Bifunctional Regenerated Cellulose Membrane Containing TiO$_2$ Nanoparticles for Absorption and Photocatalytic Decomposition

(Evyan Yang Chia Yan, Sarani Zakaria*, Chin Hua Chia & Thomas Rosenau)
Among three phases of TiO₂: Anatase, rutile and brookite, anatase and rutile are desired to be used as photocatalyst under irradiation of light with wavelength, 250 nm < λ n < 380 nm, namely in the range of UV light. A redox condition to approaches upon the UV light radiation as the photons (h) with energy equal or greater than the band gap energy (E_v). This results in excitation of electrons at valence band to become negative electron (e⁻) at the conduction band and generation of positive holes (h⁺) at valence band. E_v is the difference of energy between the filled valance band and the empty conduction band, E_v for TiO₂ - anatase is 3.2eV and E_v for TiO₂ - rutile is 3.0 eV (Teh et al. 2011). The photogenerated e⁻ and h⁺ pair can either recombine or participate in the redox reaction. The non-recombined e⁻ and h⁺ pair will migrate to the surface of TiO₂ to take part in the redox reaction as below (Leong et al. 2014):

For electron, Ti(IV) + e⁻ → Ti(III), (1)

Ti(III) + O₂ → Ti(IV) + O₂⁻, (2)

R + O₂⁻ →→ intermediates →→ H₂O + CO₂. (3)

For holes instantly, H₂O + h⁺ → OH⁻ + H⁺, (4)

R + OH⁻ →→ intermediates →→ H₂O + CO₂ (5)

The superoxide reactive radicals, O₂⁻ and hydroxyl radicals, OH⁻ can oxidize organic reactant (R) as in (3) and (5). Some of the viruses, bacteria and microorganisms can also be inactivated by them (Rahim et al. 2012).

It is necessary to prepare a system which is able to separate the nano-sized TiO₂ with the treated aqueous system. The ordinary hosts of the nanoparticles that have been used include ceramic, glass, polymer and fibres. Based on literature, the electrical, magnetic and optical properties of the inorganic nanoparticles can be retained in polymer matrix (Chook et al. 2015; Zhu et al. 2012). This has promoted the idea to create an inorganic nanoparticle/polymer composite as effective catalyst.

Nowadays, the remarkable properties of cellulose, such as abundance, biodegradable and environmental friendliness, has established itself a useful renewable resource. Regenerated cellulose (RC) membrane has been proven to be stable under UV exposure as well as in oxidative environment (Djafer et al. 2010). In addition, the RC film possesses porous structure and high absorption ability. This is one of the surface functionality with hydroxyl group (Cai et al. 2007) leading to its important characteristics in water treatment system in order to absorb more pollutant and undergo photodegradation. On top of that, the organic-inorganic hybrid cellulose nanocomposites have attracted researchers due to their outstanding properties to be applied widely in various fields including biomedicine, food packaging and water purification. In current study, cotton linter as cellulose base went through regeneration process to fabricate RC membranes in order to suspend TiO₂ powder onto them. These TiO₂ composite regenerated (TRC) membranes behaved as photocatalytic membrane reactor where the photocatalytic decomposition can proceed under stable condition and be easily removed after usage. The photocatalytic mechanism of the membrane is schematized in Figure 1.

MATERIALS AND METHODS

MATERIALS

Commercial titanium dioxide powder with an average particle size of 21±5 nm, was purchased from Sigma Aldrich. The cotton linter with average molecular weight, M_w of 9 × 10^4 was obtained from Hubei Chemical Fiber Co. Ltd., China. All other chemical regents, such as lithium hydroxide (LiOH, 98%), urea (CH₄N₂O, 99%) and sulphuric acids (H₂SO₄, 98%) were of analytic grade and purchased from Sigma Aldrich. All chemicals were used without further purification.

EXPERIMENTAL PROCEDURES

PREPARATION OF REGENERATED CELLULOSE (RC) MEMBRANE

The production of regenerated cellulose membrane was modified from Kaco’s research group (Kaco et al. 2014) as reported earlier; an aqueous solution of LiOH/urea solution was prepared with weight ratio of 4.6:15. The aqueous solution left to freeze in the freezer for at least 8 h. 3.5 wt. % of cotton linter was then rapidly dissolved in the LiOH/urea solution under vigorous stirring. A transparent cellulose solution known as cellulose solvent was produced after approximately 5 min of stirring. The obtained cellulose solution was subjected to centrifugation at 5°C for 10 min to remove air bubbles. The soluble cellulose solution casted on a glass plate to form a thin layer of membrane and immersed into an aqueous coagulating bath containing 5 wt. % Na₂SO₄ to regenerate the cellulose. The formed membrane was washed with deionized water to remove the excessive chemical.

PREPARATION OF RC/TIO₂ (TRC) MEMBRANE

For preparation of TiO₂ embedded in cellulose membranes (TRC), various weight ratios of TiO₂: cellulose were set. A desired amount of the commercial TiO₂ powder was dispersed into deionized water under sonication. The TiO₂ solution then added into the LiOH/urea aqueous solution which was the same as described for the preparation of plain regenerated cellulose membrane. The produced membranes were freeze-dried using Freeze Dryer (Scanvac Cool Safe -110-4) for 48 h before the characterization. The prepared TRC membranes were labelled according to the weight ratio of TiO₂: cellulose for 1:7 as TRC1, 3:7 as TRC2, 5:7 as TRC3 and 7:7 as TRC4 meanwhile plain regenerated membrane without TiO₂ was labelled as RC.
CHARACTERIZATION

The freeze-dried membranes and TiO$_2$ powder were analysed using X-ray Diffractometer (XRD, Bruker AXS D8 Advance) with Cu-K$_\alpha$ radiation from the range of 6$^\circ$ to 80$^\circ$. The field emission scanning electron microscope (FESEM) images were obtained from FESEM Zeiss/Supra 55VP for morphology observation. The Raman measurement was performed on a Fourier transform infrared spectroscopy spectrometer (ATR-Perkin Elmer Spectrum 400 FT-IR).

WATER ABSORPTION MEASUREMENT

The method and condition of water absorption test was conducted according to the standard of ASTM D570-98. The freeze-dried membranes were cut into 7.6 × 2.5 cm with thicknesses approximately 1 mm. The variation of thickness for each was ±0.2 mm. The samples were dried again in an oven at 50°C for at least 16 h to remove moisture and kept in a desiccator for 30 min. The samples were weighed variations to the nearest 0.001 g immediately after withdrawal from the oven. The samples were submerged into different beakers filled with 50 mL distilled water accordingly and covered with aluminium foil for 2 and 24 h. The percentage of weight gain (wt. %) during the immersion in distilled water was calculated as in (6) (Mohammad et al. 2014):

$$\text{wt}\% = \frac{W_{\text{wet}} - W_{\text{dry}}}{W_{\text{dry}}} \times 100\%.$$ \hspace{1cm} (6)

where W_{wet} is the weight of sample after immersion into distilled water for 2 or 24 h; and W_{dry} is the weight of sample before immersion into distilled water.

Meanwhile, the pore volumes (V_p) of the samples were calculated through the water uptake of the membranes. Since water did not dissolve cellulose and TiO$_2$, therefore value of V_p can be determined from (7) (Pojanavaraphan et al. 2011):

$$V_p = \frac{M_{\text{wet}} - M_{\text{dry}}}{\rho \times M_{\text{dry}}}.$$ \hspace{1cm} (7)

M_{dry} is the mass of sample before immersion into distilled water; M_{wet} is the mass of sample after immersion into distilled water until it reach swelling equilibrium; and ρ is the density of water (0.997 g/mL at 25°C).

TENSILE TESTING ON MECHANICAL PROPERTIES

The tensile properties of the membranes were tested using a Universal Testing Machine (Gotech Al-3000) according to ASTM D882-12. The samples were cut into strips with the length of 10 cm, width of 1 cm and average thickness about 1 mm, which was measured from top, middle and bottom of the strips. The load of the testing machine was 10 kgf and the speed of testing was set at 5 mm/min. The values of elastic modulus, tensile strength and elongation were determined from the stress-strain curve that obtained from software analysis of GoTech U62 64 bits (Ver. 20140227-6227). Tensile testing was carried on the same set of samples after immersion in water for at least 24 h under the same condition and remained the setting of the testing machine.

PHOTOCATALYTIC ACTIVITY MEASUREMENT

The dried membranes with different content of TiO$_2$ were cut into dimension of 1 × 1 cm. 0.1 ng of cut membrane were immersed into a petri dish containing 20 mL of methylene blue (MB - 10 mg/L). MB is a heterocyclic aromatic chemical compound (C$_{16}$H$_{18}$CIN$_5$S) which was used as dye in the study. It is famous as redox indicator because of its high effectiveness in exhibiting the oxidation reaction in the form of its blue colour disappearance. The submerged samples were left in a chamber to avoid and minimize emission of light on the samples for 24 h to allow the membranes to achieve swelling equilibrium. After 24 h, photocatalytic activity subsequently conducted in the chamber equipped with three TL 8W black light lamps which are positioned on top and both sides of the chamber to be functioned as artificial UV light. The decolouration of MB was analysed using a UV-Vis spectrophotometer (Jenway 7315) to determine the concentration of MB over time. The percentage of degradation of MB ($D\%$) was determined according to (8):

FIGURE 1. Schematic diagram of the production and photocatalytic activity of regenerated cellulose membranes containing TiO$_2$.

\hspace{1cm}
\[D\% = \frac{C_e}{C_0} \times 100\% \]

\(C_o \) is the concentration of MB before photocatalytic activity; \(C_e \) is the concentration of MB each hour during photocatalytic activity; and the experiment was run for 6 h and prolonged for 72 h until a complete decolouration achieved.

RESULTS AND DISCUSSION

MORPHOLOGY AND STRUCTURE OF THE RC AND TRC MEMBRANES

A good catalyst in photocatalytic activity should possess the properties such as high in material purity, porosity and surface area and narrow pore size distribution (Choi et al. 2007). TiO$_2$ nanoparticle as shown in SEM Figure 2(a) is a commercial TiO$_2$ powder which is famous for its almost excellent photocatalytic properties. The very small particle size - 21 ± 5 nm (as labelled by Sigma Aldrich) guaranteed it to be high in surface area. The surface morphology of the plain RC membrane is shown in Figure 2(b). The homogenous macroporous structures which were considered as extrinsic porosity had been observed on the membranes under SEM. These porous structures and hydroxyl groups had prepared cavities for inorganic nanoparticles to be entrapped onto them. The –OH groups that formed in the RC membranes promoted hydrophilicity in the surfaces and enhanced the interaction of RC with the surfactants which made TiO$_2$ easily to be absorbed in to the RC membrane during the coagulation bath. Meanwhile, longer period was required for the exchange between the solvent and non-solvent through the TiO$_2$ entrapped in RC membrane formation compared to neat RC membrane (Rahimpour et al. 2008). Consequently, more pores were developed in the membrane with higher content of TiO$_2$ which resulted in dispersion of TiO$_2$ nanoparticles on the film as exhibited in Figure 2(c) and 2(d). However, higher concentration of TiO$_2$ in casting solution would result in larger aggregates in the membrane matrix. According to Liu et al. (2010), the aggregation also increases by the ability of polymer membrane that tends to aggregate in parallel to each other. This phenomenon was noticeable on the film which contained with high fraction of TiO$_2$, as shown in Figure 2(d).

Figure 3 displays the FTIR spectra of raw cotton linter and plain regenerated cellulose (RC) membrane. The peak at 2899.59 cm$^{-1}$ which corresponded to –CH stretching of pure cotton linter was shifted to 2894.13 cm$^{-1}$ after rapid dissolution with LiOH and Urea. The transmittance peak at 1029.61 cm$^{-1}$ due to C-O at C-6 stretching vibration was shifted to 1081.81 cm$^{-1}$ after the regeneration. Meanwhile, the C-O stretching vibration of C-O-C groups was moved from 897.70 to 895.00 cm$^{-1}$. The stretching vibration of –OH ranged from 3000 to 3700 cm$^{-1}$ for both pure cotton linter and RC membrane, however, the band was broadened on RC membrane. The band characteristics of both raw cotton linter and RC membrane were related to the transition of

FIGURE 2. (a) TiO$_2$ nanoparticle, (b) Plain regenerated cellulose membrane, (c) & (d) TiO$_2$ embedded in regenerated cellulose membranes

FIGURE 3. FTIR spectra of pure cotton linter and regenerated cellulose (RC) membrane
Transmittance peaks near 2894 cm\(^{-1}\) was exhibited by the RC and all the TRC membranes due to the stretching vibration of C-H were remained as shown in Figure 4. Meanwhile, the H-O-H bending from the moisture absorption was characterized by the occurrence of peaks around 1639 cm\(^{-1}\) (Zhang et al. 2012). There was drastic decreasing of transmittance in the range of 670 to 895 cm\(^{-1}\) and the bands were widened when moving to the lower wavenumber in all the TRC membranes compared to the plain RC membrane spectra. These could be caused by the Ti-O stretching mode in TiO\(_2\) powder which was embedded in cellulose matrix. New peak did not exist for all the TRC membranes and this had proven that the physical interaction played a role in the formation of TRC membranes with no new chemical bonding appeared.

Figure 5 shows the XRD patterns of RC, TRC and TiO\(_2\) powder. The peaks at \(2\theta = 12.07^\circ, 20.1^\circ\) and \(21.6^\circ\) in Figure 5(a) signifies the formation of cellulose II crystalline on the planes of, (110) and (020), respectively. There were sharp peaks as shown in Figure 5(f) with high intensity obviously indicated that TiO\(_2\) is in the phases of anatase (A) and rutile (R) in Figure 5(f). The anatase and rutile phases of TiO\(_2\) were both in tetragonal crystalline structures, thus, they reflected higher intensity of light in the X-ray diffraction compared to cellulose II as displayed in Figure 5(b) - 5(e). This resulted in the peaks of cellulose II could not be evidenced because they superpose with the diffraction lines of TO\(_2\) in the XRD patterns for TRC membranes. There were no significant changes among all the TRC patterns. In addition, this implied that the physical interaction played a role in the formation of TRC membranes with no new chemical bonding appeared.
dissolution of cellulose did not change the crystalline phases of TiO$_2$. Based on the XRD data, the average crystallite size of TiO$_2$ before entrapping in RC membrane was 14.5 nm and the estimated average crystallite size of TiO$_2$ after entrapping in RC membrane was 13.3 nm. From the calculation, it was clearly showed that the crystallite sizes of TiO$_2$ did not affect as the chemical reaction did not take place between TiO$_2$ and other chemicals during the regeneration of cellulose. This confirmed with the FTIR results which indicated that new chemical bond did not exist.

WATER ABSORPTION BEHAVIOUR

The plain RC membrane exhibited good absorption ability towards water. Conversely, the ability dropped markedly by increasing TiO$_2$ contents as shown in the graph of Figure 6 in terms of total pore volume, V_p. The values of V_p decreased from 0.65 to 0.45 cm3/g with the increasing of weight fraction of TiO$_2$ - cellulose in TRC membranes. This was attributed to the water uptake resistance of the nanocomposite membranes. The potential of aggregation of nanoparticles could decrease the effective surface of TiO$_2$ and hence declined the hydroxyl groups on the surface of TRC membranes. The absorption processes were essentially controlled by mass diffusion and particle diffusion as the chemical reaction did not occur between water molecules and RC or TRC film. That is, the greater amount of TiO$_2$ obstructed the pores of the membranes and reduced the absorption ability as reported by Rahimpour et al. (2008). The absorption of water took place effectively for the first 2 h; however it was prolonged gradually overnight referring to Figure 6. This implied by the hydrophilicity of RC which intrinsically performed at the beginning of the absorption process within 2 h. However, after 2 h, the diffusion of water molecules reduced for all the RC and TRC membranes. This was due to the high absorbance of water molecules onto the films within 2 h in turn to create weak attraction on the surface which was caused by the surface tension of water molecules. Therefore, the moisture uptake of the films after 2 h has slowed down. The plain RC membrane continued about 14.5% absorption within 24 h whereas the TRC membranes only extended the water absorption from 3 to 5% (bar chart of Figure 6). This was corresponded to the much lower hydrophilicity property of TiO$_2$ compared to the pure RC membrane. Therefore, RC loaded with higher content of TiO$_2$, the absorption ability would be lower as TiO$_2$ nanoparticles dispersed inhomogeneously in the RC membranes (Mohammad et al. 2014) and resulted in increasing of total solid content. The data was in good agreement with the scheming of V_p (graph of Figure 6) which reflected that the TiO$_2$ loading lowered the absorption capacity of the membrane. There was no further change in weight after 24 h submerging in water which obviously indicated that saturation had been achieved.

![Figure 6](https://example.com/figure6.png)

FIGURE 6. Total pore volumes and percentage of weight gain for RC and TRC with different weight fraction of TiO$_2$ to cellulose

MECHANICAL PROPERTIES

The mechanical properties of pure RC and TRC membranes were investigated to determine the effects of TiO$_2$ incorporation. According to Table 1, the tensile strength (σ) and elongation at break (ϵ) of the RC membrane decreased moderately as the adding of TiO$_2$ content increased in both dry and wet state. This was mostly because TiO$_2$ nanoparticles affected the final structures of RC during the formation of the membrane. Some of the TiO$_2$ particles dispersed inhomogeneously and aggregated intensely in the composite membranes as shown in Figure 2(d) as discussed in previous section. Therefore, this resulted in the tensile strength dropped corresponding to the addition of TiO$_2$ contents. On the other hand, the values of σ in wet state increased drastically which consequently gave arise to high ductility if compared with those in dry state. The high water permeability was the main factor of the increasing of ductility. RC membranes possessed high V_p as mentioned earlier. When more water molecules had been entrapped on the membrane during immersion in the water, the weak attraction between water molecules and the membrane structures would be enhanced and thus resulted in improvement of ductility. However, the values of σ dropped when the membranes tested in wet state compared to dry state. In this case, the high content of water weakened the values of σ for the wet membranes, they were not able to withstand high stress. Although the values of σ was dropped in wet state, the strength values ranged from 0.50±0.03 to 0.87±0.06 MPa was strong enough to let the membrane sustained in wet state for a long period of time (>24 h). The RC and TRC membrane did not perform elastic modulus in wet state since they were low in elasticity which was caused by the water molecules that situated in the pores of the membranes. Therefore, they could not return to their original dimension as the load had been removed. Meanwhile, the results were delighted with very high elastic modulus (1.96 - 3.47GPa) for TRC membranes in dry state. The mechanical properties that well performed by the prepared TRC membranes could be recommended for a promising practical application either in wet state or dry state.
TABLE 1. Tensile strength and elongation of membranes before and after water absorption

<table>
<thead>
<tr>
<th>Material</th>
<th>Wet state</th>
<th>Dry state</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tensile strength, (\sigma) (MPa)</td>
<td>Elongation at break, (\epsilon) (%)</td>
</tr>
<tr>
<td>RC</td>
<td>1.04±0.10</td>
<td>70.89±0.84</td>
</tr>
<tr>
<td>TRC1</td>
<td>0.87±0.06</td>
<td>37.49±0.79</td>
</tr>
<tr>
<td>TRC2</td>
<td>0.71±0.03</td>
<td>34.86±1.13</td>
</tr>
<tr>
<td>TRC3</td>
<td>0.66±0.03</td>
<td>32.62±1.26</td>
</tr>
<tr>
<td>TRC4</td>
<td>0.50±0.03</td>
<td>20.72±1.42</td>
</tr>
</tbody>
</table>

PHOTO-REACTIVITY PERFORMANCE

The direct excitation of TiO\(_2\) which is a semiconductor occurs according to the following reactions:

\[
\text{TiO}_2 + \text{UV light} \rightarrow h^+ + e^- \quad \text{(9)}
\]

As explained earlier, the \(e^- \) will reduce Ti(IV) to Ti(III) (1) and consequently react with the absorbed oxygen on the surface of TiO\(_2\) to superoxide radical anions (O\(_2^-\)). Meanwhile TiO\(_2\) nanoparticles played an important role in photocatalytic activities hence the photodegradation of the TRC membranes with the highest weight fraction of TiO\(_2\) (TRC4) displayed the most effective photocatalytic activity. However, it was interesting to note that the photo-degradation of all TRC membrane showed nearly the same pattern after 20 h from Figure 7(b). This could be due to the aggregation that formed on the membranes after long UV irradiation which reduced the photocatalytic activities, especially for the membranes with high TiO\(_2\) content. However, the absorption ability of the cellulose membranes seemed to take over the role of photocatalytic activities gradually after long period of time (>20 h). This was due to the radicals formed by the excitation under UV illumination would oxidize the closest MB molecules which had been fully absorbed onto the films followed the reactions in (3) and (5). In this case, the higher the values of \(V_x \) (Figure 6) in TRC membranes, the more pores were accessible for absorption of MB molecules. Therefore this permitted photocatalytic activities executed effectively even though the presence of TiO\(_2\) content was low. The degradation involved the conversion of organic carbon into harmless gaseous CO\(_2\). Meanwhile, those of nitrogen and sulfur heteroatoms from the heterocyclic aromatic MB convert into inorganic ions such as nitrate, ammonium and sulfate ions according to Houas et al. (2001). However, the oxidation process plays the most important role for the disappearance of MB’s major part as reported by most of the researchers. This could be explained based on the opening of aromatic rings with the transient formation of carboxylic acids after the evolution of CO\(_2\) according to the ‘photo-Kolbe’ reaction (Houas et al. 2001):

\[
\text{R–COO}^- + h^+ \rightarrow \text{R'} + \text{CO}_2
\]

The ‘photo-Kolbe’ reaction prompted the removal of MB colour of MB gradually. Nevertheless, the concentration of MB solution in RC plain membrane showed slightly upsurge which might be caused by contamination after longer period of time and this has clearly shown the advantage of TiO\(_2\) for its self-cleaning properties to avoid further contamination from the air. All the TRC film achieved 100% degradation after three days under UV irradiation.

CONCLUSION

TiO\(_2\) nanoparticles were successfully incorporated into regenerated cellulose (cotton linter) to form membrane using easy and low cost dissolution-regeneration method. The crystal structure of cellulose were transformed from cellulose I to cellulose II while maintaining the nanocrystalline structure of TiO\(_2\). The prepared membranes exhibited high absorption abilities and stable mechanical properties. The finding gave a suggestion on i.e. long period (>24 h) decomposition system under weak UV irradiation. The photocatalytic decomposition conducted using this portable membrane was based on its bifunctional properties: Absorption and photo-degradation simultaneously. The system could be designed with minimum observation and low consumption of TiO\(_2\) as the cost-saving factor.
ACKNOWLEDGEMENTS

The authors appreciate supports from the grants of LRGS (TD/2012/USM-UKM/PT/04), AP (2015-005), PRGS (1/13/SG07/UKM/01/1), Nilai University Research Grant (MS006) and the Ministry of Higher Education, Malaysia for MyBrain 15-MyPhD scholarship. The authors also thank the Centre for Research and Instrumentation Management (CRIM) at Universiti Kebangsaan Malaysia (UKM) for providing the XRD, FESEM and FTIR testing.

REFERENCES

Evyen Yang Chia Yan, Sarani Zakaria* & Chin Hua Chia

Bioresources and Biorefinery Laboratory, School of Applied Physics
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor Darul Ehsan
Malaysia

Evyen Yang Chia Yan
Department of Applied Sciences
Faculty of Science and Technology
Nilai University, 1, Persiaran Universiti 71800 Nilai, Negeri Sembilan Darul Khusus
Malaysia

Thomas Rosenau
Division of Chemistry of Renewable Resource
Muthgasse 18, A-1190 Wien, Universität für Bodenkultur Wien
University of Natural Resources and Life Science, Vienna
Austria

*Corresponding author; email: szakaria@ukm.edu.my

Received: 20 April 2016
Accepted: 20 September 2016