Cu-Doped TiO$_2$ Nanopowders Synthesized by Sonochemical-assisted Process
(Serbuk Nano Cu-terdop TiO$_2$ Disediakan Melalui Proses Sonokimia Terbantu)

NARONGDET WONGPISUTPAISAN*, NARATIP VITTAYAKORN,
ANUCHA RUANGPHANIT & WISANU PECHARAPA

ABSTRACT

Cu-doped TiO$_2$ nanopowders were prepared by sonochemical-assisted process via a precursor solution of titanium isopropoxide, copper nitrate trihydrate and sodium hydroxide in the presence of polyvinyl alcohol in combination with calcinations process. The as-synthesized products were calcined at various temperatures ranging from 500-1000°C. The physical microstructures, morphologies and chemical bonding of as-calcined nanopowders were characterized by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. It was noted that the crystallization, structure and size of the powders were strongly dependent on calcinations temperature. Their optical absorption properties were investigated and the results suggested that Cu dopant could significantly improve the optical absorption properties of TiO$_2$.

Keywords: Cu-doped TiO$_2$; nanopowders; sonochemical-assisted process

ABSTRAK

Kata kunci: Cu-terdop TiO$_2$; proses sonokimia terbantu; serbuk nano

INTRODUCTION

In the past few decades, TiO$_2$ has been recognized as one of the most widely used metal oxide semiconductors due to its exceptional properties such as wide bandgap (3.2 eV), strong ultraviolet absorptivity, good photocatalytic activity, high energy conversion efficiency, non-toxicity and long-term chemical stability (Jitputti et al. 2007; Wang et al. 2009). The wide applications of titanium oxide (TiO$_2$) in the fields of photocatalysis, gas sensors, pigments, photovoltaic cells and semiconductors have made this material the focus of many interesting projects (Deng et al. 2011; Viana et al. 2010; Yu et al. 2011).

Owing to the increasing interest in the application of nanosize TiO$_2$ in different fields, a large number of literatures on TiO$_2$ dealing with the synthesis, properties and applications of the different nanosize and structures TiO$_2$ crystalline forms have been reported. Low-dimensional TiO$_2$-related nanomaterials could be synthesized by various methods including, electrospinning (Li & Xia 2003), hydrogen treatment (Yoo et al. 2004), anodic oxidation of a titanium sheet (Gong et al. 2001), hydrothermal process (Kasuga et al. 1999), co-precipitation process (Viana et al. 2010) and sonochemical process (Arami et al. 2001).

A sonochemical method has been proven as a versatile and promising technique for generating a variety of novel materials metal oxide. Recently, it has been reported that the fundamental properties of TiO$_2$ can be enhanced by many techniques such as doping with variety elements and composited with compatible materials. There are a number of publications reported on the synthesis and characterization of TiO$_2$ powders doped with various transition metals such as Fe, Ni and Cu (Karimipour et al. 2011; Kokil et al. 2011; You et al. 2009). To our best knowledge, the synthesis of Cu-doped TiO$_2$ via sonochemical process with post thermal treatment has not been available in the literatures.

In the present work, an attempt was carried out to synthesize Cu-doped TiO$_2$ nanopowders by sonochemical process via a precursor solution of titanium isopropoxide and copper nitrate trihydrate. The effects of calcination temperatures and different Cu dopant content on their physical properties and microstructure were investigated.
Materials and Methods

Appropriate amounts of titanium (IV) isopropoxide (C\textsubscript{12}H\textsubscript{28}O\textsubscript{4}Ti, Sigma-Aldrich), copper nitrate trihydrate (CuN\textsubscript{2}O\textsubscript{6}.3H\textsubscript{2}O, Sigma-Aldrich) and sodium hydroxide anhydrous pellets (NaOH) in the presence of polyvinyl alcohol (PVA, Sigma-Aldrich) was used as starting precursor. The Cu doping concentration was varied from 0.1-0.5 W%. NaOH was added drop-wise to solution until pH became 11-12. The sonication of solution was performed by a Sonics Model VCX 750 until the completely precipitated product was reached. After it was cooled down to room temperature, the precipitates were washed with deionized water and centrifuged at 5,000 rpm for 5 min. The powders were washed several times until it became neutral. Finally, the as-precipitated powders were dried at 100°C for 12 h and calcined at different temperature range of 500-1000°C for 2 h. The corresponding diagram of synthesis processes is schematically illustrated in Figure 1.

The powder X-ray diffraction (XRD) patterns of the samples were measured by PANalytical diffractometer (X’Pert PRO MPD model pw 3040/60) using Cu K\textsubscript{α} (λ = 0.154 nm) irradiation at a scanning rate (2\textdegree) of 0.02° s-1 and a 2\textdegree range of 10-60° which operated at 40 kV and 30 mA. The morphology of the prepared samples was analyzed using scanning electron microscope (SEM, JEOL JSM-6510). Chemical bonding of the composites was characterized by Fourier transform infrared spectroscopy (FTIR) carried out in the range of 400-4,000 cm-1 in the transmittance mode.

Results and Discussion

The XRD patterns of 2% Cu-doped TiO\textsubscript{2} powders calcined at different temperatures for 2 h are shown in Figure 2. A noticeable diffraction peak positioned at 2\textdegree = 25.5°, which is observed on the spectra of as-synthesized products and the powders calcined at 500°C attribute to (101) orientation plane of anatase-TiO\textsubscript{2}. This result indicated that the as-synthesized powder in anatase phase of TiO\textsubscript{2} can be obtained by single step sonochemical process. The possible mechanism for the formation of TiO\textsubscript{2} by sonochemical process is proposed.

At the beginning, dissolved titanium isopropoxide in deionized water under sonication undergoes hydrolysis and condensation process to form hydrolyzed alcoxides, which have great amount of functional hydroxyl groups. Meanwhile, rapid collision driven by strong ultrasound energy can generate localized high temperature area, which can accelerate the condensation reactions of hydroxyl groups to produce the nucleation of fine spherical nanoparticles of TiO\textsubscript{2} (Yu et al. 2009). As the calcinations temperature elevates to 600°C, the main anatase peak is not detected but new distinct peaks are observed due to rapid phase transformation of TiO\textsubscript{2} at about 600°C (Xin et al. 2008). The XRD peak located at 24.7° is indexed to CuTiO\textsubscript{3} phase (Truaistaru et al. 2011), meanwhile the observable peaks at 44.6° and 48.9° are assigned to (210) and (200), respectively. The other two broad peaks at about 29.4° and 33.2° could be originated from the metastable oxide of Cu and Ti. These features imply the existence of bi-crystalline structure of TiO\textsubscript{2} and the compound oxide of Cu and Ti arises at this temperature.

![FIGURE 1. Flow chart of the sonochemical process](image-url)
As calcinations temperature increases from this point up to 1000°C, several prominent XRD patterns are detected. The characteristic peaks of CuTiO$_3$, CuO (Wang et al. 2009) and rutile-TiO$_2$ are well indexed by solid square, solid diamond and solid triangle, respectively, showing that the formation of crystalline CuO can be obtained after calcinations at higher temperature of 800-1000°C. Besides, all indexed XRD peak intensities drastically increase with increasing calcinations temperature, reflecting the better crystallization of the oxide compounds with grater grain size. The average crystallite size of nanopowders can be calculated from the full-width at half maximum (FWHM) by well-known Scherrer’s formula expressed as:

\[D = \frac{K \lambda}{\beta \cos \theta} \]

(1)

where \(D \) is the grain size, \(K \) is the shape factor, \(\lambda \) is the X-ray wavelength of Cu K$_\alpha$ (0.154 nm), \(\beta \) is the full-width at half maximum (FWHM) and \(\theta \) is the Bragg angle. The (101) peak is used for anatase as the temperature is below 600°C. Meanwhile, as the calcinations temperature is above 600°C, the strongest peak of CuTiO$_3$ was used for the calculation. The temperature-dependent grain size of Cu-doped TiO$_2$ synthesized by sonochemical-assisted route is illustrated in Figure 4.

By calculation, the smallest crystallite size of ~10 nm was obtained from as-synthesized product via sonochemical process of titanium (IV) isopropoxide in the base solution of pH 10-12 and drying at 100°C. At higher calcinations temperatures, the crystallites became larger in size, which can be attributed to the thermally promoted crystallite growth. The size of the anatase crystallites increases from 10 to 16.5 nm when the temperature is raised to 500°C. As the temperature elevates from 500-900°C, the grain size of the powder greatly increases to ~180 nm with increasing temperature and no further increment in grain size was noticed beyond 900°C. This critical feature may come from the better formation of CuO at this temperature range accompanying the increase in peak intensity of CuO at 800-1000°C that could quench the grain growth of CuTiO$_3$ phase. The same manner of decreasing crystal grain size at elevated temperature is agreeable to previous research work conducted by González-Reyes et.al (2010) who reported on the reduction in crystalline size of anatase-TiO$_2$ beyond 700°C due to phase transformation anatase-to-rutile. In this case, the CuTiO$_3$ phase shows quite different behavior in which the formation of Cu-Ti oxide phase is somewhat larger than that of anatase phase of TiO$_2$. XRD patterns of Cu-doped TiO$_2$ nanopowders with Cu doping contents of 2% and 3% prepared by sonochemical process and calcined at 900°C are represented in Figure 3. It can be seen that the characteristic peaks of CuTiO$_3$ and CuO become stronger and more intense with increasing Cu content, suggesting that Cu dopant could promote the better formation of Cu-based oxides.

The SEM images of 2% Cu-doped TiO$_2$ nanopowders calcined at different temperature are shown in Figure 5. It can be clearly seen that the microstructures of the powders are strongly affected by calcinations temperature. The image of as-synthesized powders as shown in Figure 5(a) is in irregular structure comprising small granular clusters. In temperature range of 500-600°C, the corresponding images disclose the agglomeration of the nanoparticles of the size less than 50 nm. These SEM results are in good
agreement with the results interpreted from XRD patterns. As temperature ascends to 800°C, the microstructure of the powders as seen in Figure 5(d) dramatically change and transforms to uniform rectangle rod-like structures with average length greater than 500 nm. Further increasing temperature results to the bigger size of rod-like structure and the formation of platelet shape structure as the temperature elevates to 1000°C. The SEM results of the samples calcined at high temperature coincidently affirm the phase transformation of Cu-TiO₂, which is in good agreement to XRD results.

FT-IR measurements of as-prepared powders, powders calcined at 600°C and 1000°C were carried out in the range of 400-4000 cm⁻¹ and the corresponding results are
shown in Figure 6. The chemical bonding of the powders was scrutinized by correlating the developed peaks in the spectrum to the vibration or stretching of various functional groups. The broad band situated at 3400 cm\(^{-1}\) and 1600 cm\(^{-1}\), which are observable in as-prepared powders, are attributed to the stretching and bending vibration of O-H group due to absorbed water molecules, respectively (Li et al. 2005). These two bands are not detected on the spectra of calcined powders due to dehydration during calcinations. The absorption band at 1380 cm\(^{-1}\), that is attributed to the existence of nitrate group can only be observed in as-synthesized sample, suggesting the complete removal of this functional group can be obtained after calcinations process. For the samples calcined at certain temperature, the appearance of new bands below 1000 cm\(^{-1}\) are observed. These bands are associated to the stretching mode of Cu-O and Ti-O (Wang et al. 2009; Yan et al. 2004).

Figure 7 shows the absorption spectra in the wavelength range of 200-700 nm of as-prepared Cu-doped TiO\(_2\) powders and the powders calcined at 500°C and 700°C for 2 h. It can be seen that the enhancement in optical absorption was indicated after the calcinations at high temperature. The strong absorption spectra in range of 200-300 nm with corresponding photon energy of 3.2 eV is due to typical bandgap of TiO\(_2\). Comparing to as-synthesized sample, the enhancement of absorption spectra in UV and the significant increase of red-shift toward the visible range from 300-700 nm occurred in the raising of temperature at 500°C and 700°C because of the coverage of CuO spectra in UV and visible region (Colon et al. 2006).

Figure 5. SEM images of (a) as-prepared Cu-doped TiO\(_2\), calcined at (b) 500°C, (c) 600°C, (d) 800°C, (e) 900°C and (f) 1000°C.
This result implies that the incorporation of Cu additive can effectively enhance the visible response of TiO$_2$.

CONCLUSION

In summary, Cu-doped TiO$_2$ nanopowders were prepared by sonochemical-assisted and calcinations process in temperature range of 500-1000°C. The characterizations of the powders were conducted and the results revealed that as-synthesized powders has an anatase phase of TiO$_2$. It was further acknowledged that the calcinations temperature and the incorporation of Cu dopant have strong influence on physical and optical properties of the powders. The obvious transformation of anatase to rutile phase and the existence of Cu-based oxide were initiated at around 600°C. Further increasing temperature can significantly ameliorate the crystallinity and grain size of all oxide compounds. Their optical absorption results suggested that Cu dopant could significantly improve the optical absorption properties of TiO$_2$.

FIGURE 6. The FTIR spectra of the 2% Cu-doped TiO$_2$ calcined at different temperatures

FIGURE 7. The absorption spectra of the 2% Cu-doped TiO$_2$ calcined at different temperatures
ACKNOWLEDGEMENTS

This work has been partially supported by the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network. Authors gratefully acknowledge the support from College of Nanotechnology, King Mongkut’s Institute of Technology Ladkrabang (KMITL) and Thai Microelectronics Center (TMEC). This work was financially supported by KMITL research fund.

REFERENCES

Narongdet Wongpisutpaisan*, Naratip Vittayakorn & Wisanu Pecharapa
College of Nanotechnology
King Mongkut’s Institute of Technology Ladkrabang
Chalongkrung Rd., Ladkrabang
Bangkok 10520
Thailand

Naratip Vittayakorn
Department of Chemistry
Faculty of Science
King Mongkut’s Institute of Technology Ladkrabang
Chalongkrung Rd., Ladkrabang
Bangkok 10520
Thailand

Anucha Ruangphanit
Thai Microelectronics Center
Wangtakien District, Amphur Muang
Chachoengsao, 24000
Thailand

Wisanu Pecharapa
ThEPCenter, CHE
328 Si Ayutthaya Rd.
Bangkok 10400
Thailand

*Corresponding author; email: narongdet.w@gmail.com

Received: 7 January 2012
Accepted: 21 May 2012