Peninsular Malaysia’s Negrito Orang Asli and Its Theory of African Origin
(Orang Asli Negrito di Semenanjung Malaysia dan Teori Asal Usul Afrika)

ENDOM ISMAIL*, FARAHNAZ AMINI, SHAIRAH ABDUL RAZAK, HUSNA MOHD ZAINI,
REZA FARHOUR & BIN ALWI ZILFAIL

ABSTRACT
Negritos of Peninsular Malaysia have physical features which strongly resemble the African pygmies rather than any of the other main South East Asian ethnic groups. In addition, their features are also completely different from the two other large sub-groups of the Peninsular Malaysia Orang Asli, i.e. Senoi and Proto-Malay. In this study, we genetically screened three African-specific markers, Glucose-6 Phosphate Dehydrogenase (G6PD) gene PvuII Type 2 polymorphism and A- mutation; and Sickle Cell trait in 103 unrelated individuals with G6PD deficiency. None of the Negritos’ samples carried A- and Sickle cell mutations but all males and females have the PvuII Type 2 polymorphism. The same results were seen in all DNA samples of the Malaysian’s Malay, Chinese and Indians. Additionally, all females in this study were homozygous for PvuII Type 2 polymorphism. Thus, we concluded that this polymorphism is widespread in all Malaysian population and is not unique to just Africans. However, these findings indicated that the polymorphism was widely conserved and can be used to study the African descendant in any world population hitherto supporting the ‘Out of Africa’ theory.

Keywords: G6PD; Malaysia; Negrito; Orang Asli

INTRODUCTION
Various studies conducted on Glucose-6 phosphate dehydrogenase (G6PD) deficiency and hemoglobinopathies involving the molecular mutational analysis have provided valuable information on the characterisation of a population’s specific pattern of common mutation (Beutler & Vulliamy 2002). Thus, the distribution of common mutation is always used to predict population admixture and genetic diversity for any isolated populations (Balgir 2010). Normal activity of G6PD enzyme plays a role as a provider of NADPH in red blood cells and detoxification of any harmful oxidative components from human circulation. Additionally, normal hemoglobin is vital to ensure a healthy function of human organs. Most importantly, previous studies have shown a parallel association between malaria with G6PD deficiency and Sickle cell trait in human survival, resulting in a similar world distribution of malaria with G6PD deficiency and sickle cell condition. Recently, the role of polymorphisms such as single nucleotide polymorphism (SNP) has been reported. Collaborative work between scientists in Asia through the Pan-Asia Single Nucleotide Polymorphism Initiative (PASNPI) have reported on the human migration pattern from Africa into Asia (Abdulla et al. 2009), suggesting that South East Asia (SEA) as the entry point into Asia. Negritos, being an isolated population in SEA, could have been the remnant of the original population that first migrated into Asia.

Peninsular Malaysia Orang Asli represents a small proportion (0.5%) of the Malaysian populations (Figure 1). As one of the three sub-tribes of Orang Asli, Negritos
are easily recognisable by their black wooly hair, dark skin, short stature, rounded face and wide nose that largely resemble the people in Papua New Guinea, Australian or African aborigines in general. However, documented evidence from research studies to support Negrito as a branch origin of Africans is still unavailable. They are concentrated in just a few villages. Besides Jahai and Bateq; Kensiu, Kintak, Lanoh and Mendriq can nowadays be found in one village. The shy, endogamous and traditionally lived Negrito can be found in remote location such as the deeply isolated jungles of Perak and Kelantan (Amini et al. 2011). Only Kensiu sub-ethnic group lived near the main road not far from a popular hot spring recreational spot in Baling, Kedah. Overall, the population suffers recurrent malaria endemics and blood screening is done frequently for the past three decades.

PvuII Type 2 is a single nucleotide polymorphism (SNP) positioned at 612nt in intron V or at 13017nt, 60bp downstream of exon 6 of G6PD gene with C allele presentation. G allele presentation is likewise called the PvuII Type 1. Two reports were published in Human Genetics journal. Firstly, Fey et al. (1990) declared that PvuII Type 2 polymorphism belongs to African originated population present in 0.32-0.40 percent of X chromosomes of Kenyans, Nigerians, Zambians and West Indians but not found in the British, Filipino, Icelandar and Saudi populations. Secondly, Beutler and Kuhl (1990) found PvuII Type 2 in 26 of the 43 males of various races or ethnic origins such as Africans, Puerto Ricans, Mexican, US Caucasians and Spanish. In their study, strong linkage disequilibrium was shown by PvuII Type 2 with G6PD deficient males carrying A- mutation of 202A/376G haplotype. Beutler et al. (1991) later concluded that A- is an ancient source from Africa. Since then, many researchers used PvuII Type 2 as a marker for confirming African origin in the respective populations (Coetzee et al. 1992; Manco et al. 2007; Saad et al. 1997). Both A- and PvuII Type 2 were not reported in any Asian population except by Nuchprayoon et al. (2008) in one G6PD-deficient individual, but only as novel mutation not polymorphism (94 C to G).

Sickle cell trait is a genetic condition caused by a single mutation or single nucleotide polymorphism (SNP) causing a replacement of glutamic acid with valine at position 70614 in beta globin gene. This change will cause the production of unstable hemoglobin easily seen as a sickle red blood cell in blood smear. Thus, sickle red blood cell will affect the body supply of oxygen into organs and tissues.

Due to the lack of molecular information on the origin of Negritos and their close resemblance to Africans, as well as the contribution of genetic discoveries to a better health care delivery and minimization of any disparities between minority populations (Meilleur et al. 2011), we conducted this study to identify any possible relationship between the two populations using African-specific G6PD mutations.

MATERIALS AND METHODS

Population screening was performed on 600 Negritos in three states of Malaysia including Kedah, Kelantan and Perak from November 2005 until August 2009. The Negrito samples were collected from five of its six sub-ethnicities due to high sub-group marriages in Mendriq. Samples from the Malaysian Malay, Chinese and Indian were collected and went through the same procedure as Negritos. At least, a three-generation pedigree is obtained to be sure that there are no mixed marriages. Informed consent was obtained.
and 5-10 mL of whole blood was taken for molecular analysis. Fluorescent spot test and quantitative analysis were performed for G6PD screening purposes. DNA was extracted from blood using Salting out method (Miller & Dykes 1988). Peripheral DNA from 189 individuals is kept in our collection. A total of 103 DNA samples of unrelated G6PD deficient Negritos, Malay, Chinese and Indian were screened for A- and Sickle cell mutation as well as PvUI Type 2 polymorphism. This study was approved by the Ethics Committee, Universiti Kebangsaan Malaysia Medical Centre (UKMMC - FF-200-2008).

RESULTS AND DISCUSSION

Out of the 600 subjects that were screened, 68 individuals were identified as deficient (no fluorescent) by qualitative analysis (40 males and 31 females), showing a prevalence of 11.8% (Figure 2 and Table 1). However, quantitative analysis of G6PD enzyme activity found 46.6% of the population is deficient (Table 2).

We believed inbreeding plus malaria epidemic have caused a high concentration of recessive G6PD alleles in Orang Asli genomic pool compared to the main races i.e. Malay, Chinese and Indian. The prevalence ranged from 4.9% to 3% (Ainoon et al. 1999, 2003, 2004). This is the highest prevalence ever reported in comparison to other Southeast Asian countries (Table 3). However, A- and Sickle cell mutation was absent in all the studied populations. On the other hand, PvUI Type 2 polymorphism was detected in all samples regardless of G6PD level (Figure 3).

It is believed, unreported PvuII Type 2 polymorphism in Asia is probably caused by its non-involvement in G6PD deficient phenotype and its intronic location. Therefore, we suspected that almost all Asian population will carry

![Figure 2. Normal RBC containing G6PD showed bright fluorescence (c) and deficient RBC lacking G6PD or less G6PD showed weak (b) or no fluorescence (d). One negative control (water) was run with each set of samples (a)]](image)

<table>
<thead>
<tr>
<th>Sub-tribe</th>
<th>No. of study population</th>
<th>Deficient male/ overall male (Prevalence %)</th>
<th>Deficient female/overall female (Prevalence %)</th>
<th>Total deficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bateq</td>
<td>67</td>
<td>8/44 (18.2)</td>
<td>2/23 (8.7)</td>
<td>10/67 (14.9)</td>
</tr>
<tr>
<td>Jahai</td>
<td>170</td>
<td>4/71 (5.6)</td>
<td>2/99 (2.0)</td>
<td>6/170 (3.5)</td>
</tr>
<tr>
<td>Kensiu</td>
<td>118</td>
<td>0/62 (0)</td>
<td>0/56 (0)</td>
<td>0/118 (0)</td>
</tr>
<tr>
<td>Kintak</td>
<td>81</td>
<td>12/44 (27.3)</td>
<td>13/37 (35.1)</td>
<td>25/81 (30.8)</td>
</tr>
<tr>
<td>Lanoh</td>
<td>164</td>
<td>16/80 (20.0)</td>
<td>14/84 (17.0)</td>
<td>30/164 (18.3)</td>
</tr>
<tr>
<td>Total</td>
<td>600</td>
<td>40/300 (13.3)</td>
<td>31/300 (10.3)</td>
<td>71/600 (11.8)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sub-tribe</th>
<th>No. of family (males+females)</th>
<th>No. of males with low activity</th>
<th>No. of females with low activity</th>
<th>Total deficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bateq</td>
<td>22 (11+11)</td>
<td>6</td>
<td>10</td>
<td>16 (72%)</td>
</tr>
<tr>
<td>Kintak</td>
<td>22 (10+12)</td>
<td>4</td>
<td>6</td>
<td>10 (45.5%)</td>
</tr>
<tr>
<td>Jahai</td>
<td>28 (12+16)</td>
<td>4</td>
<td>5</td>
<td>9 (32.1%)</td>
</tr>
<tr>
<td>Lanoh</td>
<td>31 (15+16)</td>
<td>3</td>
<td>10</td>
<td>13 (41.9%)</td>
</tr>
<tr>
<td>Total</td>
<td>103 (48+55)</td>
<td>17</td>
<td>31</td>
<td>48 (46.6%)</td>
</tr>
</tbody>
</table>
this polymorphism. If PvuII Type 2 was indeed a specific marker to reflect an African origin and the theory of East African migration of *Homo sapiens* is true, our findings have shown PvuII Type 2 as conserved African originated marker. Since Tishkoff et al. (2001) dated A- as a young mutation aged between 3840 and 11760 years ago and Shi et al. (2005) concluded that South East Asian is inhabited in the last 25000-30000 years based on O3-M122 lineages, the absence of A- in Negrito is another prove on how recent this mutation is.

Based on similar endemicity of malaria as well as high hemoglobinopathies in Africa (sickle cell anemia) and in Negrito (G6PD deficiency), PvuII Type 2 could probably be the ancient polymorphism selected upon by its advantages in the fight of human towards the malaria parasite and later on retained in Negrito (Denic & Nicholls 2007). Therefore, people with African-origin living in countries or area not exposed to high risk of malaria could lose the PvuII Type 2 site due to its selective advantage and become insignificant survival factor as shown by Kay et al. (1992) whereby genotyping on 54 male African-Americans failed to find any PvuII Type 2 polymorphism with G6PD A (+) 376G, G6PD A(-)202A/376G and G6PD B genotypes.

TABLE 3. Prevalence of G6PD deficiency in Southeast Asian countries compared with Malaysian Negritos

<table>
<thead>
<tr>
<th>Country</th>
<th>Overall G6PD deficiency (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaysia (Negrito)</td>
<td>46.6</td>
<td>Present Study</td>
</tr>
<tr>
<td>Cambodia</td>
<td>13.4</td>
<td>(Louicharoen & Nuchprayoon 2005)</td>
</tr>
<tr>
<td>Vietnam (South)</td>
<td>11.3</td>
<td>(Hue et al. 2009)</td>
</tr>
<tr>
<td>Myanmar</td>
<td>11.0</td>
<td>(Matsuoka et al. 2004)</td>
</tr>
<tr>
<td>Laos</td>
<td>7.1</td>
<td>(Iwai et al. 2001)</td>
</tr>
<tr>
<td>Thailand</td>
<td>3 – 15.0</td>
<td>(Nuchprayoon et al. 2002; Poon et al. 1988)</td>
</tr>
<tr>
<td>Indonesia</td>
<td>4.0</td>
<td>(Matsuoka et al. 2003)</td>
</tr>
<tr>
<td>Malaysia (Malay, Chinese, Indians)</td>
<td>3.4</td>
<td>(Ainoon et al. 2002)</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>3.0</td>
<td>(Chockcalingam & Board 1980)</td>
</tr>
<tr>
<td>Philippines</td>
<td>3.9</td>
<td>(Padilla et al. 2003)</td>
</tr>
<tr>
<td>Singapore</td>
<td>1.6</td>
<td>(Joseph et al. 1999)</td>
</tr>
</tbody>
</table>

FIGURE 3. Restricted digestion of 155 bp amplified product of G6PD gene using PvuII. Lanes 1, 2, 3, 4, 5, 6 and 7 showing bands 105 and 45 bp. Lane 8: 100 bp DNA ladder

CONCLUSION

We concluded that the existence of PvuII Type 2 polymorphism in all Malaysians (Negritos Orang Asli, Malay, Chinese and Indian) supported the African origin of all races. This polymorphism is preserved and inherited from their African ancestor probably due to its survival advantage against malaria parasite in their endemic region. Being an old marker, the PvuII Type 2 polymorphism is also suitable for tracing the African origin plus malaria history in other world populations.

ACKNOWLEDGEMENTS

This study was approved under the project number FF-200-2008 given by UKM ethics committee that lasted on May 2010. We would like to thank MOSTI for the financial support under ScienceFund grant 02-01-02-SF0316 and to all generous FST, UKM staffs for donating clothes and other items to the Orang Asli. Our utmost appreciation goes to JHEOA officers and all Negritos’ Orang Asli involved in this study especially their ‘Tok Batin’ and ‘Tok Penghulu’.
REFERENCES

Endom Ismail*, Farahnaz Amini, Shairah Abdul Razak & Husna Mohd Zaini
School of Bioscience and Biotechnology
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
43600 Bangi, Selangor D.E.
Malaysia

Bin Alwi Zilfalil
School of Medical Sciences
Universiti Sains Malaysia
16150 Kubang Kerian, Kelantan
Malaysia

Reza Farhour
Saint James School of Medicine
Albert Lake Drive
The Quarter, A-1 2640
Anguilla

*Corresponding author; email: eismail@ukm.my

Received: 24 August 2012
Accepted: 4 December 2012