dominant compared to *Ae. aegypti* populations. In contrast, *Ae. aegypti* populations have been found to be more dominant than *Ae. albopictus* populations inside and outside the premises in Kg. Ladang-Pasir Panjang, Terengganu. In other words, an early invasion of outdoor populations by *Ae. aegypti* had been observed in Kuala Terengganu, Terengganu. These results also showed that although ovitraps were placed indoors, some of the gravid females of *Ae. aegypti* still preferred to lay eggs outdoors.

<table>
<thead>
<tr>
<th>Study site</th>
<th>Ovitrap placement</th>
<th>No. of recovered ovitrap</th>
<th>No. of positive ovitrap</th>
<th>No. and percentage of positive ovitrap with each Aedes sp.</th>
<th>No. and percentage of positive ovitrap with mixed breeding</th>
<th>Ratio of Ae. aegypti : Ae. albopictus in mixed breeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kg. Paya Rambai, Kelantan</td>
<td>Indoors</td>
<td>86</td>
<td>56</td>
<td>16 (28.57%)</td>
<td>30 (53.57%)</td>
<td>1.00 : 1.54</td>
</tr>
<tr>
<td></td>
<td>Outdoors</td>
<td>114</td>
<td>88</td>
<td>7 (7.95%)</td>
<td>53 (60.23%)</td>
<td>1.00 : 1.24</td>
</tr>
<tr>
<td>Kg. Ladang-Pasir Panjang, Terengganu</td>
<td>Indoors</td>
<td>100</td>
<td>39</td>
<td>14 (35.90%)</td>
<td>14 (35.90%)</td>
<td>1.00 : 1.00</td>
</tr>
<tr>
<td></td>
<td>Outdoors</td>
<td>100</td>
<td>50</td>
<td>25 (50.00%)</td>
<td>15 (30.00%)</td>
<td>1.00 : 1.24</td>
</tr>
<tr>
<td>Sepanggar-Karamunsing, Sabah</td>
<td>Indoors</td>
<td>137</td>
<td>32</td>
<td>8 (25.00%)</td>
<td>17 (53.13%)</td>
<td>1.00 : 1.24</td>
</tr>
<tr>
<td></td>
<td>Outdoors</td>
<td>63</td>
<td>46</td>
<td>5 (10.87%)</td>
<td>34 (73.91%)</td>
<td>1.57 : 1.00</td>
</tr>
</tbody>
</table>
where many ornamental plants and vegetations could be easily found within many premises' compounds that served as the best natural habitats especially for *Ae. albopictus*. Moreover, there were also containers and jars with tap water or rain water stored by the residents in all study sites for daily use where these containers could become as artificial breeding habitats for the dengue vectors if they are not properly covered and managed. Chan et al. (1971) reported that the domestic containers used as water storage, ornamentation or the prevention of pests constituted 95% of the total breeding habitats of both *Ae. aegypti* and *Ae. albopictus* in the urban parts of Singapore. Not only that, containers or receptacles exposed to rain, even when treated, may still be infested by the breeding of mosquito larvae (Morato et al. 2005).

In addition, the drainage systems in both Kg. Ladang-Pasir Panjang, Terengganu and Kg. Paya Rambai, Kelantan were seemed not to be well-managed. On the other hands, for Sepanggar-Karamunsing, Sabah, the concrete drainage system only covers the flats area while for the floating settlement area, most of the man-made waste seemed to be simply dumped into the sea under the houses by the residents. The poor-built and -managed drainage systems as well as the poor attentiveness of some residents towards cleanliness should be improved in order to avoid the formation of stagnant water. The clogged drains with clear stagnant water served as good artificial larval containers for *Aedes* larvae (Chen et al. 2005).

In conclusion, both *Ae. aegypti* and *Ae. albopictus* have the potential to be involved in the spread of dengue viruses in all study sites. However, the populations of *Ae. albopictus* in Kg. Paya Rambai, Kelantan and Sepanggar-Karamunsing, Sabah were more dominant than *Ae. aegypti* populations, respectively. In addition, *Ae. aegypti* populations in Kg. Ladang-Pasir Panjang, Terengganu had the ability to invade *Ae. albopictus* outdoor populations throughout the time. Besides, this study also indirectly confirmed the sensitivity and reliability of ovitrap as a tool in detecting the existence of more than one mosquito species especially *Aedes* populations as well as the abilities of *Aedes* mosquitoes to oviposit within the same ovitrap.

Integrated vector management (IVM) is now used in eliminating the dengue vectors. Among all elements consisted in IVM, source reduction or environmental management is the best practice that should be carried out routinely within the community members to avoid the unnecessary mosquito breeding habitats inside and outside the premises. In line with this, health education involving all residents in the communities should be actively conducted so that their concerns about the seriousness towards the spread of dengue and the importance of their participations in the source reduction activities could be ensured.

ACKNOWLEDGEMENTS

The authors thank the Director General of Health, Malaysia for permission to publish this paper. We are grateful to the Medical and Health Director of Kelantan, Terengganu and Sabah for permission to perform this study at selected study sites. Thanks are also due to the staff of Medical Entomology Unit, IMR as well as all staff of VBDCP of states and districts involved in this study for their assistance and co-operation. This study was supported by the Non-CAM Research Grant of National Institute of Health (NIH), Ministry of Health Malaysia; 07-024.

REFERENCES

O. Wan-Norafikah*
Faculty of Medicine
Universiti Teknologi MARA (UiTM)
Jalan Prima Selayang 7
68100 Batu Caves
Selangor, Malaysia

W.A. Nazni, S. Noramiza, S., Shafa’ar-Ko’ohar, S.K. Heah, A.H., Nor-Azlina, M. Khairul-Asuad & H.L. Lee
Medical Entomology Unit
Infectious Diseases Research Centre (IDRC)
Institute for Medical Research (IMR)
Jalan Pahang, 50588 Kuala Lumpur
Malaysia

*Corresponding author; email: ika_uitm@yahoo.com

Received: 25 January 2012
Accepted: 23 June 2012