Orderings a Class of Unicyclic Graphs with Respect to Hosoya and Merrifield-Simmons Index

(Tertib Kelas Graf Unisiklik Indeks Hosoya dan Merrifield-Simmons)

WANG YAN-FENG* & MA NING

ABSTRACT

Hosoya and Merrifield-Simmons index were the two valuable topological indices in chemical graph theory. The Hosoya and Merrifield-Simmons index of the class of unicyclic graphs \(G(k) \) were investigated, according to the distance between \(u \) and \(v \) on \(C_n \), their orderings with respect to these two topological indices were obtained.

Keywords: Hosoya index; Merrifield-Simmons index; ordering; unicyclic graph

INTRODUCTION

The Hosoya index of a graph was introduced by Hosoya in 1971 and was applied to correlations with boiling points, entropies, calculated bond orders, as well as for coding of chemical structures, denoted by \(\mu(G) \), \(\mu(G) \) is equal to the total number of matchings of \(G \). The Merrifield-Simmons index was first introduced by Prodinger and Tichy in 1982 and this index is called Fibonacci number of a graph there, denoted by \(\sigma(G) \), \(\sigma(G) \) is equal to the total number of the independent sets of \(G \). The Merrifield-Simmons index is one of most popular topological indices in chemistry, which was extensively studied in a monograph (Merrifield & Simmons 1989). Merrifield and Simmons showed the correlation between this index and boiling points. For detailed information on the chemical applications, please refer to Gutman and Polansky 1986, Merrifield and Simmons 1989 and Trinajstic 1992). Several papers deal with the characterization of the extremal graphs with respect to these two indices in several given graph classes. Usually, acyclic graphs, unicyclic graphs and trees are of major interest (Wagner et al. 2007; Yali et al. 2008; Zheng et al. 2008; Ziwen et al. 2011). In this paper, we determined a class of unicyclic graphs \(G(k) \) and also obtain the ordering of Hosoya index and Merrifield-Simmons index on the unicyclic graphs.

Let \(G = (V,E) \) be a graph with the vertex set \(V(G) \) and edge set \(E(G) \). If \(W \subseteq V(G) \), we denote by \(G - W \) the subgraph of \(G \) obtained by deleting the vertices of \(W \) and the edges incident with them. Similarly, if \(E \subseteq E(G) \), we denote by \(G - E \) the subgraph of \(G \) obtained by deleting the edges of \(E \). If \(W = \{v\} \) and \(E = \{uv\} \), we write \(G - v \) and \(G - uv \) instead of \(G - \{v\} \) and \(G - \{uv\} \), respectively, \(N_G(v) \) denotes the set of vertices in \(G \) which are adjacent to the vertex \(v \) and let \(N_G[v] = \{v\} \cup N_G(v) \). We denote by \(P_n \) and \(C_n \) the path and the cycle on \(n \) vertices, respectively. We denote the sequence of Fibonacci numbers by \(f_n \), i.e. \(f_0 = 0 \), \(f_1 = 1 \) and \(f_{n+1} = f_n + f_{n-1} \) for \(n \geq 1 \). \(f_n \) is extended to negative values of \(n \) via Bennet’s formula \(f_n = \frac{1}{\sqrt{5}} \left(\phi^n - (-\phi)^{-n} \right) \), where \(\phi = \frac{1+\sqrt{5}}{2} \). Analogously, the Lucas numbers are denoted by \(l_n \), i.e. \(l_0 = 2 \), \(l_1 = 1 \), \(l_{n+1} = l_n + l_{n-1} \) and \(l_n = \phi^n + (-\phi)^{-n} \), for \(n \geq 1 \). Therefore, for \(n \geq 1 \), we have \(f_{n+1} + f_{n-1} = l_n \) and \(f_{n-1} \). Other undefined notation may refer to Bondy and Murty 1976 and Ser et al. 2014.

\(G(k) \) represents a class of unicyclic graphs consisting of a ring of \(C_n \) and two \(n \) order road \(P_n \), two contact among the two road and \(C_n \), respectively, for \(u \) and \(v \) and \(d(u,v) = k \) (Figure 1).

METHODS

According to the definitions of the Merrifield-Simmons index and Hosoya index, we immediately get the following results.

Lemma 1 Let \(G \) be a simple graph and \(v \in V(G), uv \in E(G) \) (Prodinger & Tichy 1982) then

(i) \(\mu(G) = \mu(G - uv) + \mu(G - u - v) \);

(ii) \(\mu(G) = \mu(G - v) + \sum_{x \in N_G(v)} \mu(G - \{v,x\}) \).

Kata kunci: Graf unisiklik; indeks Hosoya; indeks Merrifield-Simmons; tertib

* Corresponding author. E-mail: wangyanfeng9489@163.com
Lemma 2 Let G be a simple graph and $u, v \in V(G), uv \in E(G)$ (Prodinger & Tichy 1982) then

(i) $\sigma(G) = \sigma(G - v) + \sigma(G - N_v[u])$;

(ii) $\sigma(G) = \sigma(G - uv) - \sigma(G - (N_v[u] \cup N_u[v]))$.

Lemma 3 If G_1, G_2, \ldots, G_n are the components of a graph G (Prodinger & Tichy 1982) we have

(i) $\mu(G) = \prod_{i=1}^{n} \mu(G_i)$;

(ii) $\sigma(G) = \prod_{i=1}^{n} \sigma(G_i)$.

Lemma 4 $\mu(P_n) = f_{n+1}$ and $\sigma(P_n) = f_{2n+2}$ for any $n \in \mathbb{N}$ (Prodinger & Tichy 1982).

Lemma 5 $\mu(C_n) = f_{n+1} + f_{2n}$ and $\sigma(C_n) = f_{n+1} + f_{2n-1}$ for any $n \geq 3$ (Prodinger & Tichy 1982).

Lemma 6 For any $m \geq n$, we have $f_m f_n = \frac{1}{5} (l_{m+n} - (-1)^n l_{m-n})$ (Wagner 2007).

RESULTS AND DISCUSSION

Theorem 1 Let $G(k)$ be the graph shown in Figure 1, where $1 \leq k \leq \lfloor \frac{m}{2} \rfloor$ then

$$\mu(G(1)) > \mu(G(3)) > \ldots > \mu(G(\lfloor \frac{m}{2} \rfloor)) > \ldots > \mu(G(4)) > \mu(G(2)).$$

Proof. By Lemma 1(i), Lemma 3, Lemma 4 and Lemma 5, we have $\mu(G(k)) = \mu(G(k) - u a_i) + \mu(G(k) - u - a_i) = \mu(G(k)) = u a_i - v b_j + \mu(G(k) - u a_i - v - b_j) + \mu(G(k) - u - a_i - v - b_j) = (f_{m+1} + f_{m-1}) f_{m} + 2 f_{m} f_{m+1} + f_{m+2} f_{m+1}.$

Analogously, we have

$$\mu(G(k+1)) = (f_{m+1} + f_{m-1}) f_{m} + 2 f_{m} f_{m+1} + f_{m+2} f_{m+1} + f_{m+2} f_{m+1} f_{m+1}$$

$$\mu(G(k+2)) = (f_{m+1} + f_{m-1}) f_{m} + 2 f_{m} f_{m+1} + f_{m+2} f_{m+1} + f_{m+2} f_{m+2}.$$

It is easy to see

$$\mu(G(k)) - \mu(G(k+1)) = f_{m+1} f_{m+4} + f_{m+4} f_{m+1} + f_{m+4} f_{m+4}$$

$$\mu(G(k)) - \mu(G(k+2)) = f_{m+1} f_{m+4} - f_{m+4} f_{m+2}.$$

By Lemma 6, we have

$$f_{m+4} f_{m+1} - f_{m+4} f_{m+2} = \frac{1}{5} (-1)^{i+1} (l_{m+2k} + l_{m-2k}) = (-1)^{i+1} f_{m+2k}$$

$$f_{m+4} f_{m+1} - f_{m+4} f_{m+2} = \frac{1}{5} (-1)^{i+1} (l_{m-2k} - l_{m+2k}) = (-1)^{i+1} f_{m-2k}.$$

Hence, we have

$$\mu(G(k)) - \mu(G(k+1)) = (-1)^{i+1} f_{m+2k}$$

and

$$\mu(G(k)) - \mu(G(k+2)) = (-1)^{i+1} f_{m-2k}.$$

Then if $k = 0 \pmod{2}$, $\mu(G(k)) < \mu(G(k+1))$, and $\mu(G(k)) < \mu(G(k+2))$; if $k = 1 \pmod{2}$, $\mu(G(k+1))$, and $\mu(G(k)) > \mu(G(k+2))$. Therefore,

$$\mu(G(1)) > \mu(G(3)) > \ldots > \mu(G(\lfloor \frac{m}{2} \rfloor)) > \ldots > \mu(G(4)) > \mu(G(2)).$$

This completes the proof of Theorem 1.

Theorem 2 Let $G(k)$ be the graph shown in Figure 1, where $1 \leq k \leq \lfloor \frac{m}{2} \rfloor$ then

$$\sigma(G(1)) < \sigma(G(3)) < \ldots < \sigma(G(\lfloor \frac{m}{2} \rfloor)) < \ldots < \sigma(G(4)) < \sigma(G(2)).$$

Proof. By Lemma 1(ii), Lemma 3, Lemma 4 and Lemma 5, we have $\sigma(G(k)) = \sigma(G(k) - u a_i) + \sigma(G(k) - N_{G(k)}[u]) = \sigma(G(k) - u - v) + \sigma(G(k) - N_{G(k)}[u] - N_{G(k)}[u] + \sigma(G(k)) = \sigma(G(k) - N_{G(k)}[u] - N_{G(k)}[u] + \sigma(G(k)).$

$$= f_{m+2} f_{m+1} + f_{m+4} f_{m+4} f_{m+2} f_{m+2}$$

$$= f_{m+2} f_{m+1} + 2 f_{m+4} f_{m+2} f_{m+2}.$$
It is easy to see
\[\sigma(G(k + 1)) - \sigma(G(k + 1)) = f^2_{m-2}f_{m-4} - f^2_{m-1}f_{m-3} \]
and
\[\sigma(G(k)) - \sigma(G(k + 2)) = f^2_{m-2}f_{m-4} - f^2_{m-1}f_{m-3} \]

By Lemma 6, we have
\[f_{m+1} - f_{m+2} = \frac{1}{5}(-1)^{m+1} \left[(l_{m+1} - l_{m+2}) - (-1)^{m+1}f_{m+1} \right] \]

Hence, we have
\[\sigma(G(k)) - \sigma(G(k + 1)) = (-1)^{k+1}f^2_{m+1}f_{m-k+1} + (-1)^{k+1}f^2_{m+1}f_{m-k+1} \]
\[= (-1)^{k+1}f^2_{m+1}f_{m-k+1} \]

and
\[\sigma(G(k)) - \sigma(G(k + 2)) = (-1)^{k+1}f^2_{m+1}f_{m-k+2} + (-1)^{k+1}f^2_{m+1}f_{m-k+2} \]

Then if \(k \equiv 0 \pmod{2} \), \(\sigma(G(k)) > \sigma(G(k + 1)) \) and \(\sigma(G(k)) < \sigma(G(k + 2)) \); if \(k \equiv 1 \pmod{2} \), \(\sigma(G(k)) < \sigma(G(k + 1)) \), and \(\sigma(G(k)) < \sigma(G(k + 2)) \).

Therefore,
\[\sigma(G(1)) < \sigma(G(3)) < \ldots < \sigma(G(\frac{m}{2})) < \ldots < \sigma(G(4)) < \sigma(G(2)). \]

CONCLUSION

This completes the proof of Theorem 2.

ACKNOWLEDGEMENTS

This research was financially supported by the Northwest University for Nationalities the Fundamental Research Funds for the Central Universities (Grant NO. 31920140059) and the Fundamental Research Funds for the Central Universities Designated for Graduate Students (Grant NO. Yxm20150165016).

REFERENCES

