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Differential Transformation Method (DTM) for Solving SIS and SI Epidemic Models
(Kaedah Transformasi Pembezaan (DTM) untuk Menyelesaikan Model Epidemik SIS dan SI)

M.Z. AHMAD*, D. ALSARAYREH, A. ALSARAYREH & I. QARALLEH 

ABSTRACT

In this paper, the differential transformation method (DTM) is employed to find the semi-analytical solutions of SIS and SI 
epidemic models for constant population. Firstly, the theoretical background of DTM is studied and followed by constructing 
the solutions of SIS and SI epidemic models. Furthermore, the convergence analysis of DTM is proven by proposing two 
theorems. Finally, numerical computations are made and compared with the exact solutions. From the numerical results, 
the solutions produced by DTM approach the exact solutions which agreed with the proposed theorems. It can be seen that 
the DTM is an alternative technique to be considered in solving many practical problems involving differential equations. 
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ABSTRAK

Dalam kajian ini, kaedah transformasi pembezaan (DTM) telah digunakan untuk mencari penyelesaian separuh-analisis 
bagi model epidemik SIS dan SI untuk populasi malar. Pertama, latar belakang teori DTM telah dikaji dan diikuti dengan 
membina penyelesaian bagi model epidemik SIS dan SI. Selain itu, analisis konvergensi DTM telah dibuktikan melalui 
cadangan dua teorem. Akhir sekali, pengiraan berangka dibuat dan dibandingkan dengan penyelesaian tepat. Daripada 
keputusan berangka, penyelesaian yang diperoleh melalui DTM adalah hampir sama dengan penyelesaian tepat yang 
bersetuju dengan teorem yang dicadangkan. Boleh dikatakan bahawa DTM adalah satu teknik alternatif yang boleh 
dipertimbangkan untuk menyelesaikan banyak masalah praktikal yang melibatkan persamaan pembezaan.

Kata kunci: Kaedah transformasi pembezaan (DTM); model SIS; model SI; penyelesaian tepat; penyelesaian separuh-
analitik

INTRODUCTION

There are many methods to solve differential equations. 
One of them is the Taylor series. The Taylor series, 
however, requires huge effort in order to find the derivatives 
of function. Moreover, it is very complicated to find the 
higher order derivatives of function. Due to these reasons, 
Zhou (1986) had proposed a new form of the Taylor series 
called the differential transformation method (DTM) and 
applied it to solve mathematical problems in electrical 
circuit analysis. The idea of the DTM is to determine the 
coefficients of the Taylor series of a function by solving 
the induced recursive equation from the given differential 
equation. 
 The emergence of DTM has motivated many researchers 
to solve different types of differential equation. Chen and 
Ho (1996) had used it to construct the solution of partial 
differential equations while Jang and Chen (1997) had 
used the DTM to solve initial and boundary value problems. 
Later, Chen and Liu (1998) had employed this method to 
find the solution of two point boundary value problems. 
Next, Ayaz (2004) had constructed the solution of system 
of differential equations using DTM. In 2005, Abbasov and 
Bahadir (2005) had obtained semi-analytical solutions of 
linear and non-linear problems in engineering using the 
DTM. Hassan and Ertürk (2007) had used DTM to solve an 

elliptic partial differential equation. Later, Hassan (2008) 
had used this method to solve linear and non-linear system 
of differential equations. Due to its popularity in solving 
various types of equation, many authors had used the DTM 
to solve difference equations (Arikoglu & Ozkol 2006), 
fractional differential equations (Arikoglu & Ozkol 2007; 
Momani et al. 2008), volterra integral equations (Odibat 
2008; Tari et al. 2009), integro-differential equations of 
fractional order (Nazari & Shahmorad 2010), Burgers 
and Schrödinger equations (Abazari & Borhanifar 2010; 
Borhanifar & Abazari 2011), fractional chaotic dynamical 
systems (Alomari 2011) and partial differential equations 
of order four (Soltanalizadeh & Branch 2012). These 
contributions showed that the DTM is widely used to solve 
many types of differential equation as stated. 
 In finding the solutions of SIS and SIR epidemic models 
(Kermack & McKendrick 1927), many studies have been 
attempted. Nucci and Leach (2004) had used Lie group 
to present the explicit solution of SIS epidemic model 
while Khan et al. (2009) had solved SIS and SIR epidemic 
models by means of homotopy analysis method (HAM). 
Later, Shabir et al. (2010) had proposed exact solutions 
of SIR and SIS epidemic models. In 2013, Abubakar et al. 
had obtained approximate solution of SIR model using 
homotopy perturbation method (HPM). Many efforts have 
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been given to solve the SIS and SIR epidemic models by 
several researchers (Jing & Zhu 2005; Korobeinikov & 
Wake 2002; Pietro 2007; Yicang & Liu 2003; Zhien et al. 
2003). 
 Certain epidemiology models have been solved by 
DTM (Akinboro et al. 2014; Batiha & Batiha 2011). Batiha 
and Batiha (2011) considered the numerical solution of 
SIR model without vital dynamics using DTM, meanwhile 
Akinboro et al. (2014) considered the numerical solution of 
SIR model with vital dynamics using DTM. However, to the 
best of our knowledge, SIS model without vital dynamics 
and SI model with vital dynamics are not solved by DTM yet. 
Therefore, this paper focused on finding semi-analytical 
solutions of the SIS model without vital dynamics and SI 
model with vital dynamics using DTM.
 This paper is organized in the following sequence. 
Next, some basic definitions and fundamental properties 
of the DTM are introduced, followed by constructing semi-
analytical solutions of the SIS model without vital dynamics 
and SI model with vital dynamics using DTM. Convergence 
analysis of DTM is provided in the following section for 
both models. After that, numerical examples are given to 
show the usability of the DTM and finally in the last section, 
some conclusions are drawn.

BASIC DEFINITIONS

The DTM is developed based on the Taylor series expansion. 
This method constructs an analytical or semi-analytical 
solution in the form of polynomial. The following basic 
definitions and fundamental properties are adopted from 
Hasan (2008).

Definition 2.1 A Taylor polynomial of degree is defined 
as follows: 

  (1)

Theorem 2.1 Suppose that the function f has (n+1)  
derivatives on the interval (c – r, c + r), for some r > 0 and 

, for all  where Rn(x) is the error between pn(x) 
and the approximated function f(x), then the Taylor series 
expanded about x = c converges to f(x) that is:

  (2)

for all x ∈ (c – r, c + r).

Definition 2.2 The differential transformation of the 
function f(x) for the k-th derivative is defined as follows: 

  (3)

where f(x) is the original function and F(k) is the 
transformed function.

Definition 2.3 The inverse differential transformation of 
F(k) is defined as follows: 

  (4)

Substituting (3) into (4) yields:

  (5)

 Note that, this is the Taylor series of  f(x) at x = x0. The 
basic operations of DTM can be deduced from (4) and (5) 
as listed in Table 1.

SIS AND SI EPIDEMIC MODELS

SOLUTION OF SIS MODEL WITHOUT VITAL 
DYNAMICS USING DTM

SIS model without vital dynamics returns the infective to the 
susceptible class on recovery because the diseases confer 
no immunity against reinfection. The SIS model without 
vital dynamics is as follows (Shabbir et al. 2010):

  (6)

subject to initial conditions: 

 i(0) = I0, s(0) = S0,  (7) 

where s is the susceptible fraction of the population; i is 
the infected fraction of the population; r is the infectivity 
coefficient; and α is the recovery coefficient, while I0 > 0, 
r > 0, α > 0, S0 > 0.
 By applying the DTM to (6), we obtained the following 
recurrence relations:  

  (8)  

 

  (9)

From (8) and (9) with initial conditions (7), we have:

 S(0) = S0, I(0) = I0.

k = 0,

 S(1) = αI0 – rI0S0, I(1) = –αI0 + rI0S0

k = 1,
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k = 2,

We define the general solution of SIS model as follows:

  (10)

 
  (11)

 

 In this manner,  s(t) and i(t) for k ≥ 2 can be easily 
obtained. Therefore, from (10) and (11), the first four terms 
of the series solutions are as follows:

Theorem 3.1 Suppose that s(t) and i(t) are the exact 
solutions of the SIS model given by (6) and (7). Let sn(t) 
and  in(t) be the numerical solutions of order n by DTM, then

 .  (12)

Proof  The SIS model given by (6) is as follows:

 

subject to the initial conditions given by (7):

 s(0) = S0,  i(0) = I0, 

where I0 > 0, and S0 > 0. If we add the first equation to the 
second equation in (6) we get:

  (13)

TABLE 1. The fundamental operations of DTM (Batiha & Batiha 2011)

Original functions Transformed functions

y(x) = u(x) ± m(x) Y(k) = U(k) ± M(k)

y(x) = αm(x) Y(k) = αM(k)

Y(k) = (k + 1) U (k + 1)

Y(k) = (k + 1) (k + 2) U (k + 2)

Y(k) = (k + 1) (k + 2) K (k + n) U (k + n)

y(x) = 1 Y (k) = δ(k)

y(x) = x Y(k) = δ(k –1)

y(x) = xm

y(x) = g(x) h(x)

y(x) = eλx

y(x) = (1 + x)m
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By the linearity property, (13) can be written as: 

  (14)

On integrating both sides of (14), we get:

 s(t) + i(t) = A,

where A is arbitrary constant. By the initial conditions at  
t = 0, then s(0) + i(0) = A; S0 + I0 = A. In other words, we 
have s(t) + i(t) = A, and S0 + I0 = A. The numerical solutions 
(of order n by DTM) of the SIS model are:

 

 
 
 Now we want to show that  [(sn(t) + in(t)) – (s(t) + 
i(t))] = 0. From the L.H.S of (12):

  

 

 
 

 

 

From (8) and (9), we know that: 

 

 

If we replaced k+1 by k in (8) and (9), we obtained

 

 

 We can easily see that S(k) + I(k) = 0, for all k = 1, …, 
n . Therefore, we have 

 

 = [A + 0 – A] = 0.     
     
The proof is complete. 

From Theorem 3.1, we can see that the numerical solution 
(sn(t) + in(t)) by DTM converges to the exact solution  (s(t) 
+ i(t)) when n approaches infinity.

SOLUTION OF SI MODEL WITH VITAL DYNAMICS 
USING DTM

Considered the SI model as follows (Shabbir et al. 2010):

  (15)

subject to initial conditions, 

 s(0) = S0, i(0) = I0,  (16)

where β is the infectivity coefficient; μ is the death rate 
constant, for β, S0, I0 ; and  μ are positive constant.
 By applying the DTM to (15), we obtained the 
following recurrence relations:

 
 (17)

  (18)

 From the (17) and (18) with the initial conditions (16), 
we have:

 S(0) = S0, I(0) = I0
 

k = 0,

 S(1) = μ – μS0 – βI0S0, I(1) = – μI0 + βI0S0.

k = 1, 
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k = 2,

 
 

 We defined the general solutions of SI model by DTM 
as follows:

   (19) 

  (20) 

 
 In this manner,  and  for  can be easily obtained. 
Therefore, from (19) and (20), the first four terms of the 
series solutions are as follows: 

Theorem 3.2 Suppose that s(t) and i(t) are the exact 
solutions of the SI model given by (15) and (16). Let sn(t) 
and in(t) be the numerical solutions of order n by DTM, then

 .  (21)

Proof The SI model given by (15) is as follows:

 

subject to the initial conditions given by (16):

 s(0) = S0, i(0) = I0, 

where I0 > 0 and S0 > 0. If we add the first equation to the 
second equation in (15) we get:

 s'(t) + i'(t) = –μ(s(t) + i(t)) + μ. (22)

By the linearity property, (22) can be written as follows: 

 (s(t) + i(t))' + μ(s(t) + i(t)) + μ, (23)

 Since (23) is a linear differential equation, we used 
the integrating factor (I.F) to solve this equation. The 
integrating factor (I.F) is:

 I.F. = e∫μ.dt = eμt.

 Hence, by multipling I.F on both sides of (23) and 
integrating yield: 

 (s(t) + i(t))(IF) = ∫ (IF)(μ)dt + c

 (s(t) + i(t))(eμt) = ∫ (eμt)(μ).dt + c

 (s(t) + i(t))(eμt) = eμt + c

 (s(t) + i(t)) = (eμt + c) (e–μt)

 (s(t) + i(t)) = 1 + ce–μt

where c is an arbitrary constant. By using initial conditions, 
we can find the value of c as follows:

 (s(0) + i(0)) = 1 + c

 S0 + I0 = 1 + c

 c = S0 + I0 – 1

So, the general solution is: 

 (s(t) + i(t)) = 1 + (S0 + I0 – 1) e–μt. (24)

 The numerical solutions (of order n by DTM) of the SI 
model are:

 

 



2012 

 Now we want to show that  [(sn(t) + in(t)) – (s(t) + 
i(t))] = 0. From the L.H.S of (21):

 

 

From (17) and (18), we know that:

 

 

 

for all k = 0, …, n; where

 
If we replaced k+1 by k in (17) and (18), we obtained: 

 

(25)

 . (26)

for all k = 1, …, n,  where

 

 We can easily calculate the following from (17) and 
(18):

 I(1) + S(1) = –μ(I0 + S0 – 1),

 S(2) + I(2) =  (I0 + S0 – 1),

 S(3) + I(3) =   (I0 + S0 – 1),

 S(4) + I(3) =  (I0 + S0 – 1),
 

and so on. Therefore,

 , k = 1, 2, …, n.

Now

 

 

 

 

 

 

 

 = (I0 + S0 – 1) e–μt – (S0 + I0 – 1) e–μt

 = 0

We note that .    
   

From Theorem 3.2, we can see that the numerical solution 
(sn(t) + in(t)) by DTM converges to the exact solution  (s(t) 
+ i(t)) when n approaches infinity.

NUMERICAL SIMULATIONS

NUMERICAL SIMULATION OF SIS MODEL USING DTM

In this section, we discussed the numerical simulation of 
the SIS model using DTM via the following example.

Example 4.1 Consider a SIS model with r = 2, α = 1, i(0) 
= 0.55 and s(0) = 0.45. Then (6) becomes: 

  (27)
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subject to the initial conditions:

 i(0) = 0.55, s(0) = 0.45.  (28)

Solution By applying the differential transformation 
method to (27), the following recurrence relations can be 
obtained:

   
(29)

   (30)

 I(0) = 0.55,  S(0) = 0.45.  (31)

 In this example, we consider k from 0 to 11, and the 
results are listed in Tables 2 and 3. The accuracy of the 
solutions is illustrated in Figures 1 and 2. 

The numerical solutions by DTM of order 12 are:

  (32)

 

 

   (33)

 

 

 

The exact solutions are:

 ,    (34)

  (35) 

 
 Tables 2 and 3 show the comparison between the 
numerical solutions s12(t)  and i12(t) and the exact solutions 
s(t)  and i(t) for the SIS model, respectively. It is found 
that the numerical solutions generated by DTM are highly 
accurate and closely agreed with the exact solutions s(t) 
and i(t)  for SIS model.
 Figures 1 and 2 show the comparisons between the 
numerical solutions generated by DTM of order 3, 5 and 
12 with the exact solutions s(t) and i(t) for SIS model. It is 
clear that we can achieve higher accuracy in the numerical 
solution by increasing the order of DTM.

NUMERICAL SIMULATION OF SI MODEL USING DTM

In this section, we discussed the numerical simulation of 
the SI model using DTM via the following example.

TABLE 2.  Comparison between the numerical solution s12(t) and exact solution s(t) 
of SIS model when r = 2, α = 1, i(0) = 0.55 and s(0) = 0.45

ErrorsExact solution, s(t)DTM solution, s12(t)t

5.55112 × 10–17

1.88738 × 10–15

3.41005 × 10–13

1.38396 × 10–11

2.43055 × 10–10

2.51378 × 10–9

1.80462 × 10–8

9.91934 × 10–8

4.44726 × 10–7

1.69811 × 10–6

0.45518460397792226
0.45979230421955997
0.4638948681962557
0.4675536875768168
0.47082154957817657
0.47374405584395585
0.4763607684665321
0.4787061428325716
0.4808102924793177
0.4826996204973444

0.4551846039779222
0.4597923042195581
0.4638948681959147
0.4675536875629772
0.47082154933512166
0.4737440533301786
0.47636075042037335

0.47870604363922
0.48080984775311303
0.4826979223829055

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
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FIGURE 1. Comparison between the exact solution s(t) in SIS model and 
numerical solution by DTM of order 3, 5 and 12

FIGURE 2. Comparison between the exact solution i(t)  in SIS model and 
numerical solution by DTM of order 3, 5 and 12

TABLE 3. Comparison between the numerical solution i12(t)  and exact solution  i(t) 
for SIS model when r =2, α = 1, i(0) = 0.55 and s(0) = 0.45

ErrorsExact solution, i(t)DTM solution, i12(t)t

1.11022 × 10–16

1.88738 × 10–15

3.41061 × 10–13

1.38397 × 10–11

2.43055 × 10–10

2.51378 × 10–9

1.80462 × 10–8

9.91934 × 10–8

4.44726 × 10–7

1.69811 × 10–6

0.5448153960220777
0.54020769578044

0.5361051318037443
0.5324463124231832
0.5291784504218234
0.5262559441560442
0.5236392315334679
0.5212938571674284
0.5191897075206823
0.5173003795026556

0.5448153960220778
0.5402076957804419
0.5361051318040854
0.5324463124370228
0.5291784506648783
0.5262559466698215
0.5236392495796267
0.521293956360780
0.519190152246887
0.5173020776170946

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Example 4.2 Consider a SI model with β = 2 ,  μ = 1,  and 
s(0) = 0.3, (15) becomes: 

  (36)

subject to the initial conditions:

 i(0) = 0.7, s(0) = 0.3 (37)
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Solution By applying the differential transformation 
method to (36), the following recurrence relation can be 
obtained:

 
 

(38)

  (39)

 

 In this example, we consider k from 0 to 19 and the 
results are listed in Tables 4 and 5. The accuracy of the 
solutions is illustrated in Figures 3 and 4.

The numerical solutions by DTM of order 20 are:

  (40) 

 
  

 

 
   (41)

 
 

   

The exact solutions are:

  (42)

  (43)

 Figures 3 and 4 show the comparisons between the 
numerical solutions generated by DTM of order 3, 5 and 
20 with the exact solutions s(t) and i(t) for SI model. It is 
clear that we can achieve higher accuracy in the numerical 
solution by increasing the order of DTM.

CONCLUSION

In this paper, we solved epidemic models of SIS without 
vital dynamics and SI with vital dynamics by the differential 
transformation method (DTM). Numerical experimentations 

TABLE 4. Comparison between the numerical solution i20(t) and exact solution i(t) 
for SI model when β = 2, μ = 1, i(0) = 0.7 and s(0) = 0.3

ErrorsExact solution, i(t)DTM solution, i20(t)t

0.0
1.11022 × 10–16

2.97539 × 10–14

1.17157 × 10–11

1.19776 × 10–9

5.2129 × 10–8
1.25931 × 10–6

1.97822 × 10–5

2.23779 × 10–4

1.954373 × 10–3

0.6743315475347157
0.6526759675511606
0.6342459975335067
0.6184444984840999
0.6048102793535036
0.5929814651626744
0.5826701195173417
0.5736442833121137
0.5657150177990602
0.5587268967240892

0.6743315475347157
0.652675967566222
0.6342459975335067
0.6184444984840999
0.6048102793535036
0.5929814651626744
0.5826701195173417
0.5736442833121137
0.5657150177990602
0.5587268967240892

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
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TABLE 5. Comparison between the numerical solution s20(t) and exact solution s(t) 
for SI model when β = 2, μ = 1, i(0) = 0.7, s(0) = 0.3

t DTM solution,  s20(t) Exact solution, s(t) Errors 

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.3256684524652843
0.34732403244883936
0.36575400246649326
0.3815555015159001
0.3951897206464964
0.40701853483732564
0.4173298804826583
0.4263557166878863
0.4342849822009398
0.44127310327591085

0.32566845246528425
0.34732403244883936
0.36575400246646356
0.38155550150418427
0.39518971944873604
0.4070184827083282
0.41732862117376324
0.42633593452020935
0.4340612031443747
0.43931873027095497

5.55111 × 10–17

0.0
2.96984 × 10–14

1.17158 × 10–11

1.19776 × 10–9

5.21289 × 10–8

1.25931 × 10–6

1.97822 10–5

2.23779 10–4

1.95437 × 10–3

FIGURE 3. Comparison between the exact solution i(t) in SI model and 
numerical solution by DTM of order 3, 5 and 20

FIGURE 4. Comparison between the exact solution of s(t) in SI model and 
numerical solution by DTM of order 3, 5 and 20

showed that the approximate solutions have excellent 
accuracy and higher accuracy can be achieved by 
increasing the order of the DTM. For future work, we expect 
that DTM could be extended to solve epidemiology models 
in fractional order and also other epidemiology models 
with various compartment designs. 
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