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Functions and Application of Glomalin-Related Soil Proteins: A Review
(Fungsi dan Penggunaan Protein Tanah Berkaitan Glomalin: Suatu Ulasan)
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ABSTRACT

Glomalin that  is a kind of glycoprotein produced by arbuscular mycorrhizal fungi in the phylum Glomeromycota, has 
some characteristics of hydrophobins with insolubility and difficulty in its extraction. The protein is highly homologous 
with heat shock protein 60. In soils, glomalin is measured as glomalin-related soil protein (GRSP). GRSP is highly positively 
correlated with soil aggregate stability, because it is a new component of soil organic matter. The mycorrhiza-released 
glomalin has represented potential functioning in soil ecosystems, which include promoting the storage of soil organic 
carbon, improving the structure of soil aggregates, enhancing the resistance of plants, and reducing the metal toxicity of 
plants. In addition, some potted and field experiments have been performed to exogenously apply the GRSP in crop plants 
to confirm the GRSP roles. Hence, GRSP is one of the most significant multidisciplinary topics between fungal physiology 
and soil biochemistry. Despite much work performed on glomalin from 1996, there are still gaps of GRSP that needs to 
be solved, including purification, structural features and environmental responses. 
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ABSTRAK

Glomalin merupakan sejenis glikoprotein yang dihasilkan oleh kulat mikoriza arbuskel pada filum Glomeromycota, 
mempunyai ciri-ciri hidrofobin dengan ketidaklarutan dan kesukaran dalam pengekstrakan. Protein adalah sangat 
homolog dengan protein kejutan haba 60. Dalam tanah, glomalin diukur sebagai protein tanah berkaitan glomalin 
(GRSP). GRSP adalah sangat positif berkolerasi dengan kestabilan agregat tanah, kerana ia adalah satu komponen baharu 
jirim tanah organik. Glomalin pelepasan mikoriza telah mewakili potensi berfungsi dalam ekosistem tanah, termasuk 
menggalakkan penyimpanan karbon organik tanah, memperbaiki struktur agregat tanah, meningkatkan ketahanan tumbuh-
tumbuhan dan mengurangkan logam ketoksikan tumbuh-tumbuhan. Di samping itu, sesetengah uji kaji tanaman pasu 
dan lapangan telah dijalankan secara eksogen untuk menggunakan GRSP dalam tanaman tumbuhan untuk mengesahkan 
peranan GRSP. Oleh itu, GRSP adalah salah satu daripada topik pelbagai disiplin yang paling ketara antara kulat fisiologi 
dan biokimia tanah. Walaupun banyak kerja yang dilakukan pada glomalin dari tahun 1996, masih terdapat jurang GRSP 
yang perlu diselesaikan, termasuk penulenan, ciri struktur dan tindak balas alam sekitar. 

Kata kunci: Kitaran karbon; mikoriza; pengagregatan tanah; pengekstrakan; tekanan kemarau

INTRODUCTION

Arbuscular mycorrhizal fungi (AMF), one of soil 
microorganisms widely distributed in various terrestrial 
ecosystems can form a symbiotic association with roots 
of more than 80% of terrestrial plants (Saha et al. 2014; 
Zou & Wu 2011). In general, spores of AMF in the soil 
germinate, extend and finally form an appressorium to 
contact with root epidermal cells of host plants (Figure 
1). These  colonized hyphae continue in developing 
cortical  cells of roots,  where arbuscles are formed. The 
internal hyphae of roots extend outward to form external 
hyphae on roots, which reside on the root surface for 
absorbing nutrients and water from the soil. Furthermore, 
the relationship between AMF and plant roots dramatically 
modulates the composition, succession and stability of 
plant community structure (Yao & Zhu 2010). Arbuscular 
mycorrhizas have positive effects on plant growth, nutrient 

absorption, stressed tolerance and soil structure (Chen et 
al. 2015; Oyewole et al. 2017). 
 A protein which originates from intraradical hyphae 
in roots and the surface of extraradical hyphae in the 
rhizosphere (Figure 1) was firstly found by Wright et 
al. (1996). The protein of AMF can be released from 
mycelial surface into soils, named as glomalin. The 
monoclonal antibody immunofluorescence localisation 
further confirmed that the protein was actually produced 
by AMF (Wright et al. 1998). Earlier studies indicated 
that glomalin concentration in soils was observed to 
decrease along with the AMF hyphae density (Steinberg & 
Rillig 2003). Long-term use of fungicides on grasslands 
decreased mycorrhizal diversity and colonisation, 
resulting in the decrease of glomalin in soils (Rillig 
2004). Many studies have shown that inoculation of 
AMF heavily increased the concentration of rhizosphere 
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glomalin (Xie et al. 2013; Yang et al. 2017, 2016). The 
glomalin represents great significance in soil structure 
and soil organic matter composition, as well as with 
fungal physiology and soil biochemistry (Zou et al. 2016). 
Despite much work performed on glomalin from 1996, 
there are still unknown problems of glomalin that needs 
to be solved, including purification, structural features and 
environmental responses. This review mainly focuses on 
the origin, extraction, classification, potential functioning 
and application of glomalin (Figure 1).

ORIGIN OF GLOMALIN

The study of glomalin began with the discovery of 
a monoclonal antibody (MAb 32B11) that can be 
immunologically reactive on the surface of spores of 
Glomus intraradices (Wright et al. 1998, 1996). Based on 

sodium dodecyl sulfate polyacrylamide gel electrophoresis 
(SDS-PAGE), Wright et al. (1998) analyzed the difference 
between the protein produced in this soil and the protein 
extracted from mycorrhizal mycelium, and found that the 
bands of the two proteins were the same. The glycoprotein 
is named as glomalin due to AMF from the Glomales, the 
taxonomic order (Wright & Upadhyaya 1996). Glomalin 
can be originated from intraradical hyphae in roots and 
the surface of extraradical hyphae in the rhizosphere, and 
can be released from mycelial surface into soils (Wright 
et al. 1996). It seems that glomalin is believed to be the 
only protein directly secreted by AMF into soils (Rillig 
2004). In fact, glomalin in soils according to the extraction 
protocol contains other non-glomalin ingredients (Rillig 
2004). As a result, Rillig (2004) proposed a new name, 
glomalin-related soil protein (GRSP), to replace glomalin 
in soils (Table 1).

TABLE 1. History of the development in glomalin terminology

Times Proposers Contributions

1996 Wright et al. Finding the special protein from arbuscular mycorrhizal fungi (AMF), and further naming it as glomalin
1998 Wright et al. Using different citric acid buffers to extract the glomalin from the soil and dividing them into easily extractable 

glomalin (EEG) and total glomalin (TG), and the part of the immune response that can be associated with 
MAb 32B11 is called IREEG and IRTG, respectively

2004 Rillig Glomalin-related soil protein (GRSPs) are used to replace glomalin term, and using BRSP (Bradford-reactive 
soil protein), IRSP (immunoreactive soil protein), EE-BRSP (easily extractable BRSP) and EE-IRSP (easily 
extracted immunoreactive soil protein) to replace the corresponding glomalin terminology before

2008 Rosier et al. Bradford-root protein, a root-originated glomalin
2013 Koide and People GRSPs are divided into the fraction 1 (easily extracted) and the fraction 2 (difficult extracted)
2014 Wu et al. Named the fraction 2 as difficulty extractable glomalin-related soil protein (DE-GRSP), based on Koide and 

People (2013)
2016 Wu et al. Defined Bradford-root protein as glomalin-related root protein 

FIGURE 1. The potential functions of glomalin secreted by arbuscular mycorrhizal fungi
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 Gadkar and Rillig (2006) further confirmed that GRSP 
released from Glomus intraradices, defined as Gihsp60, 
and had high similarity to heat shock protein 60. Moreover, 
Gihsp60 encoded a full-length cDNA of 1773 bp length. 
The open reading frame of Gihsp60 may encode a protein 
of 590 amino acids and have three introns of 67, 76, and 
131 bp length. 

EXTRACTION OF GRSP

At present, the protocol of glomalin extraction is based 
on Wright et al. (1996). The protocol is as follows: 1 g 
of soil samples was mixed with 8 mL 50 mmol/L citrate 
buffer (pH8.0) for the analysis of total glomalin-related soil 
protein (T-GRSP) and with 8 mL 20 mmol/L citrate (pH7.0) 
for the analysis of easily extractable glomalin-related soil 
protein (EE-GRSP). The mixture was incubated at 121°C 
and 0.11 MPa for 90 min for T-GRSP and for 30 min for 
EE-GRSP, respectively. 
 Given that EE-GRSP is a component of T-GRSP, they 
are often strongly correlated with each other. Koide and 
People (2013) further divided GRSP into fraction 1 and 
fraction 2. Hereinto, the fraction 1 (corresponding to EE-
GRSP) was relatively more labile, and the fraction 2 as an 
older glomalin was more difficult to extract and recalcitrant 
in soils. Subsequently, Wu et al. (2014a) proposed that 
the fraction 1 was called as EE-GRSP, and the fraction 2 
was defined as difficultly extractable glomalin-related 
soil protein (DE-GRSP). T-GRSP is the sum of EE-GRSP 
and DE-GRSP (Wu et al. 2015a). The extraction protocol 
regarding these GRSPs is shown in Figure 2. Here, DE-GRSP 
is extracted from the residue remaining from EE-GRSP 
extraction at 0.11 MPa with 50 mmol/L citrate (pH8.0) 
for 60 min and centrifuged at 10,000×g for 20 min. In 
another study conducted by Du et al. (2015), soil sample 
weight was 0.75 g, and the extracted citrate buffer of EE-
GRSP should be 6 mL (corresponding to 1:8, w/v), which 
can represent the highest EE-GRSP production extracted.
 Glomalin can be quantified by either Bradford method 
(Wright et al. 1996) or MAb32B11-ELISA (Wright & 
Upadhyaya 1998, 1996; Wright et al. 1996) assay after the 

extraction. Meanwhile, Bradford method is widely used to 
determine the concentration of soil glomalin. As proposed 
by Rillig et al. (2004), under Bradford method conditions, 
GRSP can be divided into four categories namely Bradford-
reactive soil protein (BRSP), easily extractable BRSP 
(EE-BRSP), immunoreactive soil protein (IRSP) and easily 
extracted immunoreactive soil protein (EE-IRSP). Rosier 
et al. (2006) reported that the extraction of the current 
program may not completely remove all proteins other 
than glomalin. In some soils, citrate buffers may extract 
organic compounds other than protein such as humic 
acid (Nichols & Wright 2005; Schindler et al. 2007). The 
Bradford method is not used to test the soil AMF-secreted 
glomalin when soil organic matter content is very high. 
Subsequently, Bolliger et al. (2008) measured the purity of 
GRSP in a variety of methods including immunochemical, 
lectin-affinity and soil labeling experiment, in order to 
re-examine the glomalin-purity with the citrate extraction-
Bradford assay procedure. They found that the main 
ingredient was still glomalin. On the other hand, larger 
centrifugal forces may isolate more and tinier particles of 
the soil, thus raising the purity of GRSP extracted from the 
soil (Du et al. 2015). However, at present, glomalin is not 
produced in large quantities according to the restricted 
techniques. Since the current protocol about glomalin 
extraction does not exclude the impurities from non-AMF, 
the extraction protocol needs to be further optimized.
 Besides soil GRSP, Rosier et al. (2008) tried to extract 
Bradford-root protein, a root-originated glomalin. Wu et al. 
(2016a) further defined it as glomalin-related root protein 
(GRRP). The protocol of GRRP is as follows: 1 mg of dried 
root sample was autoclaved with 50 mmol/L sodium citrate 
(pH8.0) at 121°C for 60 min, and centrifuged at 5000×g for 
15 min. The supernatant was stored at 4°C until analysis. 
Prior to Bradford and an indirect ELISA with MAb32B11, 
the supernatant was centrifuged at 10000×g for 3 min. 

GRSP FUNCTIONING ON SOIL ORGANIC CARBON

Soil organic carbon (SOC) is the important component in 
global carbon cycle (Tang et al. 2016). AMF itself cannot 

FIGURE 2. The extraction protocol of different glomalin-related soil protein fractions in soils
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perform photosynthesis and they rely on the host plant 
to provide ~20% of the photosynthetically fixed carbon 
(C) for its growth and development (Averill et al. 2014; 
Chen et al. 2015). The C provided by the host plant can 
enter into the soil in the form of GRSP, thus, GRSP plays 
an important role in soil C fixation and cycle (Singh et 
al. 2017). Kumar et al. (2018) reported that GRSP was 
the most important source of C in SOC. Moreover, GRSP 
has a positive contribution to the soil C pools in native 
grasslands for a soil binding agent (Purin et al. 2006). 
Combined with three kinds of soil samples obtained 
from the surface soil to the depth of 20 cm, Zhang et al. 
(2017a) drew a linear correlation between GRSP and SOC. 
It is estimated that GRSP accounts for 4% to 5% of total 
soil C source, which was higher than the contribution 
of microbial biomass C in Hawaiian soils (Wu et al. 
2014b). As a consequence, GRSP plays a crucial role in 
both regulation of SOC and maintenance of soil fertility 
(Preger et al. 2007). However, in citrus orchards, Wang 
et al. (2015) analysed soil samples from 0 to 15 cm depth 
rhizosphere of four similar citrus trees, and found that 
there was no significant correlation between SOC and 
any part of GRSPs. It seems that GRSP may not provide 
a positive contribution to the SOC pool. Recently, the 
chemical structure of GRSP was shown by the method of 
the solid-state 13C cross polarisation magic angle spinning 
(Zhang et al. 2017a). The result showed that GRSP had a 
high carboxyl C ratio (40% of total content) and relatively 
high aromatic hydrocarbon ratio (30% of total content) 
and alkyl C (20% of total content). As a result, GRSP could 
directly promote the SOC accumulation as it retains the 
number of C (Zhang et al. 2017a). According to its sticky 
nature and the forms in soil of GRSPs (Dai et al. 2015), 
GRSPs in the soil have 6 to 42 years of long turnover period 
(Wu et al. 2013), suggesting that GRSPs retain a stubborn 
structure of organic C in soils, and indirectly affects SOC 
(Zhang et al. 2017a). In short, GRSP is beneficial to the 
accumulation and the circulation of SOC in soils.

GRSP FUNCTIONING ON SOIL AGGREGATE STABILITY

Soil aggregation is an important and complex process 
in soil ecosystems (Wu et al. 2016b), which relies 
on soil microbes to provide adhesive effects on soil 
particles together (Singh et al. 2012). This process 
is highly dependent on the formation and stability of 
soil aggregates (Rillig et al. 2015). Soil aggregate stability 
plays an important role in soil quality, which protects 
soil organic materials from microbial decomposition 
(Bronick & Lal 2005) and also prevents the degradation 
of soil structure (Guo et al. 2017). AMF are considered 
to stabilise soil aggregates, because mycelium and GRSP 
of AMF have a positive correlation with soil aggregate 
stability in natural systems (Singh et al. 2012; Xu et al. 
2013; Zhang et al. 2017b). In a citrus orchard, both soil 
EE-GRSP and T-GRSP collectively were significantly and 
positively correlated with mean weight diameter (MWD, 
an indicator of soil aggregate stability) (Wu et al. 2014b). 

The path model analysis showed that the direct effect 
of GRSPs on soil aggregate stability was higher than the 
total (direct and indirect) effect of mycorrhizal hyphae 
(Rillig et al. 2002). On the one hand, GRSPs stabilise the 
macroaggregates (> 0.25 mm) to improve soil structure 
through their glue function (Gadkar & Rillig 2006), and 
the function is more significant under drought stress than 
under salt stress (Zou et al. 2014). On the other hand, 
GRSPs can reduce water loss within soil aggregates under 
drought stress as they seem to form a hydrophobic layer 
on the soil aggregate surface (Nichols 2008). In addition, 
large polymers can be formed from fine soil particles as 
GRSPs can cement the polymers in the diameter of <0.25 
mm size to finally stabilize soil unit (Borie et al. 2008). 
In short, GRSPs can bind differently sized soil aggregates 
to enhance soil stability for storing water or improving 
soil physical and chemical properties.

GRSP FUNCTIONING ON SOIL TOXIC ELEMENTS

Toxic metals accumulate in the soil, which negatively 
affects plant growth and crop yield and even harms human 
health through enlarged food chain (Kumar et al. 2013). 
Toxic metals are related to the behavior of plants in the 
soil and their bioavailability (Huang et al. 2018). AMF are 
critical to the establishment of sites and the adaptability 
of plants in serious destruction (Bedini et al. 2010), 
including soils contaminated by toxic metals (Vallino et al. 
2006). AMF reduce the toxicity of toxic metals to plants by 
converting, accumulating and transferring them (Meier et 
al. 2012). Under Cd treatments, the concentration of GRSPs 
was significantly increased by low concentration of Cd 
treatment, but notably declined under high concentration 
of Cd treatment, indicating that GRSPs may have a filtering 
effect on toxic metals, at least Cd (Xie et al. 2013). Xu 
et al. (2012) found that root total glomalin content of 
Sophora viciifolia was increased with the increase of soil 
Pb concentration under mycorrhizal conditions, indicating 
that AMF alleviate Pb stress by adsorption of GRSPs. It 
seems that GRSPs have the buffer capacity on toxic metal 
release to protect the host plant (Wang et al. 2010). Rillig 
(2004) proposed that GRSPs secreted by AMF had a high 
binding capacity for certain toxic metals (Cu, Cd and Pb). 
Possibly, GRSPs can stabilise toxic metals and reduce the 
availability of toxic metals, thereby reducing the impact 
of toxic metals on other soil microorganisms and plants. 
In addition, GRSP can combine Cu, Ni, Pb and Co by 2.3%, 
0.83%, 0.24% and 0.24%, respectively, thus reducing the 
bioavailability of toxic elements (Rillig 2004). Wu et al. 
(2014) also proved that GRSP could bind Pb and Cd in the 
soil. Hence, GRSPs represent the functioning on mitigating 
stressed damage of contaminated soils to plants (Vodnik 
et al. 2008). 

GRSP FUNCTION IN ENHANCING PLANT TOLERANCE

The amino acid sequence of glomalin is homologous 
with heat shock protein 60 (Hsp60), as shown by liquid 
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chromatography-mass spectrometry (Gadkar & Rillig 
2006). It is known that Hsp60 is a protein produced by 
eukaryotic cells or prokaryotic cells under environmental 
stress (Chen et al. 2015). The expression of Hsp60 
gene can reduce the damage caused by environmental 
stresses (Kumar et al. 2015). Mycorrhizas under stressed 
conditions secrete a certain amount of glomalin to protect 
host plants by serving as a stress-induced protein (Chi et 
al. 2018; Driver et al. 2005). Under drought stress, AMF 
could enhance the resistance of trifoliate orange colonised 
by Funneliformis mosseae and Diversispora versiformis, 
based on the increase in soil GRSP (Wu et al. 2008). 
In addition, GRSPs can prevent the loss of water from 
soils (Zou et al. 2014), thereby, fighting unfavourable 
environments. Nichols (2008) reported that GRSPs helped 
host plants to mitigate the adverse effects of drought stress 
on plants by promoting soil aggregate stability. Hammer 
and Rillig (2011) also reported that GRSP content in soils 
was significantly increased under salt stress, which is 
associated with salt tolerance of host plants. Recently, 
Chi et al. (2018) extracted EE-GRSP solution from citrus 
soils and applied onto potted trifoliate orange seedlings. 
They observed that exogenous EE-GRSP heavily enhanced 
drought tolerance of trifoliate orange, in terms of changes 
in antioxidant enzymes, plant growth and soil structure. 
Possibly, GRSP contains Fe and also binds Cu, Mn. 
Hence, exogenous EE-GRSP strongly stimulated leaf Fe-
SOD activity and root Mn-SOD, Cu/Zn-SOD and Fe-SOD 
activities under drought stress (Chi et al. 2018). 
 On the other hand, in temperate forests, GRSP 
contained 4.2 to 7.5% of Al in the acidic soil (Seguel et 
al. 2013). As reported by Aguilera et al. (2012), Al could 
be isolated from GRSP particles to prevent Al from toxic 
damage in plants. These results manifest that GRSPs can 
enhance the resistance of plants to Al stress. However, the 
production of GRSPs is decreased by the increase of AMF 
growing space (Rillig & Steinberg 2002). It is suggested 
that the glomalin secreted by AMF may be only just for 
protecting itself, and the functional roles of glomalin in 
soils are secondary (Purin & Rillig 2008). 

EXOGENOUS GRSP APPLICATION IN CROPS

The functions of GRSP are gradually recognised and 
accepted by earlier studies. To confirm GRSP functioning, 
Wu et al. extracted and applied EE-GRSP solution in citrus 
plants under potted condition or in fields (Chi et al. 2018; 
Wang et al. 2015; Wu et al. 2015b), as shown in Table 2. 
Wang et al. (2015) applied the EE-GRSP extracted from the 
citrus orchard soil onto potted trifoliate orange seedlings. 
The results showed that plant growth was promoted 
by exogenous EE-GRSP application, dependent on the 
concentration of exogenous EE-GRSP. Meanwhile, 1/2 
strength EE-GRSP exhibited the best effects. In addition, 
Wu et al. (2015b) applied EE-GRSP solutions into the 
rhizosphere of 27-year-old Satsuma mandarin grafted on 

Poncirus trifoliata and found that exogenous EE-GRSP 
applications had a significantly positive effect on inducing 
the production of endogenous EE-GRSP, DE-GRSP and 
T-GRSP and SOC. Furthermore, exogenous GRSP functions 
in enhancing soil aggregate stability and soil phosphatase 
activity (Wu et al. 2015b). Soil tillage heavily disrupts 
mycorrhizal hyphal network, which had an adverse effect 
on GRSP production, subsequently weakening the GRSP 
functioning on aggregate stabilization. As described 
previously, exogenous EE-GRSP had a positive effect on 
enhancing drought tolerance of trifoliate orange, due to 
glomalin behaving as a humic-like substance to stimulate 
plant growth, as a homologous substance with Hsp60 like a 
stress moderator, as a hydrophobic layer on fungal hyphae 
to prevent loss of water, and as a Fe-contained substance 
to increase plant Fe-SOD activity (Chi et al. 2018). In 
short, exogenous EE-GRSP seems to be used as an effective 
regulator in plants and soils to affect soil fertility, soil 
structure, plant growth and plant tolerance. More studies 
need to be performed to confirm the roles of exogenous 
EE-GRSP on field crops, besides citrus plants. 

FUTURE PERSPECTIVE

In short, GRSPs are beneficial to the accumulation and 
the circulation of SOC. GRSPs can glue soil aggregates to 
enhance the stability and can adsorb toxic metals in the 
soil to decrease the damage of toxic metals on plants. In 
addition, GRSPs partly alleviate negative effects of abiotic 
stresses, including drought stress and salt stress. Even 
so, there are still plenty of gaps in this research topic. 
The structure of glomalin is still vague and it can only 
be defined as a related soil protein. Hence, future studies 
still need to analyse the structure and constituents of 
glomalin. Next, the extraction protocol of glomalin needs 
to be optimised. At present, the extraction protocol does 
not exclude some non-relevant impurities, which hinder 
the identification of glomalin. In addition, the mechanisms 
regarding the GRSP function in enhancing stressed 
tolerance need to be clarified. Therefore, more attention 
needs to be paid on the function of root glomalin. More 
field experiments regarding exogenous GRSP application 
should be conducted. Until now, there are three reports 
about exogenous GRSP application in citrus plants. Other 
crop plants must be tested regarding their responses to 
exogenous GRSP. In addition, exogenous DE-GRSP and 
T-GRSP need to be considered in crops and compared with 
exogenous EE-GRSP. 
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