DNA Methylation Analysis of AKT1 Promoter and HTR2A Exon-I of Malaysian Schizophrenia Multiplex Families with Lower Cognitive Performance
(Analisis Metilasi DNA Promoter AKT1 dan Exon-I HTR2A pada Keluarga Skizofrenia di Malaysia dengan Prestasi Kognitif Rendah)

ERNAA LAERE, TZE JEN CHOW, PEK YEE TANG, SIEW YIM LOH, HOI SEN YONG, ABDUL KADIR, ABU BAKAR & SHIAU FOON TEE*

ABSTRACT
Dysfunction of cognitive performance in schizophrenia has been associated with aberrant alteration of DNA methylation of several schizophrenia-risk genes. AKT1 and HTR2A are among the candidate genes for schizophrenia. Their expressions were found reduced in schizophrenia patients. Thus, we aimed to study the methylation status of AKT1 promoter and HTR2A exon-I in Malaysian schizophrenia patients and their affected family members. In this study, each participant was required to perform Trail Making Test (TMT) part A and B to measure their cognitive performance. Genomic DNA extracted from the peripheral blood of 12 Malaysian schizophrenia families and 12 controls families, was subjected to bisulfite conversion. The methylation status of CpG sites of AKT1 promoter at Chr14: 104796054 and HTR2A exon-I at Chr13: 46896918 were identified using methylation-specific polymerase chain reaction (MSP). Our results showed that schizophrenia patients performed worse in both TMT-A and B (p<0.0001) than healthy controls. The patients also displayed significantly (p=0.023) high level of methylation in AKT1 promoter compared to controls. Meanwhile, no significant difference (p=0.248) in methylation status was observed in HTR2A exon-I between schizophrenia and control groups. Therefore, methylation of AKT1 promoter in peripheral bloods of patients may involve in cognitive impairment and schizophrenia pathology. In addition, we were able to demonstrate the heritability of DNA methylation status across family members.

Keywords: Cognitive performance; DNA methylation; schizophrenia; Trail-Making Test

INTRODUCTION
Schizophrenia pathology involves the interaction between genetic and environmental factors (Gejman et al. 2010). The likelihood for an individual to develop schizophrenia is higher with the present of family history suffering the same psychiatric disorder (Nishioka et al. 2012; Salleh 2004). Impairments in cognitive performance in schizophrenia patients remain stable throughout the course and these affect their quality of life (Bowie & Harvey 2006; Green et al. 2000). Deficit of processing speed has been proposed as the central feature to cognitive impairment in schizophrenia (Dickinson et al. 2007). Processing speed is defined as the time required by an individual to execute different cognitive operations. Several higher cognitive
functions are rely on this domain (Reichenberg & Harvey 2007). Meanwhile, executive functions involve a set of mental processes consists of goal creation, planning, behavioral programming, and effective performance (Lezak 1987). Cognitive flexibility is part of the executive functions referring to the ability to shift back and forth between several tasks (Monsell 1996).

The pathology of schizophrenia and cognitive impairment may be associated with dysfunction of epigenetic programs (Jones et al. 2013; Lee & Huang 2016). Epigenetic processes such as DNA methylation influence the gene expression at transcriptional level (Gibney & Nolan 2010). The binding of methyl group to cytosine residues leads to transcriptional silencing (Gibney & Nolan 2010). DNA methylation are affected by genetics, age, sex, ethnicity, and economic status (Lam et al. 2012). Dysregulation of DNA methylation has been associated with several psychiatric disorders (Connor & Akbarian 2008) and age-related cognitive dysfunction (Chouliaras et al. 2018; Marioni et al. 2015). Genome-wide DNA methylation analysis identified methylated CpG sites at promoters AKT1, NOS1, DNM1, and SOX10 (Wockner et al. 2014). Several studies also found that the methylation in HTR2A promoter and exon-I was significantly altered in schizophrenia patients (Abdolmaleky et al. 2011; Cheah et al. 2017; Ghadirivasfi et al. 2011). Moreover, hypermethylated promoters was associated with reduced expression of schizophrenia-risk genes (Lee & Huang 2016).

The AKT1, a serine-threonine protein kinase, is required for gamma-Aminobutyric acid (GABA)ergic neuron development and its activity is highly regulated by dopamine type 2 (D2) receptor (Souza et al. 2011). Dysregulation of AKT1 signaling due to DNA variants is associated with schizophrenia pathogenesis (Bajestan et al. 2006; Ikeda et al. 2004; Schwab et al. 2005; Thielson et al. 2008). Reduction in AKT1 expression in lymphocytes, hippocampus and frontal cortex of schizophrenia patients (Emamian et al. 2004), downregulation of AKT1 phosphorylation levels in hippocampus as well as impaired hippocampal plasticity and function in mice with selective deletion of AKT1 (Balu et al. 2012), signify the role of AKT1 in modulating hippocampal neuroplasticity and function.

Meanwhile, the HTR2A, is the primary cortical serotonergic receptors that linked to schizophrenia pathophysiology through dopaminergic pathway (Eggers 2013). Serotonin regulates myriad processes in central nervous system (González-Maeso et al. 2007). Stress will induce excessive serotonin stimulation in the anterior cingulate cortex (ACC) and dorsolateral frontal lobe through HTR2A, leading to reduce brain plasticity (Eggers 2013). Moreover, an excessive mesolimbic dopamine activity in normal ACC causes positive symptoms (Schwart et al. 2012). Reduction in the expression of HTR2A and declined of HTR2A density in brain of schizophrenia patients, indicate its role in schizophrenia pathology (Dean & Hayes 1996; Garbett et al. 2008; Hurlemann et al. 2008).

As schizophrenia and cognitive performance are associated with DNA methylation (Chouliaras et al. 2018; Lee & Huang 2016), we examine the relationship between cognitive impairments and DNA methylation patterns of AKT1 promoter and HTR2A exon-I in schizophrenia multiplex families.

MATERIALS AND METHODS

SAMPLE COLLECTION

This study involved 12 schizophrenia multiplex families (n = 24) and 12 control families (n = 24). The multiplex families were comprised of 12 pro-bands and one of their affected first-degree relatives. All the patients were recruited from Hospital Permai Johor Bahru, Malaysia. They were diagnosed with schizophrenia as they fulfilled the criteria stated in the 4th edition of Diagnostic and Statistical Manual for Mental Disorders (DSM-IV) and interviewed by experienced psychiatrists using the Mini International Neuropsychiatric Interview (MINI). DSM-IV was chosen due to its reliability in filed study (Frances 2013; Vanheule et al. 2014). The patients participated in this study were absence of comorbidity. Meanwhile, healthy controls with psychiatric comorbidity, generalized anxiety disorder, predecessor history of illicit substance abuse, family history of neurodegenerative or psychiatric disorder, history of intellectual retardation, neurological disorder, or any clinical condition that could affect cognitive performance were excluded from this study. The participants are Malaysian citizens, comprising of three ethnic groups, i.e. Malay, Chinese and Indian. They were 18 years or older and were able to understand instructions of neurocognitive assessment. The demographic characteristics of all participants are presented in Table 1. Written consent was obtained for all participants. The study was approved by the University of Malaya Medical Center Medical Ethics Committee Institutional Review Board.

All participants were required to do Trail- Making Test (TMT) part A and B (Reitan 1992). TMT-A was completed by connecting 25 numbers that scattered on a page in ascending order by drawing a line. Meanwhile, for TMT-B, the subjects draw a line to alternately link the sequentially numbers and letters on a page. TMT is a commonly used test to measures processing speed, complex visual scanning, cognitive flexibility and executive functions (Tombaugh 2004). TMT-A is generally being used to measure processing speed (Salthouse 2011) while TMT-B is for cognitive flexibility and executive functions assessment (Mittal et al. 2013). Meanwhile, the TMT derived scores (B: A and B-A/A) may represent a more useful indicator of executive control with relatively no influence of processing speed (Perianez et al. 2007).
METHYLATION-SPECIFIC POLYMERASE CHAIN REACTION (MSP)

Genomic DNA was extracted from the peripheral blood using QI Amp DNA Blood Mini kit (Qiagen, USA). The methylation of specific single CpG site in AKT1 promoter (Chr14: 104796054) and HTR2A exon-1 (Chr13: 46896918) was determined using methylation-specific polymerase chain reaction (PCR) (MSP). Firstly, AKT1 promoter and HTR2A exon-1 regions were identified using ENSEMBL (http://asia.ensembl.org/index.html). Next, based on the desired gene sequences, four sets of primer sequences (Table 2) were designed using MethPrimer (http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi) to amplify the two regions. Then, bisulfite conversion was performed using the MethylEasy™ DNA Bisulfite Modification kit (Takara Bio USA, Inc), according to the manufacturer’s standard protocol. MSP was performed in a total of 25 μL reaction volume containing 1 μL bisulfite-converted DNA, 0.3 μM of each primer, 12.5 μL of 2X MSP buffer (Episcope® MSPkit, TAKARA Bio Inc, Japan) and 0.6 μL MSP enzyme (Episcope® MSP kit, TAKARA Bio Inc, Japan). The amplification started with 30 s initial denaturation at 95 °C, followed by 40 cycles of amplification (denaturation at 98 °C for 5 s, primers’ annealing temperature as stated in Table 2 for 1 min and extension at 72 °C for 1 min) and a final extension at 72 °C for 7 min. Finally, the PCR products were run on 3% agarose gel and visualized under UV light. All MSP products were cloned using NEB PCR Cloning kit (New England Biolabs, Inc) and transformed into the NEB 10-beta competent Escherichia coli following the manufacturer’s instruction. After an overnight incubation at 37 °C, colonies were screened using colony PCR according to manufacturer’s protocol for further confirmation. The PCR products were run on 2% agarose gel and visualized under UV light. The products of colony PCR were sequenced to verify the results of MSP.

STATISTICAL ANALYSIS

The obtained data were analyzed using Statistical Package for the Social Sciences (SPSS) for Windows 14.0 (SPSS Inc., Chicago, IL, USA) with the significant differences at p<0.05. The continuous and categorical variables were analyzed by Student’s t-test and chi-square/Fisher’s exact test, respectively.

RESULTS AND DISCUSSION

COGNITIVE PERFORMANCE

Analysis of the TMT data showed that the patients took significantly (p<0.001) longer time to complete TMT-A and B tasks compared to the healthy controls. Besides the TMT direct scores, the patients also obtained significantly (p<0.05) higher TMT derived scores (B-A, B-A/A, B:A) than the control group (Table 3). Another study also found that schizophrenia patients performed poorer in both TMT-A and B tasks and the differences in the TMT derived scores between patients and healthy controls were significant (Périz et al. 2007). This demonstrated that the processing speed, cognitive flexibility and executive function of schizophrenia patients were below average compared with the healthy people.

METHYLATION STATUS OF AKT1 PROMOTER AND HTR2A EXON-1

In total, 8 CpG dinucleotides present in the AKT1 promoter (Figure 1(a)). However, only one of the CpG dinucleotides was found at the priming sites (Figure 1(b)). These results were further confirmed by sequencing analysis. The majority of the schizophrenia patients and healthy subjects had methylated cytosine residue at this CpG site. However, the detection rate was significantly higher (p=0.023) in the patients (Table 4). Nevertheless, sequencing analysis revealed that all of other 7 CpG sites were unmethylated in both patients and healthy control groups (Figure 1(c)).

Our findings were supported by a genome-wide DNA methylation study, which found that AKT1 was differentially methylated near the promoter region in schizophrenia patients (Wockner et al. 2014). The methylated DNA promoter has been associated with aberrant transcriptional silencing and reduced gene expression (Herman & Baylin 2003; Razin & Cedar 1991). This is thought being regulated by at least two mechanisms. The first one is the methylation of CpG dinucleotides which will prevent the binding of transcription factors to the promoter, thus suppressing the gene transcription (Long et al. 2017).

Secondly, the methylated CpG regions will be identified by the methyl-CpG-binding proteins (MeCPs), for an example MeCP1 (Lewis et al. 1992), which later may recruit histone deacetylases to repress gene regulation (Jones & Laird 1999). Several studies have shown a
reduction in AKT1 expression in lymphocytes-derived cell lines (Emamian et al. 2004), peripheral blood mononuclear cells (van Beveren et al. 2012) and brain (Thiselton et al. 2008) of schizophrenia patients. Thus, the reduction in AKT1 expression in schizophrenia patients might be due to the methylation of AKT1. Reduced AKT1 activity may lead to the dysregulation of glycogen synthase kinase-3β (GSK3β) signaling and consequently, negatively affecting the neuronal function and synaptic plasticity (Emamian et al. 2004). In addition, the deficiency of AKT1 was reported to be associated with the modulation of GABAergic interneurons and GABAA receptor expression, leading to the impairment of hippocampus-dependent cognitive functions (i.e. spatial memory) (Chang et al. 2016).

Serotonin, a known neurotransmitter, activates the PI3K/AKT/mTOR/p70S6K phosphorylation signalling through G-protein-coupled receptors (Zamani & Qu 2012). As shown in an in vivo study, reduction of AKT1 activity in schizophrenia patients may negatively impact the activation of HTR2A by serotonin via β-arrestin2/phosphoinositide 3-kinase/Src/Akt cascade (Schmid & Bohn 2010). Therefore, methylation of CpG site in AKT1 promoter may be associated with schizophrenia pathophysiology. As the patients had a higher rate of methylated cytosine residue at CpG sites of the AKT1 promoter compared to healthy controls, we hypothesized that AKT1 promoter methylation might be associated with the impairment of cognitive performance show by the

<table>
<thead>
<tr>
<th>Genes</th>
<th>Primer sequences (5' → 3’)</th>
<th>Ta (ºC)</th>
<th>Fragment sizes (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKT1 (Chr14: 104796033-104796133)</td>
<td>UM F GGTTAGTTGAAAGTAAATTTAAG TAACCCCTACAAAAACCCCA 57 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R F GGTTAGTTGAAAGTAAATTTAAG TAACCCCTACAAAAACCCCG 57 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTR2A (Chr13: 46896918-46897029)</td>
<td>UM F AATTAGGAGTTTTTTGGTGTAGAT CTAAATTCCTCCCTCCCTATACA 56 134</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R F AATTAGGAGTTTTTTGGTGTAGAT CTAAATTCCTCCCTCCCTATACG 56 134</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bp: base pair; F: forward primer; M: methylated; R: reverse primer; Ta: annealing temperature; UM: unmethylated. The underlined letters indicate cytosine at CpG sites.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Methylation status</th>
<th>Scz (n=24)</th>
<th>HC (n=24)</th>
<th>t</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKT1 (Chr14: 104796054)</td>
<td>Unmethylated</td>
<td>1</td>
<td>8</td>
<td>4.692</td>
<td>45</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Methylated</td>
<td>23</td>
<td>16</td>
<td>4.420</td>
<td>45</td>
<td><0.001</td>
</tr>
<tr>
<td>HTR2A (Chr13: 46896918)</td>
<td>Unmethylated</td>
<td>10</td>
<td>14</td>
<td>2.613</td>
<td>45</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>Methylated</td>
<td>14</td>
<td>10</td>
<td>2.613</td>
<td>45</td>
<td>0.012</td>
</tr>
</tbody>
</table>

HC: healthy control; n: sample size; Scz: schizophrenia; SD: standard deviation; t: Student’s t-test.

Serotonin, a known neurotransmitter, activates the PI3K/AKT/mTOR/p70S6K phosphorylation signalling through G-protein-coupled receptors (Zamani & Qu 2012). As shown in an in vivo study, reduction of AKT1 activity in schizophrenia patients may negatively impact the activation of HTR2A by serotonin via β-arrestin2/phosphoinositide 3-kinase/Src/Akt cascade (Schmid & Bohn 2010). Therefore, methylation of CpG site in AKT1 promoter may be associated with schizophrenia pathophysiology. As the patients had a higher rate of methylated cytosine residue at CpG sites of the AKT1 promoter compared to healthy controls, we hypothesized that AKT1 promoter methylation might be associated with the impairment of cognitive performance show by the
patients. This could be observed in the current study, where schizophrenia patients with impaired cognitive performance showed methylated CpG at \textit{AKT1} promoter.

For \textit{HTR2A} exon-I, only one CpG dinucleotide of the amplified \textit{HTR2A} could be identified at the priming sites (Figure 1(c)). Although majority of the patients had methylated CpG, the difference was not significant \((p=0.248)\) compared to healthy controls (Table 4). This finding is consistent with the results obtained by Cheah et al. (2017) for this CpG site. Their study using post-mortem frontal cortex brain tissue demonstrated that there was no significant difference in the methylation status at this CpG site in schizophrenia and healthy subjects (Cheah et al. 2017). The cloning and sequencing analysis also showed that the other three CpG dinucleotides present in the first-exonic region of \textit{HTR2A} were unmethylated in both schizophrenia patients and healthy controls (Figure 1(f)). This demonstrated that these CpG sites might not be associated with schizophrenia pathology and reduced cognitive performance in the current study. However, the dysregulation of \textit{HTR2A} expression caused by promoter hypermethylation and genetic polymorphisms may lead to impaired cognitive performance in schizophrenia. This is because, as activation of \textit{HTR2A} in the prefrontal cortex was able to enhance the GABAergic neuron activity (Abi-Saab et al. 1999; Shen & Andrade 1998), hence deregulation of \textit{HTR2A} expression may affect working memory functioning regulated by these neurons (Volk & Lewis 2005). However, the TMTs used in the current study did not assess working memory of the subjects. This may explain the possibility of no association between \textit{HTR2A} exon-I methylation and patients’ impaired processing speed, cognitive flexibility and executive functions.

The methylation patterns of \textit{AKT1} promoter as well as \textit{HTR2A} exon-I were compared among family members. Majority of schizophrenia family members shared similar DNA methylation status in \textit{AKT1} promoter and \textit{HTR2A} exon-I (Table 5). Another study also showed that the methylation status of \textit{HTR2A} at first exonic region was similar between the patients and their first-degree relatives (Ghadirivasfi et al. 2011). Moreover, unaffected family
members of schizophrenia patients showed a predisposition for the same aberrant alteration of DNA methylation, which might be due to shared genetic or environmental factors (Abdolmaleky et al. 2015). This proved that DNA methylation is heritable.

Several limitations should be considered in evaluating these findings. Firstly, this study was conducted with a very small sample size. The results may not reflect the overall Malaysian schizophrenia population. Secondly, there was limited information on patients’ social-demographic factors such as medication histories and their occupation. Antipsychotic medication was suggested as one of the factors that could affect the gene methylation patterns. For an example, drugs such as valproate are believed to decrease the methylation of HTR2A exon-1 and lead to increase in gene expression (Abdolmaleky et al. 2015). Thus, taking into consideration of these limitations, further study should be done in a large sample size and the effect of antipsychotic medications on the methylation of AKT1 promoter as well as HTR2A exon-1 should be investigated.

CONCLUSION

In conclusion, our study suggested that the methylation profiles on the studied CpG site of AKT1 promoter may associate with schizophrenia psychopathology and cognitive impairment. Moreover, inheritance of the altered methylation was observed within the majority of schizophrenia families. Our findings warrant further study involving the association of methylation of AKT1 promoter with its gene expression as well as their correlation with cognitive performance in schizophrenia patients.

ACKNOWLEDGEMENTS

This study was financially supported by the UTARRF IPSR/RMC/UTARRF/2016-C1/T5 and Malaysia Toray Science Foundation 4417/T04, HIR/MOHE/MED/26. The authors would like to express deep gratitude to the psychiatrists and staffs of Hospital Permai, Johor Bahru, Malaysia for their assistance, as well as the patients and volunteer for their involvement in this study.

REFERENCES

Erna Laere & Shiau Foon Tee*
Lee Kong Chian, Faculty of Engineering and Science
Department of Chemical Engineering
Universiti Tunku Abdul Rahman
Jalan Sungai Long, Bandar Sungai Long
Cheras 43000 Kajang, Selangor Darul Ehsan
Malaysia

Tze Jen Chow & Pek Yee Tang
Lee Kong Chian, Faculty of Engineering and Science
Department of Mechatronics and Biomedical Engineering
Universiti Tunku Abdul Rahman
Jalan Sungai Long, Bandar Sungai Long
Cheras 43000 Kajang, Selangor Darul Ehsan
Malaysia

Siew Yim Loh
Faculty of Medicine
University of Malaya
50603 Kuala Lumpur, Federal Territory
Malaysia

Hoi Sen Yong
Institute of Biological Sciences
University of Malaya
50603 Kuala Lumpur, Federal Territory
Malaysia

Abdul Kadir, Abu Bakar
Jalan Persiaran Kempas Baru
81200 Johor Bahru, Johor Darul Takzim
Malaysia

*Corresponding author; email: teesf@utar.edu.my

Received: 2 October 2018
Accepted: 6 March 2019