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ABSTRACT

This paper describes the Ce anomaly observed in granitic soil from the humid, tropical area of Kuantan, Pahang, 
Peninsular Malaysia. Three granite rock soil profiles from Kuantan, were sampled and all samples were analysed for 
rare earth elements. All the profiles of the granitic soil samples show prominent positive Ce anomalies, with the Ce/Ce* 
ratio values (Ce/Ce*= CeN/√LaN.PrN) ranging from 1.2 to 125. l. Ce4+ is compatible in zircon because it has also the 
same charge and a similar ionic radius as to Zr4+ (Ce4+ = 0.97 Å; Zr4+ = 0.84 Å). The retention of zircon in the weathering 
product of the granitic rocks will increase the Ce content in the soil. Thus it is likely that the positive Ce anomaly in the 
REE profile of the Kuantan Granites may also have resulted from retention of zircon in the weathering product.
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ABSTRAK

Kertas ini menghuraikan anomali Ce yang diperhatikan di dalam tanah granit dari kawasan lembap tropika di Kuantan, 
Pahang, Semenanjung Malaysia. Tiga profil tanah granit dari Kuantan telah dijalankan persampelan dan kesemua sampel 
dianalisis untuk unsur nadir bumi. Kesemua profil tanah granit tersebut menunjukkan anomali Ce yang ketara dengan 
nilai nisbah Ce/Ce* (Ce/Ce*= CeN/√LaN.PrN) berjulat antara 1.2 ke 125.1. Ce4+ adalah sepadan di dalam zirkon kerana 
ia mempunyai cas dan garis pusat ionik yang sama dengan Zr4+ (Ce4+ = 0.97 Å; Zr4+ = 0.84 Å). Ketahanan zirkon di 
dalam hasil perluluhawaan batuan granit akan menaikkan kandungan Ce di dalam tanah. Oleh itu, berkemungkinan 
anomali Ce positif di dalam profil REE batuan granit Kuantan disebabkan oleh ketahanan zirkon terhadap luluhawa.

Kata kunci: Anomali Ce; mineral zirkon; tanah bergranit; unsur nadir bumi; zirkon

INTRODUCTION

A relatively immobile Rare Earth Elements (lanthanide 
series + La) have almost an identical chemistry and is 
primarily found in the +3 oxidation state. During the 
weathering process, the elements were released from 
the primary mineral, leached and fractionated into the 
weathering product (Aubert et al. 2001; Banfield & 
Eggleton 1989; Duddy 1980; Haskin 2006; Huang & 
Gong 2001; Minarik et al. 1998; Nesbitt 1979; Taunton et 
al. 2000). All the elements in the series behave similarly 
during the weathering process except Ce and Eu, which 
have +4 and +2 oxidation states, respectively. The Ce 
anomaly (positive and negative) has been reported 
and discussed in various types of geological samples 
including in many granitic soil profiles (Bao & Zhao 
2008; Imai et al. 2013; Leybourne et al. 2000; Mongelli 
1993; Nakajima & Terakado 2003; Ndjigui et al. 2009; 
Tripathi & Rajamani 2007). Under oxidizing conditions 
Ce3+ can be changed to Ce4+ which is less soluble and 
can be fixed in secondary minerals such as clay minerals. 

 This paper reports an ongoing geochemical study of 
the basaltic and granitic soils of the tropical, humid area. 
The study area located at the eastern belt of Peninsular 
Malaysia. The area is dominated by basalt and granitic 
rocks surrounding the capital of Pahang state, Kuantan. 
The granite is an isolated pluton mainly composed of 
I-type fractionated hornblende biotite granite of Late 
Permian age (Cobbing et al. 1992; Ng et al. 2015a). 
Extensive land development and quarry activity had 
fortunately exposed a lot of the rock profiles to allow this 
study to be carried out. Thus, the aim of this paper is to 
present and discuss the possible reasons of the positive 
Ce anomaly in the granite soil profile.

GENERAL GEOLOGY

Peninsular Malaysia is located at the heart of the shallow 
water Sunda Shelf now known as Sundaland (Metcalfe 
2011). Geographically the peninsular is located at the 
centre of Southeast Asia and is surrounded by Sumatera 
to the west, Thailand Peninsular to the north and Indonesia 
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to the east and south. The Malay Peninsular can be 
divided into two tectonic terranes, the Sibumasu and the 
Indochina that has been divided by the Bentong Raub 
Suture (Metcalfe 2013, 2000). The granitic rocks from the 
Sibumasu and Indochina terranes are known as the Main 
Range Granites and the Eastern Belt Granites, respectively, 
were formed during the subduction and collision of the 
Sibumasu and Indochina blocks. The collision occurred in 
the Lower Permian to the Middle Triassic period, which 
marked the closure of the Tethys Ocean (Metcalfe 2000). 
The Sibumasu terrane, west of the Bentong Raub Suture, is 
characterized by Tin bearing, transitional I- S type granites 
and was emplaced around 198 to 227 Ma (Cobbing et al. 
1992; Jamil et al. 2016; Ghani 2009, 2000; Ghani et al. 
2014, 2013a; Ng at al. 2015a; Searle et al. 2012). The main 
granite types are coarse megacrystic biotite granite and 
two-mica granite. To the east of the suture in Indochina 
block, the granites are older, and emplaced around 220-
290 Ma and are mainly I–type granites (Cobbing et al. 
1992; Ghani 2009; Ghani et al. 2013b; Ng et al. 2015b). 
The Eastern Belt granite batholiths intrude into the gently 
deformed, metamorphosed Carboniferous to Triassic 
sediments and volcanics. The granites have been intruded 
by a swarm of mafic dykes (Ghani et al. 2013c).
 The study area is located at the central part of the 
Indochina terrane and is part of the Eastern Belt granites 
(Figure 1). The area is underlain by two main types of 
igneous rocks of contrasting age that is the Permian 
Kuantan granite and the Pleistocene Kuantan basaltic 
formations. The Kuantan granite forms an isolated granitic 

body surrounded by Paleozoic country rocks and has been 
intruded by numerous Jurassic, mafic dykes (Ghani et al. 
2013c; Haile et al. 1983). The younger basalt formations 
mainly form low-lying hills overlying the granitic rocks. 
Contact between these two rocks can easily be traced 
as the soils of the granite and basalt in this area exhibit 
significantly different colour and physical characteristics. 

WEATHERING OF KUANTAN GRANITES

The main granite type is graded from coarse grained, 
primary textured equigranular to porphyritic biotite and 
hornblende granite (Cobbing et al. 1992) with a high SiO2 
content of > 70% SiO2. The mineralogy of the granites in 
decreasing abundance is K-feldspar, quartz, plagioclase, 
biotite, apatite, allanite and zircon. K-feldspar occurs as 
large phenocrysts of up to 3 cm long and is characterized by 
perthitic texture. Quartz is mostly anhedral and generally 
interstitial to all the other minerals. Biotite occurs as 
discrete plates or ragged shreds in mafic clots and as small 
flakes associated with granoblastic aggregates of quartz and 
plagioclase. The pleochroism scheme is typically pale brown 
to dark brown. Zircon and apatite are the main accessory 
phases while hornblende occurs as individual crystals.
 The humid, tropical climate with high precipitation 
allows the granitic rock to decompose into saprolite and 
lateritic soil. Thick lateritic weathering profiles have been 
developed over the granitic rocks in the study area. The 
soil profile (thickness of 2 to 10 m) is characterized by 
boulders with size ranging from 0.5 m to several metres 
in diameter. 

FIGURE 1. Simplified geological map of Kuantan area. Note that the granite 
form about 30% of the Kuantan area
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GEOCHEMISTRY

METHOD

Three representative granitic profiles along the cut slope 
from the study area were selected for sampling. The profiles 
are numbered as KG1, KG3 and KG4 and the number of 
samples collected from each of the profiles are 3, 4 and 
4, respectively. The description of the samples is given in 
Table 1. All the samples were dried and powdered to the 
size of 150 µ. After the pulverization and homogenization 
procedures, the samples were sent to ACME Analytical 
Laboratories in Vancouver, for major, trace and rare earth 
elements analysis. Major oxide elements and rare earth 
elements were analysed by using the Siemens sequential 
X-Ray spectrometer and ICP MS, respectively. Calibration 
was done with international standards PM‒S and WS‒E 
(Govindaraju et al. 1994). 

RESULTS

The results for the rare earth elements is shown in Table 2. 
The average total REE for the KG1, KG3, and KG4 profiles 
are 105, 397, and 99.5 ppm, respectively. The behaviour of 
REE in both rock and soil samples were investigated using a 
chondrite normalised diagram (Sun & Mc Donough 1989). 
The diagrams for all three profiles are shown in Figures 2 to 
4. For comparison, in both KG1 and KG3 profiles (Figures 2 
& 3), a fresh Kuantan granite sample profile is also given 
in each of the plot. All the profiles show prominent positive 
Ce anomalies, with the highest as in the sample profile 
KG3, with the Ce/Ce* ratio values (Ce/Ce*= CeN/√LaN.
PrN) ranging from 1.2 to 125. In general, all the profile are 
comparable to the Chondrite normalized REE pattern for 
zircon from magmatic zircon reported elsewhere around 
the world (Figure 5) (Belousova et al. 2006; Black et al. 
2004; Hoskin & Ireland 2000; Hoskin et al. 2000).

TABLE 1. Depth, colour and description of each of the samples

Sample Depth 
(Feet)

Color
(Munsell notation)

Description

KG1
KG1-6 1-12 Brown

(10YR 5/3)
Coarse sandy clay, Medium to fine, subangular blocky 
grains, Compacted
Weathering grade 6

KG1-5 12-36 Pale Yellow
(2.5Y 8/3)

Coarse sandy clay, Medium to fine, subangular blocky 
grains, Less compacted, Weathering grade 5

KG1-4 28-36 - More of than half of the rock is decomposed into soil, 
Regolith (Fresh or discolored), Friable, No organic 
mater. Weathering grade 4

KG3
KG3-6 1-5.6 Light brown

(7.5YR 6/3)
Coarse sandy clay, Medium to fine, subangular blocky 
grains Compacted. Weathering grade 6 

KG3-5 5.6-21.0 Light red
(2.5 YR 6/6)

Coarse sandy clay, Medium to fine, subangular blocky 
grains, Compacted. Weathering grade 5

KG3-4 21.0- 29.4 - More of than half of the rock is decomposed into soil, 
Regolith (Fresh or discolored), Mixed together with soil
Friable, No organic mater. Weathering grade 4

KG3-3 21.0-29.4 - Less of than half of the rock is decomposed into soil, 
Regolith (Fresh or discolored), Mixed together with soil
Britle. No organic mater. Weathering grade 3

KG4
KG4-6 1-6.5 Very pale brown

(10YR 7/4)
Coarse sandy clay, Medium to fine, subangular blocky 
grains. Compacted, Weathering grade 6

KG4-5 6.5-25.4 Very pale brown
(10YR 8/3)

Coarse sandy clay, Medium subangular blocky grains, 
Compacted. No organic matter. Weathering grade 5

KG4-4 19.5-25.4 - More of than half of the rock is decomposed into soil, 
Regolith (Fresh or discolored), Mixed together with soil
Friable. No organic mater. Weathering grade 4

KG4-3 19.5-25.4 - Less of than half of the rock is decomposed into soil, 
Regolith (Fresh or discolored), Mixed together with soil
Brittle. No organic mater. Weathering grade 3
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TABLE 2. REE content of the soil samples

Sample Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Total
REE

KG1-4
KG1-5
KG1-6

34.4
115.3
32.6

2.1
0.6
6.9

74.6
93.7
19.8

0.91
0.51
1.97

3.6
3.8
6.7

1.51
2.65
1.72

0.14
0.07
0.21

3.19
6.91
3.01

0.78
1.96
0.73

5.34
14.87
5.29

1.07
3.06
1.01

3.92
12.47
3.92

0.61
1.99
0.57

3.9
13.79
3.72

0.65
2.23
0.63

102.32
158.61
56.18

KG3-3
KG3-4
KG3-5
KG3-6

38.1
15.3
2.9
6.9

159.6
37
1.4
2

377.2
236

396.8
68.1

40.62
10.1
0.36
0.52

138.1
34.7
1.3
1.9

16.66
4.9

0.23
0.32

2.26
1.45
0.12
0.15

13.09
4.68
1.88
0.83

1.7
0.59
0.08
0.14

8.45
3.26
0.51
1.06

1.32
0.52
0.1

0.25

4.5
1.75
0.49
1.11

0.59
0.29
0.09
0.19

3.87
1.8
0.69
1.43

0.63
0.32
0.12
0.26

768.59
337.36
404.17
78.26

KG4-3
KG4-4
KG4-5
KG4-6

19.9
13.5
14.9
10.4

11.3
4.1
7.5
3.9

44.1
28.9
96

97.6

4.4
1.5

2.84
1.46

17.6
6.4

12.7
5.4

3.67
1.46
2.5

1.24

0.43
0.27
0.3
0.13

3.46
1.68
2.81
1.66

0.57
0.33
0.48
0.29

3.52
2.21
3.12
1.82

0.64
0.44
0.55
0.36

2.43
1.7
2.2
1.43

0.41
0.31
0.32
0.22

2.81
2.25
2.14
1.64

0.48
0.38
0.37
0.29

95.82
51.93
133.83
117.44

FIGURE 2. Chondrite normalized REE pattern for samples 
from profile KG1. Detail description of each soil 

sample is given in Table 1

FIGURE 3. Chondrite normalized REE pattern for samples 
from profile KG3. Detail description of each soil 

sample is given in Table 1

FIGURE 4. Chondrite normalized REE pattern for samples 
from profile KG4. Detail description of each soil 

sample is given in Table 1

FIGURE 5. Chondrite normalized REE plot for zircon 
from magmatic zircon reported elsewhere around 

the world (Belousova et al. 2006; Black et al. 2004; 
Hoskin and Ireland 2000; Hoskin et al. 2000)
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DISCUSSION 

Both the negative and positive Ce anomalies over the 
saprolites of various rock types have been described 
previously, e.g. serpentinite (Ndjigui et al. 2008); granite 
(Scheepers & Rozendal 1993); dolerite (Marsh 1991) and 
by others (Bao & Zhao 2008; Brown et al. 2003; Mongelli 
1993). This anomaly is partly because Ce is the only 
rare earth element that is characterized by two different 
redox states: III and IV. This is in contrast to other rare 
earth element members which are only trivalent (with the 
notable exception of Eu2+). The Ce3+ can be oxidized 
by atmospheric oxygen (O2) and changes to Ce4+ under 
alkaline condition which is less soluble and is easily fixed 
into secondary mineral structures such as clay minerals 
or, form a new phase such as cerianite. Ce3+ along with 
other REE will be dissolved and be removed by solution. 
This scenario will increase the Ce concentrations in the 
weathering product and may eventually lead to the high 
concentrations of Ce especially in the weathered residual 
granitic soil. High Ce concentrations in the granitic 
weathering product suggests that the element was rapidly 
precipitated during weathering and was retained in the soil. 
 Rare erath elements in the granitic rocks are mainly 
hosted in the accessory mineral such as zircon, apatite and 
allanite (Alderton et al. 1980; Gromet & Silver 1983). Bao 
and Zhao (2008) showed that 24 to 28% of the total REE in 
the granitic rocks from Southeastern China, are carried by 
accessory minerals such as bastnaesite, parisite, gadolinite, 
doverite, allanite, xenotime, monazite, zircon and apatite. 
The behaviors of the major REE bearing accessory minerals 
during chemical weathering are the decisive factors 
affecting the accumulation of ion-exchangeable REE and 
differentiation of REE in the weathering profiles. Bao and 
Zhao (2008) divided the REE bearing accessory mineral into 
3 groups following their resistance to weathering: Strongly 
resistant to weathering, such as xenotime and zircon; 
moderately resistant to weathering such as fergusonite, 
monazite, allanite and weakly resistant to weathering, 
such as bastnaesite, parisite, gadolinite-(Y) and doverite. 
In felsic rocks such as granitic rocks, the strong minerals 
are not soluble in intense weathering. An example of 
such a mineral is zircon, which will be preserved under 
extreme weathering conditions (Alfimova et al. 2011). 
The Kuantan granites also contain zircons as the main 
accessory phase. The zircon usually occurs as inclusions 
in biotite, accompanied with pleochroic holes. The crystals 
are mostly subhedral to euhedral and show long to short 
prismatic forms. Most zircons are transparent, colourless 
to pale brown and show oscillatory zoning indicative of 
magmatic growth. Thus, the retention of zircon in the 
weathering product (Alfimova et al. 2011) of the granitic 
rocks will increase the Ce content in the residual soil. Ce4+ 
is compatible in zircon because it has the same charge and 
a similar ionic radius to Zr4+ (Ce4+ = 0.97 Å; Zr4+ = 0.84 
Å) (Thomas et al. 2003). REE profile for magmatic zircon 
elsewhere around the world also show a prominent Ce 
anomaly (Figure 5). Geochemical studies of zircon from 

various igneous rocks (Belousova et al. 2010) also showed 
that most of the zircons have a positive Ce anomaly. The 
studies showed that when the Ce3+ in zircon oxidised to 
Ce4+, it behaved more like Zr.

CONCLUSION

All the profiles of the granitic soil samples show prominent 
positive Ce anomalies, with the Ce/Ce* ratio values (Ce/
Ce*= CeN/√LaN.PrN) ranging from 1.2 to 125. l. Ce4+ 
is compatible in zircon because Ce4+ has also the same 
charge and a similar ionic radius as to Zr4+ (Ce4+ = 0.97 Å; 
Zr4+ = 0.84 Å). The retention of zircon in the weathering 
product of the granitic rocks will increase the Ce content 
in the soil. Thus it is likely that the positive Ce anomaly 
in the REE profile of the Kuantan Granites may also have 
resulted from retention of zircon in the weathering product.
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