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ABSTRACT

Three methods of approximating the sum of lognormal variates to a lognormal distribution were studied. They were 
the Wilkinson approximation, the Monte Carlo version of the Wilkinson approximation and the approximation using 
estimated maximum likelihood lognormal parameters. The lognormal variates were generated empirically using Monte 
Carlo simulation based on several conditions such as number of lognormal variates in the sum, number of sample 
points in the variates, the variates are independent and identically distributed (IID) and also not identically distributed 
(NIID) with lognormal parameters. Evaluation of all three lognormal approximation methods was performed using 
the Anderson Darling test. Results show that the approximation using estimated maximum likelihood lognormal 
parameters produced Type I errors close to the 0.05 target and is considered the best approximation.
Keywords: Anderson-Darling test;  lognormal approximation; maximum likelihood; sum of lognormal variates; 
Wilkinson 

ABSTRAK

Tiga kaedah penghampiran bagi jumlah variat lognormal terhadap taburan lognormal telah dikaji. Tiga kaedah 
penghampiran tersebut adalah kaedah penghampiran Wilkinson, kaedah versi Monte Carlo bagi penghampiran 
Wilkinson dan kaedah penghampiran dengan penganggaran kebolehjadian maksimum bagi parameter lognormal. 
Pemboleh ubah lognormal dijana secara empirik melalui simulasi Monte Carlo dengan beberapa keadaan simulasi 
iaitu bilangan jumlah pemboleh ubah lognormal, bilangan sampel bagi pemboleh ubah lognormal, pemboleh ubah 
lognormal tak bersandar dan tertabur secara secaman mengikut taburan (IID) dan juga tidak secaman mengikut 
taburan (NIID) berdasarkan parameter lognormal. Penilaian bagi ketiga-tiga kaedah penghampiran lognormal tersebut 
dijalankan menggunakan ujian Anderson Darling. Hasil menunjukkan penghampiran menggunakan penganggaran 
kebolehjadian maksimum terhadap parameter lognormal telah menghasilkan ralat Jenis 1 menghampiri nilai sasaran 
ralat 0.05 dan dikatakan sebagai penghampiran terbaik. 
Kata kunci: Jumlah variat lognormal; kebolehjadian maksimum; penghampiran lognormal; ujian Anderson-Darling; 
Wilkinson

INTRODUCTION

The lognormal distribution is a continuous distribution. It 
is a probability distribution that the logarithm of a random 
variable is distributed to normal. According to Limpert, 

Stahel and Abbt (2001), a random variable y is said to 
be lognormally distributed if and only if y ~ log(x) and 
indirectly the variable x is also lognormally distributed. 
In other words, if variable y is normally distributed, then

yx e−=  will be lognormally distributed.
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In general, the lognormal distribution has two parameters, 
namely the mean µ and standard deviation σ . Assume a 
random variable X is lognormally distributed or a variable 
ln( )X is normally distributed, that is 2~ ( , )X LN µ σ , or

2ln( ) ~ ( , )X N µ σ , then the probability density function 
for a lognormal distribution with parameters µ and σ  is 
given by Bromideh (2012)

with 0 and >0µ σ> . The maximum likelihood estimation 
for µ  and σ  is:

The lognormal distribution has been used to model 
a variety of phenomena such as the terminal fragment 
length of type II polyketide synthase (PKS) genes found in 
soil bacteria collected from New Jersey and Uzbekistan 
by Wawrik et al. (2007), the productivity of collaboration 
at research institutes in Germany by Havemann, Heinz 
and Kretschme (2006), the stationary distribution of spine 
sizes of individual neurons by Loewenstein, Kuras and 
Rumpel (2011), the time taken for gastric cancer tumor 
to develop into a clinical case after passing the point of 
no return, thus, hypothesizing the number of years to 
eradicate Helicobacter pylori, the risk factor for gastric 
cancer, infection in a population by Osborn et al. (2013), 
rate distributions in paleontology by Wagner (2011), 
customer demand in inventory management by Cobb, 
Rumí and Salmerón (2012), fuzzy number approaches to 
describe life time data which are more suitable to describe 
by lognormal distribution with three estimator (Shafiq, 
Alamgir & Atif 2016) and modeling the periodic change 
in the interest rate of a given maturity in actuarial science 
by Becker (1991). Muhammad Farouk, Nazrina and 
Zakiyah (2020) have applied the lognormal distribution 
on the new two-sided group chain sampling plan which 
operates with four acceptance criteria while Abdul 
Majid and Ibrahim (2021) have found that the income 
distributions in Malaysia can be best described by the 
lognormal-Pareto(II) model. 

The lognormal distribution is also of great importance 
in wireless communication, e.g., total co-channel 
interference signal received at a given location (Cardieri 
& Rappaport 2000), reduction in signal strength caused 
by signal shadowing (Beaulieu & Xie 2004), fading in 
ultra wideband communication channels (Saleem, Sieskul 
& Kaiser 2006), and cognitive radio networks (Di Renzo 
et al. 2009). Specific to the discipline, the interest is in 

the sum of lognormal variates. The sum of the lognormal 
distribution is numerically difficult to compute as it has 
no known closed form. It is well known that the sum of 
lognormal variates do not result in another lognormal 
variate. However, in wireless communication, this sum 
should be approximated as such Schwartz and Yeh (1982) 
proposed several approximations of the distribution 
including Wilkinson’s, Schwartz’s and Farley’s methods. 
There has also been numerous publications in the 
discipline with regard to this. To name a few are Beaulieu 
and Xie (2004), Cardieri and Rappaport (2000), Santos 
Filho, Cardieri and Yacoub (2005), and Santos Filho, 
Yacoub and Cardieri (2006). 

According to Cardieri and Rappaport (2000), 
the sum of lognormal variates has some important 
applications in the field of wireless communication. 
For example, in a cellular communication system, if a 
special shadowing effect is considered, then the total 
received co-channel interference signal for a location 
that sent from unwanted co-channel base stations is 
usually modeled as the sum of signal and distributed 
to lognormal. Furthermore, the exact distribution for 
the signal which is the sum of the lognormal variates of 
signal is unknown. However, it is also acceptable that 
the distribution of this signal can be estimated well with 
other lognormal distributions.  

In general, through this description, it can be 
emphasized that this sum of lognormal variates is used 
a lot in wireless communication. However, in Santos 
Filho, Cardieri and Yacoub (2005), and Santos Filho, 
Yacoub and Cardieri (2006), it was found that the sum of 
lognormal variate does not show the same results as the 
other lognormal variate although the sum of the lognormal 
variates should be estimated equal to other lognormal 
variates in the wireless relationship. Therefore, through 
this research, the problem related to the sum of lognormal 
variate which is not estimated to be equal to the other 
lognormal variates is needed to be studied and examined.

A thorough discuss ion of  the  lognormal 
approximation of the sum of lognormal  distributions 
can be found in Cardieri and Rappaport (2000). The 
approach is as follows. Consider 2~ ( , )i i iY N µ σ  for i = 
1, 2, …, N. Let ( )expi iX Y= . Then, iX is a lognormal 
variate with parameters iµ  and iσ , where -∞ < iµ  < ∞, 

iσ  > 0. Note that 1,  ,  NX X are independent and non-
identical. Consider 
					   

(1)

According to Wilkinson cited by Beaulieu and Xie 
(2004), Cardieri and Rappaport (2000), Santos Filho, 
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Cardieri and Yacoub (2005), and Santos Filho, Yacoub 
and Cardieri (2006), W is approximately lognormal with 
				  

(2)

and 
			 

(3)

The parameter values of Wµ  and Wσ  are then 
calculated from (2) and (3). When W ~ lognormal ( Wµ ,

Wσ ), the left-hand sides of (2) and (3) become
				  

(4)

and 
			 

(5)

respectively. The right-hand sides of (2) and (3) can be 
expressed as
			 

(6)

and
	

(7)

respectively. Set (4) = (6) and (5) = (7) and solve for Wµ  
and Wσ in terms of 1u and 2u . We get 
				  

(8)

and
				  

(9)

Cardieri and Rappaport (2000) continued on to 
obtain µW  and σW through Monte Carlo simulations 
and compared them against the two parameters calculated 
from the Wilkinson approximation. 

 EVALUATION OF THE DISTRIBUTION OF THE SUM OF 
LOGNORMAL VARIATES 

On the left-hand side of Equation (1), the cumulative 
distribution function of the lognormal distribution with 
the parameters obtained in Equations (8) and (9) is 
then derived. On the right-hand side of Equation (1), 
the exact or close to the exact cumulative distribution 
function of the sum of the lognormal variates is derived 
analytically using the characteristic function approach. 
The derivation of either one of these functions becomes 
a numerical problem. Several approaches to solve this 
numerical problem are discussed in Beaulieu and Xie 
(2004). In addition to the numerical work done on the 
derivation of the exact or close to exact cumulative 
distribution function of the sum of lognormal variates, 
there has been approximate work involving a mixture 
of truncated exponential functions on this side of the 
equation proposed by Cobb, Rumí and Salmerón (2012). 
The lognormal cumulative distribution function of W is 
then compared against the exact or close to the exact or the 
approximated cumulative distribution function of 

1

N

i
i

X
=
∑ .

The next step involves the evaluation of the 
closeness of the lognormal distribution of W and the 
cumulative distribution of 

1

N

i
i

X
=
∑ . Beaulieu and Xie (2004), 

Santos Filho, Cardieri and Yacoub (2005), and Santos 
Filho, Yacoub and Cardieri (2006) simply drew both 
cumulative distributions and if one is superimposed on the 
other then the approximation is deemed excellent. Cobb, 
Rumí and Salmerón (2012) evaluated both cumulative 
distributions by using a cost efficiency equation. If the fit 
is good at a low cost then the approximation is deemed 
excellent. Recently, in a similar work on mixed Gaussian 
distributions, Selim et al. (2016) used two other evaluation 
methods: Mean square error of cumulative distribution 
functions and the Kullback-Liebler divergence index.  

ANDERSON-DARLING TEST

The standard statistical methodology that is available in 
this regard is the test of hypothesis. The goodness-of-fit 
test, in general, measures how well the data corresponds 
to the fitted model. There are several goodness-of-fit tests 
available for testing the lognormal distribution. Based on 
recent studies on the goodness-of-fit tests on preliminary 
testing of normality by Keselman, Othman and Wilcox 
(2014, 2013), and Othman, Keselman and Wilcox (2015), 
the Anderson-Darling test was found to be the powerful 
test compared to the Kolmogorov-Smirnov and Cramer-
von Mises tests. Hence, we proposed to use the Anderson-
Darling test on 
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Let 1   nU U≤ ≤ be an ordered sample of size n from 
any distribution. Let
		

(10)

where F is the cumulative distribution function of the 
lognormal( Wµ , Wσ ). The test of hypothesis is set up as

0H : 
1

N

i
i

X
=
∑  is lognormal( Wµ , Wσ )      versus

1H : 
1

N

i
i

X
=
∑  is not lognormal( Wµ , Wσ ),

where the sample size of 
1

N

i
i

X
=
∑ is n. The test statistic is 

given by

2A n S= − − .	                          (11)

The critical values for the Anderson-Darling test are 
dependent on the specific distribution that is being tested. 
Tabulated values and formulas have been published 
by Stephens (1979, 1977, 1977a, 1976, & 1974) for a 
few specific distributions such as normal, lognormal, 
exponential, Weibull, logistic, extreme value type 1 and 
others. The test is a one-sided test and the hypothesis 
that the distribution is of a specific form is rejected if the 
test statistic, A2, is greater than the critical value. This 
has the advantage of allowing a more sensitive test and 
the disadvantage that critical values must be calculated 
for each distribution. The null hypothesis, 0H will be 
rejected when the p-value of the statistic, 2A  is less than 
0.05. In our paper, we will test whether 

1

N

i
i

X
=
∑ , generated 

empirically using Monte Carlo simulation, is lognormal 
with two different sets of parameters. The first set of 
parameters were obtained via Equations (8) and (9) of the 
Wilkinson’s approximation using the known parameter 
values of iX  ~ lognormal( iµ , iσ ). 

The second set of parameters were calculated from 
the Monte Carlo simulations also using Equations (8) 
and (9). In this case, M (where M is a very large positive 
integer) data sets of 

1

N

i
i

W X
=

= ∑ are generated. Hence there 

will be M E[W]s and M E[ 2W ]s. Subsequently, solving 
for the Monte Carlo lognormal parameters of W, Wµ  and 

Wσ  resulting in M sWµ  and M Wσ . Thus 
1

j

M

WMC W
j

Mµ µ
=

= ∑  

and 
1

j

M

WMC W
j

Mσ σ
=

= ∑ .                                                             

ANDERSON-DARLING TESTS WITH MAXIMUM 
LIKELIHOOD ESTIMATES OF PARAMETERS

The statistical analysis of this study is done using SAS 9.4 

(SAS Institute Inc 2015) which conducted the following 
test of hypothesis.

0H : 
1

N

i
i

X
=
∑  is lognormal	        versus

1H : 
1

N

i
i

X
=
∑  is not lognormal.

The µ and σ parameters of a lognormal distribution 
are estimated first from available data using maximum 
likelihood (Cohen 1951) by assuming that the data is 
lognormal. Recalling Equation (1) where

1

N

i
i

W X
=

= ∑
Assume 1, , nW W  be a random sample from a 
lognormal(µ,σ) distribution with mean, θ  and variance, 

2η . As stated earlier, the transformation lni iV W=  
will result in ( )2~ ,iV N µ σ . From Cohen (1951), the 
relationships between the mean, θ  and variance, 2η  of 
a lognormal distribution and its parameters m and s are 
given by	
								      

(12)
						    

(13)

Let 
								      
	 (14)

and

							       (15)
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Then the actual null hypothesis becomes 0H : 
1

N

i
i

X
=
∑ is 

lognormal( Wsµ , Wsσ ). 
In our paper, we compared the approximations 

distribution to the sum of lognormal variates; Wilkinson 
approximation and Monte Carlo Wilkinson approximation 
and Monte Carlo Maximum Likelihood estimation of 
Wilkinson approximation. The differences are on the 
parameter estimation as stated in equations (8) and 
(9) for the Wilkinson approximation, Monte Carlo 
lognormal parameters of W (Wilkinson approximation); 

1
j

M

WMC W
j

Mµ µ
=

= ∑  and 
1

j

M

WMC W
j

Mσ σ
=

= ∑ and Monte 

Carlo maximum likelihood estimation as in equations 
(18) and (19). The Monte Carlo simulation were 
generated for M=10,000 times. Here M is a data set 
that we generated and it is a very large positive integer. 
Therefore, we have considered the issue of less accuracy 

in Wilkinson approximation towards the larger values 
of Σ𝑋𝑖𝑁𝑖=1 and improves greatly in the parameter 
estimation of the sum of lognormal variates.

METHODS

SIMULATION CONDITIONS

The lognormal variates Xi were generated empirically 
using Monte Carlo simulation. The simulation conditions 
are: 1) The number of lognormal variates in the sum, N 
= 2, 10. 2) The number of sample points in the variates, 
n = 5, 15, 25. 3) The variates are independent and 
identically distributed (IID) with lognormal parameters, 

0µ =i  and 4,  12σ =i . 4) The variates are independent 
but not identically distributed (INID) with lognormal 
parameters assigned as in Table 1.

TABLE 1. Assignment of µi  and σ i  when the variates are not identically distributed

N =2 N=10

Set 1: 1 2

1 2

0 10
4 8

µ µ
σ σ

= =
= =

Set 2: 1 2

1 2

0 20
4 12

µ µ
σ σ

= =
= =

Set 3: 1 5 6 10

1 5 6 10

0 20
4 12

µ µ µ µ
σ σ σ σ

= = = = = =
= = = = = =
 

 

Set 4: 1 3 4 6 7 10

1 3 4 6 7 10

0 10 20
4 8 12

µ µ µ µ µ µ
σ σ σ σ σ σ

= = = = = = = = =
= = = = = = = = =
  

  

For both IID and the INID cases, the number of 
distinct sets of simulation conditions are given by the 
expression; (number of variates × the number of sample 
sizes × the number of parameter sets × the number of 
parameter derivations for W). For each case, there will be 
= 2 × 3 × 2 × 3 = 36 sets. Altogether, there are 72 distinct 
sets of simulation conditions. 

The procedure to collect Type I error rates for three 
approximations are as follows:

1.  For each distinct set, the values of  Wµ  and Wσ are 
calculated using the Wilkinson approximation. Let us 
denote them as Wtµ  and Wtσ , respectively.

2.  For each distinct set generate 
1

N

i
i

X
=
∑ , M = 10,000 times. 

Here M is a simulated data set that we generated and it is 
a very large positive integer that we have considered to 
overcome the issue of less accuracy towards the larger 
values of Σ𝑋𝑖𝑁𝑖=1.

3.  Then, calculate the Monte Carlo values of Wµ  and 

Wσ  from 2, 
1

/
j

M

WMC W
j

Mµ µ
=

 
=  
 
∑  and 

1
/

j

M

WMC W
j

Mσ σ
=

 
=  
 
∑  

respectively. Run 2 against the lognormal( Wtµ , Wtσ ) 
distribution using the Anderson-Darling test. There 
will be 10,000 p-values. Let the p-value be denoted 
by p and #(p < 0.05) be the number of p-values less 
than 0.05 from the 10,000 p-values. Then the p-value 
of the Anderson-Darling test for any particular set of 
simulation conditions =  #(p < 0.05)/M.

4.  Repeat 4 with the lognormal( WMCµ , WMCσ ).

5.  For each data set j in 2, assume that they are lognormal. 
Calculate the maximum likelihood estimates of µ and σ : 

jWsµ  and 
jWsσ as stated in Equations (18) and (19). There 

will be M = 10,000 parameter estimates of 
jWsµ  and jWsσ  

Report 
1

/
j

M

Ws Ws
j

Mµ µ
 

=  
 
∑ 

 and  
1

/
j

M

Ws Ws
j

Mσ σ
=

 
=  
 
∑ 

.

,

.
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6.  At the same time run 2 against lognormal(
jWsµ ,

jWsσ

distribution using the Anderson-Darling test. Collect 
the 10,000 p-values of this test. Summarize the p-values 
with #(p < 0.05)/M.

From this procedure, then Type I error is measured 
using Bradley’s liberal criterion with the condition that 
the probability of Type I error must be in the interval 
of ˆ0.5 1.5α α α< < so that the test is considered robust 
and good to use by meeting all the conditions as stated 
in Table 1.

RESULTS AND DISCUSSION

In order to do comparison between the three-
approximation method to the sum of lognormal variates, 
we need to estimate the parameter values of W. The 
parameter values were estimated according to the various 
conditioned as stated in Table 1 and the results are shown 
in Table 2. The parameter values in Table 2 were used 
in our hypothesis testing to test the H0 according to the 
parameter we estimated.

) 

TABLE 2. The parameters of W ( µ and σ ) for three approximation methods

N 1,  ,  NX X  
parameters

n = 5 n = 15  n = 25

2 IID lgn(0, 4) (1.04, 3.91)
(4.41, 2.66)

(2.37, 3.07)

(4.31, 2.83)

(2.36, 3.20)

(4.38, 2.80)

(2.36, 3.22)

2 IID lgn(0, 12) (1.04, 11.97)
(33.65, 3.26)

(6.82, 9.33)

(36.43, 3.33)

(6.79, 9.73)

(35.98, 3.36)

(6.79, 9.80)

2 INID lgn Set 1b (10, 8)
(27.26, 3.34)

(10.65, 6.75)

(28.21, 3.33)

(10.64, 7.03)

(28.04, 3.32)

(10.62, 7.07)

2 INID lgn Set 2b (20, 12)
(53.40, 3.29)

(20.35, 10.83)

(55.22, 3.42)

(20.35,11.25)

(54.78, 3.45)

(20.31, 11.32)

10 IID lgn(0, 4) (3.45, 3.70)
(6.72, 2.52)

(6.50, 2.03)

(6.77, 2.54)

(6.50, 2.13)

(6.76, 2.53)

(6.50, 2.14)

10 IID lgn(0, 12) (3.45, 11.90)
(38.32, 3.14)

(18.57, 6.52)

(38.76, 3.29)

(18.56, 6.83)

(38.60, 3.31)

(18.56, 6.87)

10 INID lgn Set 3b (22.41,11.93)
(58.00, 3.19)

(34.01, 7.42)

(58.52, 3.32)

(34.02, 7.80)

(57.87, 3.34)

(34.03, 7.86)

10 INID lgn Set 4b (22.08,11.94)
(57.99, 3.19)

(32.70, 7.50)

(57.71, 3.17)

(32.69, 7.88)

(57.21, 3.22)

(32.70, 7.93)

Note: lgn is referred to lognormal. aMC estimation of the maximum likelihood estimates of ( Wsµ , Wsσ ). bSee Table 1

 

W ~ lognormal 
( Wtµ , Wtσ )

W ~ lognormal ( WMCµ , WMCσ )
W ~ lognormal ( Wsµ , Wsσ )a
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The Type I error rates of all 72 tests are presented 
in Tables 3 and 4. In both tables the Type I error rates 
are presented in sets of three. The first entries being 
rates from tests involving parameters obtained from 
the Wilkinson approximation, Wtµ  and Wtσ . The second 
entries are the rates from tests involving parameters of 
the Wilkinson approximation obtained via Monte Carlo, 

WMCµ  and WMCσ . While the third entries are rates obtained 
from tests of lognormality whose parameters are based on 

the MLE Wsµ  and Wsσ . Note that the target Type I error 
rate is 0.05, therefore the Bradley’s criterion interval is 
(0.025, 0.075) used to measure the robustness of the test 
as suggested by Bradley (1978) to deem whether the Type 
I error rates obtained are close to 0.05 or not. Any test 
with its Type I error rate falling outside of this interval 

means that the 
1

N

i
i

X
=
∑ is lognormal with different Wµ  and 

Wσ values than the ones stated in the null hypothesis.  

TABLE 3. Type I error rates of the Anderson Darling tests whether 
1

N

i
i

X
=
∑ is lognormal when 1,  ,   NX X  are IID

N = 2 N = 10

( )0,  4i iµ σ= = ( )0,  12i iµ σ= = ( )0,  4i iµ σ= = ( )0,  12i iµ σ= =

n = 5

0.076a

0.433b

0.051c

0.144

1.000

0.049

0.496

0.032

0.051

0.966

1.000

0.051

n = 15

0.226

0.738

0.057

0.451

1.000

0.056

0.998

0.056

0.086

1.000

1.000

0.077

n = 25

0.390

0.930

0.058

0.722

1.000

0.056

1.000

0.089

0.111

1.000

1.000

0.099

Note: aTested against lognormal( Wtµ , Wtσ ). bTested against lognormal( WMCµ , WMCσ ). cTested against lognormal. Parameters estimated by maximum 
likelihood

	 From Table 3, it shows that for the tests involving 
parameters obtained via the Wilkinson approximation 

Wtµ  and  Wtσ  (first entries), none of the Type 1 errors 
falls in (0.025, 0.075) interval for both N=2 and 
N=10 and all sample sizes. As for the tests involving 
parameters obtained via Monte Carlo, WMCµ   and  WMCσ  
(second entries), only 2 of Type 1 errors are within the 
interval for the conditions of N =10 and n=5, 15 with 
( )0,  4i iµ σ= = . The best Type I error rates were obtained 
from tests of lognormality whose parameters are based 
on the MLE Wsµ   and Wsσ  (third entries) with N=2 at all 
sample size. For N=10, only Type 1 error rates with 
sample size n=5 that fall within the interval.

For the case of INID sum of lognormal variates in 
Table 4, there are 6 out of 12 Type I errors collected for 
tests involving parameters obtained via the Wilkinson 
approximation Wtµ  and Wtσ  (first entries), are within the 
(0.025, 0.075) interval; that are the tests involving N = 2 
lognormal variates only but not for N=10. As for the tests 
involving parameters obtained via Monte Carlo, WMCµ   
and  WMCσ  (second entries), none of the Type I errors 
close to 0.05 and fall within interval. Therefore, that tests 
are not robust compared to other tests. The best Type I 
error rates were obtained from tests of lognormality 
whose parameters are based on the MLE Wsµ   and Wsσ  
(third entries). Nine out of 12 tests achieved Type I error
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TABLE 4. Type I error rates of the Anderson Darling tests whether 
1

N

i
i

X
=
∑ is lognormal when 1,  ,   NX X  are INID

N = 2 N = 10

Set 1d Set 2 Set 3 Set 4

n = 5

0.034a

1.000b

0.051c

0.043

1.000

0.046

0.663

1.000

0.053

0.548

1.000

0.050

n = 15

0.038

1.000

0.071

0.046

1.000

0.053

0.999

1.000

0.065

0.996

1.000

0.072

n = 25

0.041

1.000

0.092

0.042

1.000

0.053

1.000

1.000

0.077

1.000

1.000

0.086

Note: aTested against lognormal( Wtµ , Wtσ ). bTested against lognormal ( WMCµ , WMCσ ). cTested against lognomal. Parameters estimated by 
maximum likelihood.  dSee Table 1 

rates that are close to 0.05 and were observed for n = 
5 and n = 15 when N = 2 and N=10 for all Set 1 to Set 
4 parameters and only one Type 1 error rates is within 
the interval which is for N=2 and n =25 for Set 2 
parameter only. None of the Type 1 error for N=10 and 
n=25 falls in the interval. 

We also observed that the Type I errors of the 
Anderson-Darling tests are closed to 0.05 for W being 
approximately lognormal( Wtµ , Wtσ ) when Wtµ  is close 
to Wsµ  and Wtσ  is close to Wsσ (Table 2).  For example, 
N = 2 INID lognormal variates Sets 1 and 2. In Set 
1, ( Wtµ  = 10, Wtσ  = 8) while the maximum likelihood 
estimates are ( Wsµ , Wsσ ) = {(10.65, 6.75), (10.64, 7.03), 
(10.62, 7.07)} for n = 5, 15 and 25, respectively. In Set 2, 
( Wtµ  = 20, Wtσ  = 12) while the maximum likelihood 
estimates are ( Wsµ , Wsσ ) = {(20.35, 10.83), (20.35, 
11.25), (20.31, 11.32)} for n = 5, 15 and 25, respectively. 
The same can be said for the two cases for W being 
approximately lognormal ( WMCµ , WMCσ ), namely when 
N = 10 IID lognormal variates with ( )0,  4i iµ σ= =  with 
sample sizes n = 5 and n = 15 (also see Table 2). In this 
case ( WMCµ , WMCσ ) = {(6.72, 2.52), (6.77, 2.54)} compared 

to ( Wsµ , Wsσ ) = {(6.50, 2.03), (6.50, 2.13)} for n = 5 and 
15, respectively.

Type I error rates that are greater than 0.05 
indicated that the W are not lognormal at the stated 
parameter values, be they ( Wtµ , Wtσ ), ( WMCµ , WMCσ ) or 
( Wsµ , Wsσ ). However, the maximum likelihood estimates 
( Wsµ , Wsσ ) tended to produce Type I error rates that are 
closer to 0.05. Even when they are higher than 0.075, 
they are still not excessively high. The summarization 
of the results in Tables 3 and 4 is shown in Table 5. 
This summary shows the approximation of the sum of 
lognormal variates that close to lognormal distribution 
according to their specific conditions such as number 
of variates, no of sample size and the parameter of mean 
and standard deviation.

The huge discrepancy between the values of ( Wtµ ,
Wtσ ) and ( WMCµ , WMCσ ) is contrary to what was obtained 

in Cardieri and Rappaport (2000) where ( Wtµ , Wtσ ) was 
contained in a mesh of ( WMCµ , WMCσ ). The square mesh 
was created from a large range of WMCµ  by a small 
range in WMCσ . Hence, the Monte Carlo method cannot 
produce good estimates of the W through the Wilkinson 
approximation.
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TABLE 5. The summary of approximation of the sum of lognormal variates that close to lognormal distribution according to 
specific conditions

Approximation of 
1

N

i
i

X
=
∑  

to Lognormal
1,  ,  NX X is IID 1,  ,  NX X is NIID

Wilkinson

No. of variate, N=2

No. of sample, n=5,15,25

Parameter:  Set 1a & Set 2a 

Monte Carlo Wilkinson

No. of variate, N=10

No. of sample, n=5,15

Parameter: ( )0,  4i iµ σ= =

Maximum Likelihood

No. of variate, N=2 & 10 

No. of sample, n=5 

Parameter: ( )0,  4i iµ σ= = & ( )0,  12i iµ σ= =  

No. of variate, N=2

No. of sample, n=15 & 25 

Parameter: ( )0,  4i iµ σ= = & ( )0,  12i iµ σ= =

No. of variate, N=2 & 10

No. of sample, n=5 & 15

Parameter: Set 1a, Set 2a, Set 3a & Set 

4a

No. of variate, N=2

No. of sample, n=25

Parameter: Set 2a

Note: a See Table 1

The Wilkinson approximation of the lognormal 
distribution of W which was shown to provide reasonable 
closeness with the actual or close to actual distribution 

of 
1

N

i
i

X
=
∑ in Beaulieu and Xie (2004) and Santos Filho, 

Cardieri and Yacoub (2005) was shown to exhibit this 
phenomenon only for the sum of two lognormal variates 
that are not identical. It failed for the other cases, i.e., the 
sum of two and ten identical lognormal variates and the 
sum of ten non-identical lognormal variates.

CONCLUSIONS

Based upon the results, the best method of approximating 
the lognormal distribution to the sum of lognormal 
variates is to assume that the sum is lognormal, estimate 
the parameter values using maximum likelihood 
estimation and then run the Anderson-Darling test 
of lognormality with the estimated values in the null 
hypothesis. The Wilkinson approximation in this 
particular study only works for the sum of two non-
identical lognormal variates. The Monte Carlo version 

of the Wilkinson approximation did not work at all, 
producing parameter values of W higher than the usual 
version of the approximation or the estimated parameters 
obtained through maximum likelihood. This resulted in 
complete rejection of the null hypothesis in all 10,000 
trials leading to a Type I error rate of 1.000. 
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