Antimicrobial Activity of *Nigella sativa* Seed Extract
(Aktiviti Antimikrob Ekstrak *Nigella sativa*)

NOR’ AISHAH HASAN*, MOHD. ZAINI NAWAHWI & HASLINDA AB MALEK

ABSTRACT

Pathogenic bacterial infections have become a major health problem worldwide. New antimicrobial agents are urgently needed to overcome this problem. In this study, antibacterial activity of *Nigella sativa* seed extract against some pathogenic bacterial strains (*Streptococcus pyogene*, *Pseudomonas aeruginosa*, Klebsiella pneumoniae and Proteus vulgaris) was evaluated. Methanol extract at the concentration of 100 mg/mL had a remarkable sensitivity towards all tested bacteria in this study. Klebsiella pneumonia and Proteus vulgaris showed resistance against aqueous extract at 20 mg/mL. Methanol extract of *Nigella sativa* exhibited significant antibacterial activity at the concentration of 50 mg/mL (p ≤ 0.01) against *Streptococcus pyogenes* with a greater inhibition zone of 19 mm, while a 15 mm zone of inhibition was observed in *Pseudomonas aeruginosa*, Klebsiella pneumonia and Proteus vulgaris. Kruskal Wallis analysis showed that both aqueous and methanol extract of black seed exhibited a greater inhibition on Gram positive bacteria (*Streptococcus pyogenes*) compared with Gram negative bacteria (*Pseudomonas aeruginosa*, Klebsiella pneumoniae and Proteus vulgaris). Our study also showed that species, strains and concentrations of *Nigella sativa* extract are some of the factors that may influence the sensitivity of the tested bacteria. A significant correlation was observed between zone of inhibition and concentration of extract.

Keywords: Antimicrobial activity; disk diffusion method; methanol extract; *Nigella sativa*; pathogenic bacteria

INTRODUCTION

The use of synthetic drugs containing microbes that are biochemically and genetically modified as a treatment of common infectious disease are not reliable due to many controversial issues. Synthetic drugs are not only expensive and inadequate but also often had issues with adulterations and side effects. Customers are more concerned about the pathogenicity and the high mortality rate of the product they used. Therefore, with the advancement of the technology, scientists are challenged to come out with new ideas of alternative and novel drugs to overcome the usage of microbial resistant drugs.

Since ancient civilization, natural sources especially plants are used as medicinal therapy because they contain several components which are believed to cure various infectious diseases. The biodiversity of plants provides an important source of chemical compounds, which have many therapeutic application such as antiviral, antibacterial, antifungal and anticancer activities (Pereira et al. 2004). *Nigella sativa* is a herbaceous plant which is better known as black seed, a habitat of Southeast Asia and Mediterranean...
countries. Indian folks used this plant as a food preservative as well as a protective and curative treatment for numerous disorders (Mertoft et al. 1997).

The black seeds contain 36–38% fixed oil, with proteins, alkaloids, saponins and essential oils making up the rest of the composition (Burris & Bucar 2000). Although black seed extract or oil has been reported to possess antimicrobial activity (Morsi 2000), antioxidant activity (Burris & Bucar 2000), antitumor activity (Worthen et al. 1998) and a stimulatory effect on the immune system (Salem & Hossain 2000), its full potential as an antimicrobial agent has not been exploited. This current study was conducted to investigate the antibacterial activity of the seed extract of *Nigella sativa* against pathogenic isolates of bacteria. The results of this study may further strengthen the recommendation for the use of ethnomedicine in the treatment and control of microbial infections.

MATERIALS AND METHODS

PREPARATION OF PLANT SAMPLE

Nigella sativa seeds were bought from a local herbal market and the plant was authenticated at the Biology Unit, Faculty of Applied Science, Universiti Teknologi MARA (UiTM), Negeri Sembilan Branch Campus. The seeds were washed with distilled water thrice and dried on a blotting paper in the laboratory at 37 ±1°C for 24 h.

PREPARATION OF BACTERIA SAMPLE

The bacteria *Pseudomonas aeruginosa* (*P. aeruginosa*), *Klebsiella pneumonia* (*K. pneumonia*), *Proteus vulgaris* (*P. vulgaris*) and *Streptococcus pyogenes* (*S. pyogenes*) were obtained from the Microbiology Unit, Faculty of Applied Science, UiTM Negeri Sembilan Branch Campus. Bacteria were identified based on the colony, morphology, gram staining and biochemical analysis. Reference strains were obtained from the American Type Culture Collection (**Atcc** 13315 and **Atcc** 19615). These strains were then cultured on the nutrient agar (**Oxoid CM 0003**, England) and incubated overnight.

PREPARATION OF EXTRACT

The extraction was done using modified Bligh-Dyer method (Bligh & Dyer 1959). *Nigella sativa* seeds (50 g) were homogenized in a Waring blender for 2 min with a mixture of 50 mL chloroform and 50 mL methanol. Another 50 mL of chloroform was added to this mixture and blended for 30 s. Finally, 50 mL of distilled water was added and blended for 30 s. The homogenate was then filtered through a Whatman No. 1 filter paper on Whatman No. 3 filter paper using a Bucher funnel with a slight suction and the residue was compressed to ensure maximum recovery of the filtrate. The combined filtrates were transferred into a decanter. After settling for 5 min to complete the separation and clarification the bottom layer that contains the chloroform and lipid was mixed with a small amount of anhydrous NaSO₄ (1.5-2.5 g). Upon completion of the oil extraction, chloroform was removed from the oil using a rotary evaporator. A range of 1.0 mg/mL and 100 mg/mL stock solution were prepared using distilled water via serial dilution method.

Aqueous extraction was performed following the method of Charhalchi et al. (2007) where 100 g of black seeds were boiled in 1 L of distilled water for 1 h. Then the solution was filtered using filter paper Whatman No. 1. Finally, the solution was centrifuged at 3000 rpm for 15 min using eppendorf centrifuge 5810R. A range of 1.0 and 100 mg/mL stock solution was prepared using distilled water via serial dilution method. Sterile water and commercial antibiotic were used as positive and negative control.

ANTIBACTERIAL TEST

Antibacterial test was done by preparing bacterial suspension followed by the disc diffusion test. For the preparation of bacterial suspension, one single colony bacteria was picked and inoculated onto 5 mL nutrient broth (**Merck**, Germany) and incubated at 37°C overnight. The concentration of the bacteria for disc diffusion assay was standardized to 10⁷ cell/mL based on the McFarland standard. An amount of 300 μL from the bacterial suspension which was kept overnight was diluted into 10 mL Mueller Hinton broth (**Merck**, Germany). A sterilized cotton bud was dipped into suspension prepared and spread evenly on the surface of the Mueller Hinton agar (**Oxoid CM0337**, England). Next, the commercial antibiotic disc was placed at the middle of the plate to serve as control positive and then five sterilized Whatman filter paper disc (Whatman No. 6) with a diameter of 6 mm were placed around it. One of the paper discs was dipped into sterile distilled water as control negative while the remaining four discs were dipped in different concentrations of the extract. This method was performed nearby the Bunsen burner to ensure sterility. Incubation was done overnight with a minimum of 8 h to obtain the inhibition result of extracts upon the bacterial strain.

STATISTICAL ANALYSIS

Kruskal Wallis test was performed to test for the differences in sizes of inhibitory zones formed by oil against different bacteria. Mann-Whitney U test was performed to compare antimicrobial effects of *Nigella sativa* between methanol and aqueous extract. Bivariate correlation analysis using Pearson’s test was done to find relationships between concentration of oil and inhibition zones. All tests were done using SPSS software 13.0 version.

RESULTS AND DISCUSSION

This study reports the antimicrobial activity of 8 concentrations of *Nigella sativa* against *Streptococcus pyogenes*, *Klebsiella pneumonia*, *Pseudomonas aeruginosa*

...
and *Proteus vulgaris*. The results of the antimicrobial activity of the investigated extract are shown in Tables 1 and 2. In this study, both methanol and aqueous extracts showed no inhibition against all the bacteria tested at lower concentrations (<50 mg/mL). Generally, the methanol extract of *Nigella sativa* exhibited higher antibacterial effect compared with aqueous extracts. The extraction of the biologically active compounds from the plant material depends on the type of solvents used in the extraction procedure. According to Parekh et al. (2006), methanol, ethanol and water are the most commonly used solvents for determining the antimicrobial activity in plants. The diameter of inhibition zone in methanol extract are higher (Mdn=11.5) than aqueous extract (Mdn=11.0). On the contrary, statistical analysis using Mann-Whitney analysis showed that there are no significant differences between methanol extract and aqueous extract used, $U=282.0$, $z=-0.142$ with p-value≥0.01. This is because different sources of the extracts, agro-climate factor, handling of experiment and phytochemical ingredients in the extract also contribute to the differences of results obtained (Erdman et al. 2007).

In this study, positive result was only observed in methanol extracts of *Nigella sativa* at 20 mg/mL against *Streptococcus pyogenes* measured at 10 mm; (p≤0.01) while all other bacteria were resistant in aqueous extract. At concentration of 100 mg/mL, the highest antibacterial activity of 19 mm was recorded in *Streptococcus pyogenes* and similar activity was recorded in *Klebsiella pneumonia*, *Pseudomonas aeruginosa* and *Proteus vulgaris* with an inhibition zone measuring around 15 mm (Table 3). Aqueous extract of *Nigella sativa* had a remarkable sensitivity towards *Pseudomonas aeruginosa* and *Streptococcus pyogenes* with inhibition zones of 20 mm and 15 mm at concentration of 100 mg/mL, respectively. At concentration of 50 mg/mL, *Streptococcus pyogenes, Pseudomonas aeruginosa, Proteus vulgaris* and *Klebsiella pneumonia* exhibited modest inhibition at 10, 12, 12 and 11 mm, respectively. There was no difference in inhibition zone showed by *Klebsiella pneumoniae* when the concentration was increased from 50 mg/mL to 100 mg/mL (Table 4).

On the basis of the above results, it showed that methanol extract of *N. sativa* exhibited a greater inhibition compared with aqueous extract. Parekh et al. (2006) reported that most of the antimicrobial active compounds were soluble in polar solvent such as methanol instead of water. This result is comparable to the study by de Souza et al. (2004) using methanol extract of *L. sibiricus* that showed effective antibacterial activity on *Bacillus subtilis*. Bajwa and Shafique (2008) showed that methanol fraction of *A. rabiei* exhibited more promising results in suppressing the fungal growth rather than aqueous extract. This was also reported by Zafar et al. (2002), where chloroform extract of *Melia azederach* leaves was active against *Fusarium chlamydosporum* while water extract of the leaves did not show any positive results.

By referring to Tables 1 and 2, the extracts were found to be more effective on Gram positive than Gram negative bacteria, which is in conformity with a number of earlier studies where compounds derived from plants often show considerable activity against Gram positive bacteria.

TABLE 1. Inhibitory properties of methanol extract of *Nigella sativa* on pathogenic bacteria

<table>
<thead>
<tr>
<th>Test bacteria</th>
<th>Black seed concentration (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>-</td>
</tr>
<tr>
<td>Proteus vulgaris</td>
<td>-</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>-</td>
</tr>
<tr>
<td>Streptococcus pyogenes</td>
<td>-</td>
</tr>
</tbody>
</table>

- : No inhibition zone
+ : Inhibition zone ≤ 15 mm
++ : Inhibition zone ≥ 15 mm

TABLE 2. Inhibitory properties of aqueous extract of *Nigella sativa* on pathogenic bacteria

<table>
<thead>
<tr>
<th>Test bacteria</th>
<th>Black seed concentration (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>-</td>
</tr>
<tr>
<td>Proteus vulgaris</td>
<td>-</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>-</td>
</tr>
<tr>
<td>Streptococcus pyogenes</td>
<td>-</td>
</tr>
</tbody>
</table>

- : No inhibition zone
+ : Inhibition zone ≤ 15 mm
++ : Inhibition zone ≥ 15 mm
bacteria but not against Gram negative species (Nagi et al. 2008). Gram negative bacteria have effective permeability barrier, comprised of the outer membrane, which restricts the penetration of amphiphatic compounds and multidrug resistance pumps that extrude toxins across this barrier (Nagi et al. 2008). It is possible that the apparent ineffectiveness of the plant antimicrobial activity is largely due to this permeability barrier.

Results of the study indicate that black seed extract showed a dose of dependent inhibition against concentration. Statistical analysis using Spearman’s Rho, indicates that there is a significant correlation between zone of inhibition and concentration’s used. Both extracts showed that all the bacteria tested (n=4) showed strong and positive correlation value. Positive correlation value indicates that increasing the concentration will increase the diameter of inhibition zone formed by the bacteria. This finding is in agreement with results reported by Hannan et al. (2008) using the same genus of plant tested.

CONCLUSION

It may be concluded from this study that Nigella sativa seed extract exhibits some degree of antibacterial activity towards Pseudomonas aeruginosa and Streptococcus pyogenes. Thus, it shows that Nigella sativa has a great potential as an effective antimicrobial agent for medicinal purposes.

REFERENCES

**Correlation between log dose and size of zones is significant it 0.01 (2-tailed)

(Mean diameter of inhibition zones in mm around 6 mm disc impregnated with Nigella sativa extract)

TABLE 3. Correlation between concentration of Nigella sativa extract and inhibition zones against different types of bacteria

<table>
<thead>
<tr>
<th>Test bacteria</th>
<th>Concentration / disc (5 μL/disc)</th>
<th>Diameter of inhibition zones (mm)</th>
<th>Concentration (mg/mL)</th>
<th>Methanol</th>
<th>Spearman’s Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 5 10 20 50 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klebsella pneumonia</td>
<td>Nil Nil Nil 0 11.0 ± 1.8 15.0 ± 4.5</td>
<td>Nil</td>
<td>Methanol</td>
<td>0.845</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>Nil Nil Nil 0 12.0 ± 2.7 15.0 ± 4.0</td>
<td>Nil</td>
<td>Methanol</td>
<td>0.845</td>
<td></td>
</tr>
<tr>
<td>Streptococcus pyogenes</td>
<td>Nil Nil Nil 10.0 ± 0.0 16.0 ± 9.9 19.3 ± 1.9</td>
<td>Nil</td>
<td>Methanol</td>
<td>0.880</td>
<td></td>
</tr>
<tr>
<td>Proteus vulgaris</td>
<td>Nil Nil Nil 0 10.7 ± 1.0 15.0 ± 4.0</td>
<td>Nil</td>
<td>Methanol</td>
<td>0.845</td>
<td></td>
</tr>
<tr>
<td>Kruskal Wallis df</td>
<td>1 3 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
<td>0.341</td>
</tr>
</tbody>
</table>

**Correlation between log dose and size of zones is significant it 0.01 (2-tailed)

(Mean diameter of inhibition zones in mm around 6 mm disc impregnated with Nigella sativa extract)

TABLE 4. Correlation between concentration of Nigella sativa extract and inhibition zones against different types of bacteria

<table>
<thead>
<tr>
<th>Test Bacteria</th>
<th>Concentration / disc (5 μL/disc)</th>
<th>Diameter of inhibition zones (mm)</th>
<th>Concentration (mg/mL)</th>
<th>Methanol</th>
<th>Spearman’s Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 5 10 20 50 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klebsella pneumonia</td>
<td>Nil Nil Nil 0 10.0 ± 0.5 10.0 ± 0.5</td>
<td>Nil</td>
<td>Methanol</td>
<td>0.778</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>Nil Nil Nil 11.0 ± 1.4 12.0 ± 1.5 15.0 ± 0.0</td>
<td>Nil</td>
<td>Methanol</td>
<td>0.941</td>
<td></td>
</tr>
<tr>
<td>Streptococcus pyogenes</td>
<td>Nil Nil Nil 11.0 ± 0.5 12.0 ± 1.0 20.0 ± 0.9</td>
<td>Nil</td>
<td>Methanol</td>
<td>0.941</td>
<td></td>
</tr>
<tr>
<td>Proteus vulgaris</td>
<td>Nil Nil Nil 0 11.0 ± 0.5 12.0 ± 1.0</td>
<td>Nil</td>
<td>Methanol</td>
<td>0.845</td>
<td></td>
</tr>
<tr>
<td>Kruskal Wallis df</td>
<td>3 3 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.021</td>
<td></td>
<td></td>
<td>0.016</td>
<td></td>
</tr>
</tbody>
</table>

**Correlation between log dose and size of zones is significant it 0.01 (2-tailed)

(Mean diameter of inhibition zones in mm around 6 mm disc impregnated with Nigella sativa extract)
of the ILSI North America Flavonoids Workshop, May 31-
June 1, 2005, Washington, D.C. The Journal of Nutrition
137: 718S-737S.
Hannan, A., Sidrah, S., Saadia, C., Muhammad, B. & Arshad, M.
2008. Antibacterial activity of Nigella sativa of Methicillin
resistant Staphylococcus aureus. Journal of Medical College
20(3): 72-74.
Merfort, I., Wray, V., Barakat, H.H., Hussein, S.A.M., Nawwar,
M.A.M. & Willuhn, G. 1997. Flavonol triglycosides from
Morsi, N. 2000. Antimicrobial effect of crude extracts of Nigella
sativa on multiple antibiotics-resistant bacteria. Journal Acta
of essential oil from Nigella sativa using superfacial carbon
dioxide: Study of antibacterial activity. American Journal
Pharmacology and Toxicology 3(4): 225-228.
Parekh, J., Karathia, N. & Chanda, S. 2006. Evaluation of
antibacterial activity and phytochemical analysis of Bauhinia
variegata L. bark. African Journal of Biomedical Research
9: 53-56.
Pereira, P., Huerta, B., Borge, C., Astorga, R., Romero, R. &
Perera, A. 2004. Antimicrobial activity of five essential oils
against origin strains of the Enterobacteriaceae family. Acta
Pathologica, Microbiologica et Immunologica Scandinavica
Salem, M.L. & Hossain, M.S. 2000. In vivo acute depletion of
CD8 (+) T cells before murine cytomegalovirus infection
upregulated innate antiviral activity of natural killer cells.
Worthen, D., Ghoshan, D. & Crooks, P. 1998. The in vitro
anti-tumor activity of some crude and purified components
of blackseeds, Nigella sativa. Journal of Anti-Cancer
18: 1527-1532.
properties of some indigenous plants from Peshwar valley.

Nor’Aishah bt Hasan* & Mohd Zaini bin Nawahwi
Unit for Biology
Faculty of Applied Science
Universiti Teknologi MARA
Cawangan Negeri Sembilan
72000 Beting, Kuala Pilah
Negeri Sembilan Darul Khusus
Malaysia

Haslinda bt Ab. Malek
Faculty of Science Computer and Mathematics
Universiti Teknologi MARA
Cawangan Negeri Sembilan
72000 Beting, Kuala Pilah
Negeri Sembilan Darul Khusus
Malaysia

*Corresponding author; email: aishahnh@ns.uitm.edu.my

Received: 27 July 2011
Accepted: 9 October 2012