Multi-Disciplinary Approach for Managing Plasmacytoma: A Case Report
(Pendekatan Pelbagai Disiplin untuk Menguruskan Plasmasitoma: Laporan Kes)

WINT WINT THU NYUNT, RAHYU DRAMAN, AIDA WIDURE MOHD MUSTAPHA, NORALISA ABDUL KARIM, MOHD RAZIF MOHD IDRIS, NORAIMY ABDULLAH, TANG YEE LOONG, WAN FARIZA WAN JAMLADIN, NORAIMAH MASIR & S FADILAH S ABDUL WAHID*

ABSTRACT

Solitary plasmacytoma (SP) is a tumor with evidence of clonal plasma cells and no other features of multiple myeloma (MM). We report a case of SP which showed multiple recurrences of SP and then evolution into overt MM. A 56-year-old man presented with the 5-month-history of right nasal obstruction and intermittent epistaxis. He had SP (extraosseous) of right nasopharynx (3.5 × 2 × 2.5 cm), with no paraproteinemia. He received radiotherapy (56 Gy), achieving complete remission. Ten years later, he had recurrence of SP (osseous) in left tibia, presenting with pathological fracture. He received radiotherapy (50 Gy), achieving partial response. Three years later, he had recurrence of SP (osseous) in right tibia, presenting with right leg pain. He received radiotherapy (45 Gy). While receiving treatment, he had progressive swelling in the area around right eye, double vision and headache. Imaging scans showed multiple plasmacytomas. There were presence of monoclonal paraprotein, hypercalcemia and lytic bone lesions. He was diagnosed as MM (at the age of 70 years) and treated with Bortezomib-based therapy. Currently, after one cycle of treatment, clinical improvement is achieved. The importance of multi-disciplinary team approach for managing patients with plasmacytoma is highlighted in order to achieve the holistic approach of management.

Keywords: Multiple myeloma; plasmacytoma; plasma cell proliferative disorder

INTRODUCTION

A plasmacytoma is a discrete, solitary mass of neoplastic monoclonal plasma cells in either bone or soft tissue. Solitary plasmacytoma (SP) is a rare entity of plasma cell proliferative disorder and is a biopsy-proven tumor with evidence of clonal plasma cells and no evidence of other features of multiple myeloma (MM). There are 2 types of SP as determined by the location of the lesions: SP of bone and solitary extramedullary plasmacytoma. Solitary plasmacytoma of bone (solitary osseous plasmacytoma, SPB) is a localized tumor in the bone and occurs most frequently in the vertebral column. Solitary extramedullary plasmacytoma (solitary extraosseous plasmacytoma, SEP) arises outside the bone in soft tissues and occurs most frequently in the head and neck region, mainly in the upper aerodigestive tract. Multiple plasmacytomas are defined as the presence of more than one plasmacytoma (occurring concurrently or sequentially) in the absence of bone marrow evidence of MM. Extramedullary plasmacytoma can arise in patients with multiple myeloma (MM) at any time during the course of the disease (extramedullary MM, EMM) (Swerdlow et al. 2016).

SPB accounts for approximately 5% of plasma cell malignancies. SEP accounts for approximately 3% of
plasma cell malignancies. The median age at diagnosis is 55 to 65 years in SPB and 55 to 60 years in SEP. In SPB, men are diagnosed twice as frequently as women. Approximately two-thirds of patients with SEP are male (Dores et al. 2009; Frassica et al. 1989; Shih et al. 1995). A little more than half of patients with SPB will eventually develop overt MM and SPB had a poorer prognosis than SEP (Guo et al. 2013). For patients with SPB, median overall survival (OS) was approximately 10 years; 5-year OS rate was 75%; 10-year OS rate was 45%; 5-year disease-free survival (DFS) rate was 45% and 10-year DFS rate was 25% (Frassica et al. 1989). For patients with SEP, the median overall survival was 12.5 years; 5-year OS rate was 88% and 10-year OS rate was 55% (Creach et al. 2009). Patients with SEP involving the head and neck region had superior median survival when compared to patients with other sites of SEP (13 versus 4 years) (Gerry & Lentsch 2013).

Adverse prognostic factors of SP for progression into MM are larger tumor size (≥5 cm), serum β2 microglobulin >3.5 mg/L, persistence of serum M-protein after radiation therapy (Galieni et al. 1995) and SEP with minimal marrow involvement. Other reported predictors for progression to MM include the presence of osteopenia, reduction in uninvolved immunoglobulin levels (Jackson & Scarffe 1991) and the presence of high-grade angiogenesis in the tumor sample (Kumar et al. 2003).

The treatment of choice for SEP is radiation therapy, given with curative intent at a dose of 40 to 50 Gy over four weeks (Creach et al. 2009). For patients with an incompletely resected SEP after diagnostic biopsy, local radiation therapy is recommended rather than further surgery, chemotherapy or observation (Grade 1C). For patients with completely resected SEP after diagnostic biopsy, observation is recommended rather than adjuvant radiation therapy or chemotherapy (Grade 2C) (Soutar et al. 2004). The treatment of choice for SPB is localized radiation therapy, given at a dose of 40 to 50 Gy over four weeks, directed at the tumor site (Grade 1C) (Reed et al. 2011), whereas the standard treatment for MM is systemic therapy.

We report an interesting case of solitary plasmacytoma, which showed the classical spectrum of plasma cell proliferative disorder, i.e., recurrences of plasmacytoma and then evolution into multiple plasmacytomas.

In 2003, a 56-year-old man, with hypertension and ischemic heart disease, presented with the 5-month-history of right nasal obstruction and intermittent epistaxis. He had solitary extramedullary plasmacytoma of the nasopharynx (3.5 × 2 × 2.5 cm) (Figure 1), with no paraproteinaemia. He received radical radiotherapy (56 Gy) to the nasopharynx, achieving complete remission.

Ten years later, in 2014, he had recurrence of plasmacytoma (osseous) in left tibia (10 × 6 cm) (Figures 1 & 2), presenting with pathological fracture. There was monoclonal paraproteinaemia (4.2 g/L, IgG lambda). He received radical radiotherapy (50 Gy) to left tibia, achieving partial response.

In July 2016, he had recurrence of plasmacytoma (osseous) in right tibia (Figure 1), presenting with 2-month-history of right leg pain and swelling. There was presence of monoclonal paraprotein (IgG lambda, 5.5 g/L in serum and 75 mg/L in urine). He received radical radiotherapy (45 Gy) to right tibia.

Just after completing radiotherapy to right tibia, in November 2016, he presented again with increasing in severity of pain in right leg. There was progressive swelling in the area around right eye, double vision and headache.

On examination, there were proptosis of right eye and swelling in right leg. Imaging scans showed multiple plasmacytomas at right frontal (5.6 × 4.9 × 5.3 cm) (SUVMAX: 2.7), left frontal (1.1 × 1.4 × 1.4 cm), left high frontal, left high posterior parietal, right occipital bones, both tibia (SUVMAX: right 2.6, left 2.5) and hypermetabolic lytic lesions in both 4th metatarsal bones (SUVMAX: right 2.7, left 2.1). The extra-axial mass at right frontal convexity extends inferiorly into the right orbital extracranial space causing proptosis of the right eye globe and displacement of the superior rectus muscle and the optic nerve inferiorly. There was erosion of the adjacent right frontal skull vault and orbital plate (Figure 1). The rest of the marrow metabolic activity was homogenously increased (SUVMAX: 3.5). Nasopharynx had normal morphometabolic appearance (liver SUVMAX: 3.5). Biopsy of right tibia showed osseous plasmacytoma (Table 1, Figure 2). Monoclonal paraprotein level was increasing in trend (IgG lambda, 6.3 g/L in serum and 104.7 mg/L).

CASE REPORT

FIGURE 1. Imaging showing plasmacytomas
in urine). There were hypercalcemia (corrected calcium 2.62 mmol/L) and lytic bone lesions.

Bone marrow aspirate result showed 3% plasma cells with occasional plasma cells showing abnormal morphology such as flame shape and binuclearity. Bone marrow trephine sample was suboptimal. Conventional cytogenetic analysis of bone marrow sample showed normal male chromosome, 46,XY, with no clonal abnormality, however, fluorescence in situ hybridization (FISH) result was not available. He was treated as MM.

In 2017, he was 70 years old and had multiple co-morbidities such as hypertension, ischemic heart disease, diabetes mellitus and dyslipidemia. His ECOG (The Eastern Cooperative Oncology Group) performance status score (Oken et al. 1982) was 2. He was treated with Bortezomib-based therapy (Bortezomib-Thalidomide-Dexamethasone). Currently after one cycle of treatment, clinical improvement is achieved (serum paraprotein 4.1 g/L, urine paraprotein 20 mg/L, no more headache/double vision/proptosis/hypercalcaemia) (Table 1).

DISCUSSION

SEPs are plasma cell tumors that arise outside of the bone marrow. Diagnosis of SEP is made based on the following features: biopsy-proven extramedullary tumor with evidence of clonal plasma cells; no lytic lesions in metastatic bone survey and either PET/CT or MRI of the spine and pelvis; no clonal plasma cells in bone marrow aspirate and biopsy; no anemia, hypercalcemia or renal insufficiency that could be attributed to a clonal plasma cell proliferative disorder (Rajkumar et al. 2006). The first presentation of our patient, i.e. SEP, demonstrated the typical presentation of SEP for age, gender and presenting symptoms. He received the standard therapy, i.e. radiotherapy, achieving complete remission and prolonged disease-free survival for 10 years.

At initial diagnosis of plasmacytoma, it is important to distinguish SEP from other plasma cell dyscrasias, especially MM, for the purpose of prognosis and treatment. Evaluation of a patient with a suspected SEP should include the full diagnostic work-up of MM, i.e. unilateral bone marrow aspiration and biopsy, metastatic bone survey and either a PET/CT scan or an MRI of entire spine and pelvis, blood investigations such as complete blood count and differential with examination of peripheral blood smear, serum calcium, creatinine, albumin, lactate dehydrogenase, beta-2 microglobulin, and serum and urine protein electrophoresis with immunofixation, quantitation of immunoglobulins, serum free light chain assay, in addition to complete history and physical examination and tissue biopsy of the suspected lesion. In our patient, the diagnosis of SEP of the nasopharynx was made after the proper evaluation to exclude MM.

Following the completion of therapy, it is important to have regular follow-up at periodic intervals to monitor for treatment complications and assess for possible relapse. Progression rate of SEP to MM is reported to be between 11 and 33% over 10 years (Cantone et al. 2017). For our patient, even though he achieved complete remission from the very first plasmacytoma, he still had been regular follow-up with the otorhinolaryngology team and haematology team, resulting in early detection and timely management of his recurrences of plasmacytomas. From literature review, there were similar case reports presenting the recurrence of plasmacytoma, highlighting the importance of regular long-term follow up to monitor the disease recurrence or progression to MM (Chang et al. 2014; Corvo et al. 2013).

The recommendation for the frequency of visit is every three months for the first two years, then every six months for an additional three years, then yearly or every other year after five years. At each visit, the parameters to perform for monitoring are history and physical examination, urine and serum protein electrophoresis with immunofixation, complete blood count, serum creatinine and serum calcium. For patients with head and neck involvement, a fiberoptic endoscopy is performed at each visit.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5-month-history of right nasal obstruction and intermittent epistaxis</td>
<td>Pathological fracture (sharp pain over left leg upon standing from the seat on the bus, then unable to walk)</td>
<td>2-month-history of right leg pain and swelling</td>
<td>Increasing in severity of pain in right leg. 2-month-history of progressive swelling in the area around right eye, double vision, headache</td>
<td></td>
</tr>
<tr>
<td>Physical examination</td>
<td>Nasal endoscopy: a friable, dark red mass arising from the roof of the nasopharynx, completely occluding the right choana</td>
<td>Tenderness and swelling in left leg</td>
<td>Tenderness in right leg</td>
<td>Swelling in right leg, proptosis in right eye</td>
</tr>
<tr>
<td>Imaging</td>
<td>CT paranasal sinus - a soft tissue mass (3.5 × 2 × 2.5 cm) in right posterior nasal space</td>
<td>MRI leg - pathological fracture of left proximal tibia secondary to plasmacytoma (an well-defined lesion arising from the metaphyseal region of the left tibia, 10 × 6) with satellite lesions at femoral condyle and head of fibula</td>
<td>XR (right leg) lytic lesion at diaphysis of right tibia</td>
<td>MRI brain - multicentric skull plasmacytoma [right frontal (5.6 × 4.9 × 5.3 cm), left frontal (1.1 × 1.4 × 1.4 cm), left high frontal, left high posterior parietal, right occipital bones]</td>
</tr>
<tr>
<td>Tissue biopsy and histopathological examination (HPE)</td>
<td>Biopsy of nasopharyngeal mass - extramedullary plasmacytoma. Diffuse infiltration of plasma cells in submucosa; mature, eccentric nuclei, clock-face chromatin pattern. IHC: lambda restriction</td>
<td>Tru-cut biopsy of left tibia - osseous plasmacytoma. Diffuse infiltration of sheets of plasma cells; eccentric nuclei, perinuclear halo. IHC: CD138+, lambda light chain restriction. ISH: lambda light chain restriction</td>
<td>Not performed</td>
<td>Biopsy of right tibia (bone, tissue) - osseous plasmacytoma. Diffuse infiltration of neoplastic plasma cells; eccentric nuclei, perinuclear halo. IHC: CD138+, lambda light chain restriction</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>Solitary extramedullary plasmacytoma, nasopharynx</td>
<td>Solitary osseous plasmacytoma, left tibia</td>
<td>Solitary osseous plasmacytoma, right tibia</td>
<td>Multiple osseous plasmacytomas (both frontal, multicentric skull, both tibia)</td>
</tr>
<tr>
<td>BMB aspirate plasma cell %</td>
<td>3%</td>
<td>3%</td>
<td>4%</td>
<td>3% (occasional plasma cells had abnormal morphology: flame shape, binuclearity)</td>
</tr>
<tr>
<td>BMB Trephine</td>
<td>Unsatisfactory specimen</td>
<td>No evidence of neoplastic plasma cell infiltration</td>
<td>No abnormal plasma cell infiltration</td>
<td>Suboptimal sample</td>
</tr>
</tbody>
</table>
visit. If the SEP was measurable by an imaging modality prior to therapy, the same modality (e.g. MRI) should be repeated three to four months after completing therapy, and periodically thereafter. For all patients, CT or CT/PET or MRI (whichever imaging modality was used for the initial evaluation) should be performed every 6 to 12 months for the first five years after therapy.

In our case, the patient was found to have multiple plasmacytomas involving critical sites and evolving into MM. It is crucial to be aware of timely intervention for complete diagnostic work-up in order to obtain the definitive diagnosis, especially for those with plasmacytoma involving critical sites such as eyes and central nervous system. Imaging technique like PET/CT scan plays an important role in timely detection of plasmacytoma with MM. This case report highlights the clinicians not to delay definitive treatment when plasmacytomas involves critical sites e.g. eyes, orbit, cranial nerves and spinal cord.

Bortezomib-based therapy followed by autologous haemopoietic stem cell transplantation (HSCT), whenever it is possible, is indicated for patients with solitary plasmacytoma who progressed into overt MM. For our patient, in view of age and multiple comorbidities, he was not eligible for HSCT and opted for Bortezomib-based therapy.

CONCLUSION

The importance of multi-disciplinary approach (otorhinolaryngology, radiotherapy and oncology, orthopedic, ophthalmology, haematology teams) for managing the patients with plasmacytoma is highlighted in order to achieve the holistic approach of management in terms of: thorough evaluation at presentation to rule out MM, choice of appropriate management (radiotherapy or systemic therapy) and regular long-term follow-up to monitor recurrence of SEP or progression into overt MM.

ACKNOWLEDGEMENTS

Acknowledgment was made to the patient who had given the informed written consent for publication of this case report. The authors have no conflict of interest to declare.
REFERENCES

Wint Wint Thu Nyunt, Noralisa Abdul Karim, Mohd Razif Mohd Idris, Noraimy Abdullah, Wan Fariza Wan Jamaladin & S Fadilah S Abdul Wahid* Cell Therapy Centre, UKM Medical Centre (UKMMC) Jalan Yaacob Latiff, Bandar Tun Razak 56000 Cheras Kuala Lumpur, Federal Territory Malaysia

Rahayu Draman, Tang Yee Loong & Noraidah Masir Department of Pathology, UKM Medical Centre (UKMMC) Jalan Yaacob Latiff, Bandar Tun Razak 56000 Cheras Kuala Lumpur, Federal Territory Malaysia

Aida Widure Mohd Mustapha Department of Radiology, UKM Medical Centre (UKMMC) Jalan Yaacob Latiff, Bandar Tun Razak 56000 Cheras Kuala Lumpur, Federal Territory Malaysia

*Corresponding author; email: sfadilah@ppukm.ukm.edu.my

Received: 12 March 2018
Accepted: 4 May 2018