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ABSTRACT
Flaxseed oil rich in α-linolenic acid (ALA) has many health beneficial properties, but suffers from oxidation 
degradation due to its unsaturated nature, and may need a protective delivery system to apply to different food 
formulations.  In this study,  the rocket seed gum was used as a novel encapsulation agent to produce freeze-dried 
powders. The rocket seed gum (RSG), gum arabic (GA), and their combination were used at two different oil: wall 
material ratios. Replacing GA with RSG changed the flow behavior of emulsions from Newtonian to shear-thinning, 
also RSG addition improved the rheological properties of flaxseed emulsion and provided viscoelastic solid 
characteristics. The encapsulation efficiency (EE %) of flaxseed oil was changed between 38.14 and 52.37%. The 
effect of wall material type was not significant while the ratio of wall material to oil was significant (p<0.05). The 
FT-IR image of powders showed that flaxseed oil was successfully encapsulated by the RSG. The flaxseed oil powders 
prepared by RSG showed 3.12 to 5.73 times higher oxidative stability than the flaxseed oil and the powder prepared 
only with GA. The more amount of air voids observed in SEM images of powders produced with GA might also be 
related to their lower oxidative stability. Our study showed that rocket seed gum can be successfully used as a new 
encapsulation agent to produce oxidatively stable microencapsulated flaxseed oil powders.
Keywords: FTIR; microencapsulation; oxidative stability; oxitest; rheology

ABSTRAK

Minyak biji rami yang kaya dengan asid α-linolenik (ALA) mempunyai banyak sifat bermanfaat untuk kesihatan, 
tetapi mengalami degradasi pengoksidaan kerana sifat tak tepunya dan mungkin memerlukan sistem penghantaran 
perlindungan untuk digunakan pada formulasi makanan yang berbeza. Dalam kajian ini, gam biji roket digunakan 
sebagai agen enkapsulasi novel untuk menghasilkan serbuk kering beku. Gam biji roket (RSG), gam arab (GA) dan 
gabungannya digunakan pada dua minyak berbeza: nisbah bahan dinding. Penggantian GA dengan RSG mengubah 
tingkah laku aliran emulsi daripada Newtonian kepada penipisan ricih, juga penambahan RSG meningkatkan sifat 
reologi emulsi biji rami dan memberikan ciri pepejal viskoelastik. Kecekapan enkapsulasi (EE%) minyak biji rami 
telah diubah antara 38.14% dan 52.37%. Kesan jenis bahan dinding adalah tidak signifikan manakala nisbah bahan 
dinding kepada minyak adalah signifikan (p<0.05). Imej serbuk FT-IR menunjukkan bahawa minyak biji rami berjaya 
dienkapsulasi oleh RSG. Serbuk minyak biji rami yang disediakan oleh RSG menunjukkan kestabilan oksidatif 3.12 
hingga 5.73 kali lebih tinggi daripada minyak biji rami dan serbuk yang disediakan hanya dengan GA. Lebih banyak 
jumlah lompang udara yang diperhatikan dalam imej SEM serbuk yang dihasilkan dengan GA mungkin juga 
berkaitan dengan kestabilan oksidatif yang lebih rendah. Kajian kami menunjukkan bahawa gam biji roket boleh 
berjaya digunakan sebagai agen enkapsulasi baharu untuk menghasilkan serbuk minyak biji rami berkapsul mikro 
yang stabil secara oksidatif.
Kata kunci: FTIR; kestabilan oksidatif; mikroenkapsulasi; oxitest; reologi
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INTRODUCTION

Flaxseed oil, with around 60% content of α-linolenic 
acid (ALA), is considered one of the most important 
plant omega-3 sources (Kaushik et al. 2016). Although 
there have been numerous beneficial health effects 
related to its consumption such as the reduced risk of 
cardiovascular diseases, hypertension, diabetes, and 
neurodegenerative disorders, due to its unsaturated nature 
it is very susceptible to oxidation at led to the loss in 
quality and nutritional value and subsequently biological 
functionality (Goyal et al. 2015; Hadad & Goli 2019). 
To overcome these limitations, a wall barrier between 
the active molecules and environment to avoid or delay 
the degradation reactions and therefore improve their 
stabilization may be created by microencapsulation. 
Maltodextrin, one of the most common wall materials, 
offers advantages such as relatively low cost, neutral 
taste, and odor, providing low viscosity at high solids 
concentrations, and good protection against oxidation, but 
suffers from interfacial properties and low emulsifying 
capacity (Carneiro et al. 2013; Charve & Reineccius 2009). 
Therefore, for encapsulation purposes, maltodextrin has 
been partially replaced by other polymers with good 
emulsifying properties, such as gum arabic (McNamee 
et al. 2001). However, gum arabic has high price and 
market sustainability problems (de Barros Fernandes et al. 
2014; Krishnan, Kshirsagar & Singhal 2005). The choice 
of wall material combinations affects both the emulsion 
properties and the properties of the particles obtained after 
drying and during storage. It is well known that powder 
properties such as surface oil, density, morphology, 
and oxidative stability are affected by the properties 
of the encapsulating agent used (Carneiro et al. 2013; 
Ogrodowska, Tańska & Brandt 2017), as well as the 
emulsion properties such as stability, viscosity, droplet 
size (Jafari et al. 2008). In recent years, seed endosperm 
polysaccharides of plants, and galactomannans applied 
for the use of wall materials to isolate the oil active 
molecule and limit its mobility (Beikzadeh et al. 2020; 
Rostamabadi et al. 2022). Galactomannan gums due to 
their high water-binding capacities can form dispersions 
with high consistency, and act as effective thickeners 
and stabilizers (Gadkari et al. 2018). The carbohydrate, 
protein, moisture, and ash content of RSG were reported 
to be 80.38%, 5.81%, 10.26%, and 3.55%, respectively 
(Kutlu et al. 2022). It was also reported that the RSG 
has a very high galactose substitution level with a 1.52 
mannose/galactose ratio. Due to the high protein content 
of RSG, it has the potential to be used as a natural food 
hydrocolloid (Hijazi et al. 2022; Koocheki, Razavi & 

Hesarinejad 2012). Due to the low temperature and 
vacuum conditions applied during the process, freeze-
drying serves as an advantage for the application of many 
heat-sensitive products such as flaxseed oil (Kouamé et 
al. 2021). There have been a few studies related to the 
production of flaxseed oil powders by freeze-drying 
by using different wall materials such as rice protein 
concentrate and modified starch (Perrechil et al. 2021), 
sodium alginate (Zam & Housheh 2019), whey protein 
isolate, flaxseed musilage and maltodextrin (Fioramonti, 
Rubiolo & Santiago 2017), and zein (Quispe-Condori, 
Saldaña & Temelli 2011). Seed gums from natural and 
renewable sources were reported to have good barrier 
properties against moisture and oxygen (Beikzadeh et 
al. 2020). This study aims to investigate the use of rocket 
seed gum as an alternative agent for the encapsulation 
of oils. For this purpose, the flaxseed oil emulsions were 
prepared by using different wall materials, the mixture 
of maltodextrin, gum arabic, and rocket seed gum, and 
characterized in terms of droplet size, zeta potential, and 
rheological properties. Afterward, the emulsions were 
freeze-dried and the surface morphology, encapsulation 
efficiency, optical properties, and oxidative stability of 
flaxseed oil powders were evaluated. 

MATERIALS AND METHODS

MATERIALS

Cold-pressed flaxseed oil was kindly provided by CSK 
Farma Ltd Sti (Istanbul, Turkey) and stored at 4 °C, 
maltodextrin (MD, Glucidex IT-19) was provided from 
the local supplier of Roquettes Frères (Lestrem, France) 
and gum Arabic powder (GA) was supplied from Vankim 
(Istanbul, Turkey) and the powders were stored at room 
conditions. Rocket seeds (Eruca. Sativa Mill) were 
obtained from Sim Arzuman Seed Products Ltd. Sti 
(Konya, Turkey) and stored at 4 °C. Rocket seed gum 
(RSG) was produced according to Koocheki, Razavi and 
Hesarinejad (2012) with minor modifications. The seeds 
were ground into powder and extracted with water (1:200; 
w: v) for 2 h at 80 °C on a magnetic heating mixer (ARE, 
Velp, USA). Then, the slurry was centrifuged for 10 min 
at 10,000 g (Centrifuge, Heraeus, Multifuge X3 FR, 
Thermo Scientific, Germany) to remove the seeds and the 
supernatant was concentrated by evaporating (Rotavapor, 
R-100, Buchi, Switzerland) half of the water in the 
mixture. Afterward, the solution was mixed with two 
volumes of ethanol to improve the accumulation of the 
gum on the surface of the solution, and the collected gum 
was filtered and dried in a drying oven (UN 30, Memmert 
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GmbH, Germany) at 50 ºC for 24 h to produce Rocket 
seed gum (RSG). Other chemicals and solvents were were 
supplied from Sigma-Aldrich (Sigma Chemical Co., St. 
Louis, MO, USA). 

MICROENCAPSULATION OF FLAXSEED OIL

All wall materials were dissolved in distilled water for 
16 h for complete hydration. The flaxseed oil emulsion 
preparation conditions of Fioramonti, Rubiolo and  
Santiago (2017) were modified. The wall materials were 
mixed with oil at predefined ratios and homogenized 
at 20.000 rpm for 3 min by using the Ultraturrax 
homogenizer (Daihan, HG-15, South Korea). Afterward, 
the coarse emulsions were transferred to a double-walled 
cylindrical glass beaker and exposed to ultrasonic 
homogenization (UIP1000hdT, Hielscher, Germany) 

operating at 20 kHz frequency, 250 W power for 4 min, 
and the temperature of the emulsion was kept at 15 ºC 
through the continuous circulation of the cold water 
around the beaker. The conditions of homogenization 
were previously determined based on preliminary 
experiments where different times of sonication were 
applied (1 - 10 min.) and increasing the homogenization 
time over 4 min did not further reduce the size of 
droplets. Emulsions were prepared in 1:2 and 1:4, oil: 
wall (w:w) ratios with different combinations of RSG. 
The six different emulsion formulations were presented in 
Table 1. The emulsions were placed on aluminum dishes 
and frozen at -80 °C for 24 h, and dried with a freeze drier 
(Beta 1-8 LSC Plus, Christ) at -50 ºC, 0.1 bar for 48 h. 
The dried samples were ground to obtain fine powder 
and stored in brown glass jars with screwed caps at 18 
ºC until the analysis.

TABLE 1. The formulations and content of flaxseed oil emulsions used in the study

o:w Sample codes Oil (%) RSG 

(%)

GA (%) MD (%) Water (%)

F1.2 3 -

1:2 F2.2 10 2.25 0.75 17 70

F3.2 0.75 2.25

F4.2 - 3

F1.4 3 -

1:4 F2.4 6 2.25 0.75 21 70

F3.4 0.75 2.25

F4.4 - 3

o:w, flaxseed oil: wall material ratio (w:w); RSG, rocket seed gum; GA, gum arabic; MD, maltodextrin

CHARACTERIZATION OF EMULSIONS

Emulsion Flow Characteristics and Dynamic Rheology 
Properties
The rheological properties of six emulsion formulations 
were determined in the range of 0-100 (1/s) shear rate 
at room temperature using parallel plate configuration 
(diameter 50 mm, pitch 0.5 mm). Around 2 g of each 
sample was placed on the rheometer plate and the analysis 
was carried out after the desired temperature was reached. 
The shear stress values of the solutions (τ, Pa) were 

determined as a function of the shear rate (γ, s-1) by using 
the Power Law model and nonlinear regression.

 (1)

where τ is the shear stress (Pa); Κ is the consistency 
coefficient (Pa.sn); γ is the shear rate (s-1,); and ո is the 
flow behavior index. 

Dynamic rheological analyzes of emulsion samples 
were carried out using the parallel plate configuration. 
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Firstly, the amplitude sweep test was carried out in the 
range of 0.1% and 100% strains to determine the linear 
viscoelastic region. According to this determined value, 
the frequency sweep test was determined between 0.1-
10 Hz frequency and 0.1-64 (ω) angular speed range. 
Elastic modulus (G’), viscose modulus (G’’), and the 
complex viscosity (η*) values were measured against 
angular velocity and frequency values. Parameters related 
to dynamic rheological properties were determined by 
using the Power Law model and non-linear regression 
(Yoo & Rao 1996)

(2)
     

(3)

G’ value of elastic modulus (Pa), G’’ value viscous 
module (Pa), η* value complex viscosity (Pa.s), ω angular 
velocity value (s-1), K’, K’’, consistency coefficient values 
(Pa.sn) and n’, n’’ values represent the flow behavior 
index values.

ζ-potential and Particle Size Distribution Measurement
The emulsions were diluted by 1000 times with 
distilled water, dispersed in an ultrasonic bath (Daihan, 
WUC-D10H, South Korea) for 1 min, and loaded into 
the disposable cuvette of a particle electrophoresis 
instrument (Nano ZS, Malvern Instruments, Malvern, 
UK) and measurement was done at 25 ºC from three 
prepared samples, with three readings made per sample. 
For particle size measurement a refractive index of the 
material of oil and water was set at 1.4694 and 1.3333, 
respectively (Tekin et al. 2020).

Optical Microscopy
Light microscopy images of emulsions were taken with 
a digital camera (DP27, Microscope Digital Camera) 
mounted on an optical microscope (Olympus, Germany). 
For this purpose, a few drops of emulsion were dropped 
on the coverslip and covered with a slide that ensures 
no air or bubbles and was displayed at 40× objective 
magnification (Tekin et al. 2020).

CHARACTERIZATION OF FLAXSEED OIL 
MICROCAPSULES

Moisture Content and Water Activity
The moisture content of flaxseed microcapsules has 
been determined by a moisture analyzer (MA-50.R, 

Radwag, Poland). The water activity of the samples was 
measured by the AW Sprint TH500 Water Activity Meter 
(Novasina, Switzerland) at 25 ºC (Karadag et al. 2013).

Encapsulation Efficiency (EE%)
Encapsulation efficiency (EE%) was determined 
according to the method of Fioramonti, Rubiolo and 
Santiago (2017) and Quispe-Condori, Saldaña and 
Temelli (2011) with some modifications. The non-
encapsulated oil present on the surface of microcapsules 
was extracted by mixing the powder (5 g) and hexane (50 
mL) in a sealed glass container at room temperature 
for 15 min. Then, it was filtered through Whatman No.1 
filter paper and the powder that remained on the filter 
paper was three times washed with 20 mL of hexane, 
and the collected solvent was removed under a fume 
hood for 24 h and placed in an oven at 60 ºC until 
the constant weight reached. The weight difference 
between the initial clean flask containing oil residue 
was determined as the amount of oil on the powder 
surface. For the determination of total oil content which 
includes both encapsulated and non-encapsulated oil, the 
microencapsulated powder (1 g) was dissolved in water 
(10 mL), stirred gently, and placed in an ultrasonic bath 
(VWR, Ultrasonic Cleaners, USA) at room temperature for 
15 min. The sample was extracted three times with a total 
of 15 mL of hexane, and each time upper hexane phase 
was collected in a flask and the solvent was removed, and 
the total oil content was determined gravimetrically as 
done before. Encapsulation efficiency (%) was calculated 
according to equation (4)

(4)

Colour (L*, a*, and b* values)
The colour values of the microencapsulated flaxseed oil 
were measured using a chromameter (Konica Minolta 
CR-400, NJ, USA). They were expressed as L* (whiteness/
darkness), a* (redness/greenness), and b* (yellowness/
blueness) (Goztepe et al. 2022).

Morphological Analysis
Freeze-dried powders were mounted onto separate, 
adhesive‐coated aluminum pin stubs. The excess powder 
was removed by tapping the stubs sharply and then 
blowing dry air across. The stubs were sputter-coated 
with a thin layer of gold, and the samples were examined 
using a Scanning Electron Microscope (SEM, EVO LS 10, 

nK =   
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𝐸𝐸𝐸𝐸% = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑜𝑜𝑇𝑇 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆 𝑇𝑇𝑜𝑜𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑜𝑜𝑇𝑇 ∗ 100   (4) 
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Carl Zeiss, Germany) operated at a high vacuum with an 
accelerating voltage of 7 kV with a working distance of 9 
mm. Images were taken at 1000 and 3000 magnifications 
(Cihat Icyer et al. 2017).

Fourier Transform Infrared Spectroscopy (FTIR)
The chemical characterization of flaxseed oil 
microcapsules was measured by FTIR (Bruker Tensor 27, 
Bremen, Germany) spectroscopy equipped with a MIR 
TGS detector and ATR beam separator. The measurement 
was recorded as the average of 16 scans at frequencies 
between 650-4000 cm-1 with a resolution of 4 cm-1 
(Karakas et al. 2022).

Oxidative Stability
The oxidative stability of flaxseed oil and microcapsules 
was monitored by OXITEST (Velp Scientifica, Usmate, 
Milan, Italy) (Akcicek et al. 2021) equipped with two 
separated oxidation chambers. After uniformly dispersing 
the sample (8 g) in the chamber, it was hermetically 
sealed, heated to 90 °C and pressurized oxygen 
(99.9999% purity) was injected into the chamber. The 
analysis was initiated after the oxygen pressure reached 
6 atm. The Oxitest reactor monitors the absolute pressure 
change inside the chambers calculating the oxygen 
uptake of the oxidizable compounds of the samples and 
automatically generates the Induction Period (IP). The 
higher IP value shows the higher resistance of the sample 
to oxidation. 

STATISTICAL ANALYSIS

All measurements were repeated at least 3 times using 
duplicate samples, and the results were given as the 
means and standard deviations. One‐way analysis 
of variance (ANOVA) was conducted using the SAS 
Institute package computer program (Cary, NC, USA). 
Differences were analyzed using Duncan’s Multiple 
Range Test comparisons and the p-value of <0.05 was 
chosen to determine the significant differences. For 
rheological analysis, the Power-law model parameters 
were calculated with the help of non-linear regression 
analysis by the Statistica software program (Stat Soft 
Inc., USA). 

RESULTS AND DISCUSSION

CHARACTERIZATION OF EMULSIONS

Rheological Properties of the Emulsions
The rheological characteristic of the emulsions is an 
important parameter that affects droplet diameters and 
powder characteristics of the microparticles (Xie et 
al. 2010). Figure 1 shows the steady shear rheological 
properties of the emulsions.  The slope of the shear rate 
versus shear stress graph of emulsions prepared with 
RSG and RSG/GA combination showed a decreasing 
trend with increasing shear rate. In other words, the 
viscosity value of the emulsions prepared with RSG and 
RSG/GA combinations reduced with increased shear 
rate, indicating the shear-thinning flow behavior of 
emulsions. The shear-thinning behavior of rocket seed 

FIGURE 1. Steady shear rheological properties of the emulsion formulations. 1:2 and 1:4 
refers the to oil: wall material ratio of 1:2 and 1:4 (w:w). In each o:w ratio, from F1 to 4 

RSG concentrations changed from 3 to 0% while GA increased from 0 to 3%
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and some natural gums was also reported in previous 
studies (Akcicek et al. 2022; Bhushette & Annapure 
2018; Wang et al. 2019). The shear-thinning character 
of emulsions could be due to the breakdown of the 
intermolecular interaction between highly branched 
polysaccharides, protein, and water as a consequence 
of induced shear (Quemada & Berli 2002). The slope of 
the emulsions prepared without RSG, but only with GA, 
did not change by increasing the shear rate, indicating 
Newtonian flow behavior of GA emulsions. Very small 
changes in viscosity and flow behavior indices of GA 
emulsions were also noted previously (Ramaswamy et al. 
2020). The flow behavior characteristic of the emulsions 
was successfully modeled  (R2>0.92) by the Power Law 

model. The model parameters, K, and n values were 
presented in Table 2. By increasing the RSG content in 
the emulsions, the higher K value accompanied lower n 
values, indicating that RSG provided more consistency 
and increased pseudoplastic characters to the emulsions. 
However, in emulsions with high GA content, regardless 
of oil: wall material ratio, very low K value (0.01-0.02) 
and high n value (closed to 1) were observed, indicating 
that GA emulsions showed very low consistency. In the 
study of Ahmed, Ramaswamy and Ngadi (2005), the 
addition of GA reduced the rheological properties of both 
guar and xanthan gum.

TABLE 2. The Power-Law parameters defining flow behavior 

properties of emulsions

σ = Kγn

o:w Sample codes K n R²

1:2

F1.2 2.76±0.02Ab 0.17±0.01Ca 0.99±0.00Ba

F2.2 2.28±0.84Bb 0.17±0.01Ca 0.99±0.00ABa

F3.2 0.27±0.05Cb 0.49±0.04Ba 0.99±0.00ABa

F4.2 0.02±0.00Da 0.91±0.05Aa 0.99±0.00Aa

1:4

F1.4 14.06±1.33Aa 0.06±0.02Cb 0.92±0.04Ba

F2.4 7.89±0.35Ba 0.07±0.01Cb 0.99±0.00ABa

F3.4 0.62±0.03Ca 0.39±0.00Bb 0.99±0.00Aa

F4.4 0.01±0.00Ca 0.96±0.04Aa 0.99±0.00Aa

Results were given as mean±SD. Different uppercase letters indicate the difference for the samples with the same oil: wall material ratio (o:w); different lowercase 
letters indicate the difference for the samples with different oil: wall material ratios (p<0.05). In each o:w ratio, from F1 to 4 RSG concentrations changed from 3 to 
0% while GA increased from 0 to 3%

Figure 2 shows the dynamic rheological behavior of 
the emulsions. In all frequency ranges,  the G′ value of the 
RSG and RSG/GA emulsions was higher than the G′′ value, 
therefore it could be said that emulsions prepared with 
RSG showed viscoelastic solid characters, which elevated 
by higher RSG content in wall material.  The emulsions 
prepared with the only GA showed a lower G′ value 
than G′′ which indicated the liquid-like behavior of GA 

emulsions. The Power-law model parameters, K′, K,′′ and 
n′, n′′ values were presented in Table 3.  The higher value 
of  K′ was obtained by elevating the RSG content of the 
emulsions, therefore RSG provided strong viscoelastic 
solid characters. K′′ value of the GA emulsions for oil: 
wall material ratios of 1:2 was significantly higher than 
K′ (p<0.05), confirming the liquid-like behaviour and the 
weak structure of GA emulsions.



  3653

TABLE 3. Power-law model parameters defining dynamic rheological properties of emulsions

G' = K'(ω)n' G''= K''(ω)n''

o:w Sample 
codes K’ n’ R2 K” n” R2

1:2

F1.2 2.06±1.74Abx 0.55±0.34Ba 0.99±0.01Aa 0.79±0.02Aby 0.53±0.03Ba 0.982±0.01Aa

F2.2 1.87±2.32ABbx 0.56±0.72Ba 0.63±0.50Bb 0.40±0.02Bby 0.67±0.04Ba 0.979±0.01Aa

F3.2 0.10±0.12Bax 1.18±0.55Ba 0.99±0.02Aa 0.15±0.16Cax 0.84±0.35Aba 0.928±0.05Ba

F4.2 0.00±0.00Bay 2.07±0.16Aa 0.99±0.01Aa 0.02±0.02Dax 1.16±0.40Ab 0.872±0.02Ca

1:4

F1.4 14.66±0.73Aax 0.27±0.01Ca 0.98±0.00Ba 3.26±0.03Aay 0.40±0.00Db 0.98±0.01Aa

F2.4 5.55±1.00Bax 0.38±0.04Ca 0.98±0.01Ba 1.58±0.04Bay 0.48±0.01Cb 0.98±0.01Aa

F3.4 0.17±0.07Cax 0.92±0.17Ba 0.98±0.01Ba 0.19±0.00Cax 0.76±0.01Ba 0.98±0.00Aa

F4.4 0.00±0.00Cax 2.07±0.07Aa 0.99±0.00Aa 0.00±2.22Dax 1.96±0.02Aa 0.88±0.11Ba

Results were given as mean±SD. Different uppercase letters indicate the difference for the samples with the same oil: wall material ratio (o:w); different lowercase 
letters (a-b) indicate the difference for the samples with different oil: wall material ratios (p<0.05); different lowercase letters (x-y) indicate the difference between K’ 
and K’’ value for the same samples (p<0.05). In each o:w ratio, from F1 to 4 RSG concentrations changed from 3 to 0% while GA increased from 0 to 3%

FIGURE 2. Viscoelastic behavior of the emulsion formulations. 1:2 and 1:4 refers to the oil: wall 
material ratio of 1:2 and 1:4 (w:w). In each o:w ratio, from F1 to 4 RSG concentrations changed from 

3 to 0% while GA increased from 0 to 3%
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Particle Size and Zeta Potential Value
The particle size and zeta potential values of emulsions 
were presented in Table 4. Although electrostatic 
repulsion was less important in terms of providing 
long-term stability when the emulsions were stabilized 
by polysaccharides that produce thick interfacial layers 
that generate long range steric repulsion, the charge of 
droplets may still be important to expel the water-soluble 
ions (transition metals) that interacts with the oil droplets, 
therefore, reducing the possible chemical oxidation 
reactions (McClements & Jafari 2018; Piorkowski & 
McClements 2014). In our study, the zeta potential 
values of all formulations were changed between -25.7 
and -31.9 mV, as both RSG and GA presented anionic 
properties. The emulsions prepared only with GA showed 
the lowest particle size in high oil: wall material ratio 
and the droplet size of emulsions increased at higher 
RSG concentrations. At high wall material and with less 
oil ratio (1:4; o:w), the concentration of RSG was not 

significant on the droplet size of RSG/GA emulsions. 
Whereas in the presence of more oil and low wall material 
(1:2; o:w), the RSG concentration was significantly 
important to the droplet size. After a certain concentration 
of RSG addition (>0.75%, w/w), the droplets became 
larger (p<0.05), so it could be said that when there were 
more oil-water surfaces to cover, the amount of GA in 
the formulation may not be enough. In the emulsion 
formulations when gum Arabic was mixed with other 
gums, it would display its surface-active properties 
whereas other gums would mainly be responsible for the 
thickening of the continuous phase, therefore, restrict the 
movements of droplets and contributing to the emulsion 
stability (Desplanques et al. 2012). It has also been 
reported that when the mixture of two hydrocolloids is 
used in emulsions, concentration of gums, their molecular 
weight, functional groups and the degree of interaction 
between two hydrocolloids are important for the resulting 
properties of emulsions (Ahmed, Ramaswamy & Ngadi 
2005). 

FIGURE 3. Optical microscope images of emulsion formulations. 1:2 and 1:4 
refers to the oil: wall material ratio of 1:2 and 1:4 (w:w). In each o:w ratio, from 
F1 to 4 RSG concentrations changed from 3 to 0% while GA increased from 0 to 

3%. The scale bar corresponds to 100 µm
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The optical microscope images (Figure 3) showed 
the presence of some flocs while adding RSG (0.75%) 
into the formulation, but they were reduced by increasing 
the amount of RSG which could be related to providing 
higher viscosity (Figure 1). It was reported that when 
amphiphilic polysaccharides were used above a certain 
level, they can show depletion flocculation and at 
sufficiently high concentrations a three-dimensional 
network was formed that traps the droplets and effectively 
prevents their movement and contact with each other 
(Bai et al. 2017). Light scattering techniques assume 
that all emulsion particles are isolated and homogenous 
spheres. Therefore, it is not possible to differentiate 
the larger particles that may be formed as a result of 

flocculation, only diluted samples can be used in this 
technology for avoiding multiple scattering effects, and 
diluting may cause appreciable alterations in particle 
size distribution through the breaking of the flocculated 
droplets (Kartal, Unal & Otles 2017; Piorkowski & 
McClements 2014). Therefore, imaging with optical 
microscopy would provide necessary information 
for understanding the structure of the hydrocolloid 
stabilized emulsion (Hu et al. 2017; Kartal, Unal & Otles 
2017). In our study, the reason for the lower particle 
size measurement of samples with the light scattering 
technique that had previously shown flocs on optical 
microscope images (F3.4 and F3.2) could be related to 
dilution and stirring steps applied in sample preparation. 

TABLE 4. The particle size and zeta potential values of the samples

o:w Sample codes Particle size (µm) Zeta potential (mV)

1:2

F1.2 3.74±0.20Ba -29.9±0.65 Ba

F2.2 4.77±0.58Aa -31.9±0.74Ca

F3.2 2.48± 0.03Ca -27.5±2.20 Aa

F4.2 1.95±0.07Ca -29.9±0.86 Ba

1:4

F1.4 2.87±0.74Ba -25.7±1.22Aa

F2.4 3.05±0.16Bb -30.7±0.82Ba

F3.4 2.83±0.17Ba -26.5±0,65Aa

F4.4 5.32± 0.06Ab -26.4±0.81Aa

Results were given as mean±SD. Different uppercase letters indicate the difference for the samples with the same oil:wall material ratio (o:w); different lowercase 
letters indicate the difference for the samples with different oil:wall material ratio (p<0.05). In each o:w ratio, from F1 to 4 RSG concentrations changed from 3 to 0% 
while GA increased from 0 to 3%

Characterization of Microencapsulated Flaxseed Oil 
Powders 
The powder images were presented in Figure 4. The 
moisture, water activity, encapsulation efficiency (EE%), 
and colour values of microcapsules were presented in 
Table 5. The powders with more wall material (oil: wall, 
1:4, w:w), had significantly higher moisture content when 
RSG concentration was 2.25 and 3% in the formulation, 
whereas at lower concentration of RSG, the oil: wall 
concentration did not have a significant effect on the 
moisture content that could be related to the possibly 
higher hygroscopicity of RSG. For the samples with 

less wall material (oil: wall, 1:2, w:w), the individual 
concentration of gums did not affect moisture content. 
All samples had similar water activity values ranging 
between 0.06 and 0.18. The lightness of the powders was 
reduced and concurrently b* value was increased in the 
powders with more RSG in the composition. Similarly, 
samples with more RSG in the composition showed lower 
negative a* values (greenness). While there was more 
oil present in the composition, the lightness value was 
not differently significant in most of the formulations, 
whereas the b value (yellowness) was significantly 
increased for each formulation (Table 5). 
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Encapsulation efficiency (EE %) of flaxseed oil 
was changed between 38.14 and 52.37% in freeze-
dried microcapsules. It was reported that the low 
EE% obtained in freeze-drying could be the result of 
penetration of ice crystals into oil droplets and disruption 
of the interfacial membrane, therefore, leaking the oil 
from the core to the surface, leading to a higher amount of 
free oil in the powders (Fioramonti, Rubiolo & Santiago 
2017).

FIGURE 4. The visual appearance of microencapsulated flaxseed oil powders. 1:2 and 1:4 
refers to the oil: wall material ratio of 1:2 and 1:4 (w:w). In each o:w ratio, from F1 to 4 

RSG concentrations changed from 3 to 0% while GA increased from 0 to 3%

 

 

 
 

1:2 1:4 

In the study of Quispe-Condori, Saldaña and 
Temelli (2011), the EE% of flaxseed oil by freeze-
drying was 32.68% and 59.63% depending on the oil: 
wall material ratio. Although in our study, the difference 
was not significant, while there was more oil in the 
formulation (Table 5), increasing RSG content reduced the 
EE % which may indicate its lower emulsifying and film-
forming properties on the oil/water interface compared to

TABLE 5. The physicochemical properties of microparticles

o:w Sample 
codes

Moisture 
content

(%)

Water 
activity 

(aw)

Encapsulation 
efficiency
(EE %)

L* a* b*

1:2

F1.2 2.53±0.00Ab 0.18±0.09Aa 47.15± 6.02Aa 81.93±0.76Da -1.69±0.02Aa 24.96±0.23Aa

F2.2 2.40±0.09Ab 0.15±0.09Aa 39.87± 5.98Aa 85.65±1.32Cb -3.16±0.08Ba 20.39±0.54Ba

F3.2 2.57±0.61Aa 0.10±0.07Aa 50.60± 8.90Aa 90.10±0.25Ba -4.19±0.05Ca 18.21±0.37Ca

F4.2 2.31±0.17Aa 0.11±0.08Aa 52.37± 3.43Ab 95.09±0.36Aa -7.66±0.04Db 19.76±0.17Da

1:4

F1.4 3.46±0.09Aa 0.08±0.00Aa 43.25± 1.91Ba 82.11±0.52Ca -2.72±0.04Ab 22.84±0.43Ab

F2.4 3.41±0.00Aa 0.07±0.06Aa 40.10± 6.21Ba 87.69±0.09Ba -3.45±0.37Ba 18.91±0.13Bb

F3.4 2.96±0.66Ba 0.07±0.07Aa 38.14± 8.14Ba 88.60±1.22Bb -4.54±0.03Ca 14.80±0.37Cb

F4.4 2.46±0.17Ca 0.06±0.06Aa 40.27± 0.42Bc 93.75±1.86Aa -5.52±0.03Da 10.91±0.10Db

Results were given as mean±SD. Different uppercase letters indicate the difference for the samples with the same  oil:wall material ratio (o:w); different lowercase 
letters indicate the difference for the samples with different oil :wall material ratios (p<0.05). In each o:w ratio, from F1 to 4 RSG concentrations changed from 3 to 
0% while GA increased from 0 to 3%
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GA. In the study of Perrechil et al. (2021), the rice 
protein concentrate (RPC) was used between modified 
starch for the microencapsulation of flaxseed oil by 
freeze-drying, the low values of encapsulation efficiency 
were observed when RPC concentration was increased 
in the formulation that was related to poor emulsifying 
properties of RPC compared to an excellent emulsifier, 
modified starch. At the same oil: wall ratio, the effect 
of wall material ingredients (RSG or GA) on EE % was 
not significant, and while with the same wall material 
composition, the differences were observed in the 
samples containing only GA, between F4.2 and F4.4, 
the higher EE % of flaxseed oil was observed in the 
higher oil: wall ratio. It was previously reported that as 

FIGURE 5. SEM images of microencapsulated flaxseed oil powders. 1:2 and 1:4 refers 
to oil: wall material ratio of 1:2 and 1:4 (w:w). In each o:w ratio, from F1 to 4 RSG 

concentrations changed from 3 to 0% while GA increased from 0 to 3%

the emulsification capacity of the wall material increased, 
the migration of the oil to the capsule surface decreased 
(Chranioti & Tzia 2014), and many studies have shown 
that, the emulsions with lower particle size and increased 
stability results in the greater retention of encapsulated 
compounds (Carneiro et al. 2013; Tonon et al. 2012). 
Furthermore, Tontul and Topuz (2014) stated that the 
addition of wall material into emulsions more than the 
optimum level may have no further encapsulating effect. 

Morphology
The SEM images of microcapsules showed irregular, 
flat, and cracked surfaces (Figure 5) that resembled 
the emulsion powders produced by freeze-drying 

 

 

1:2 1:4 
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(Fioramonti, Rubiolo & Santiago 2017; Ogrodowska, 
Tańska & Brandt 2017). The round-shaped microcapsules 
(white arrows) embedded can be seen in all samples but 
were more obvious in the samples produced only with 
GA since having RSG in the formulation created more 
agglomerated structures. By comparing the powders 
with 1:2 and 1:4 oil: wall material ratio, in all wall 
material formulations, the presence of agglomerated 
structures was less observed when there was more wall 

material (1:4). The air voids (dashed arrows) were also 
more observed in samples produced only with GA. 
The formation of holes in the powders is probably 
caused by destabilization of the emulsion during the 
freezing step and their formation might be related to 
the ice sublimation where ice would be replaced by air 
(Fioramonti, Rubiolo & Santiago 2017). The porous 
structure of freeze-dried emulsions were also determined 
in many previous studies (Anwar & Kunz 2011; Chranioti 
& Tzia 2014; Kouamé et al. 2021).

FIGURE 6.  FTIR spectra of microencapsulated flaxseed oil powders. 1:2 and 1:4 
refers to the oil: wall material ratio of 1:2 and 1:4 (w:w). In each o:w ratio, from F1 
to 4 RSG concentrations changed from 3 to 0% while GA increased from 0 to 3%
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FTIR Spectra 
The FTIR spectra of flaxseed oil (Figure 6) showed 
characteristic CH3 and CH2 stretching peaks at 2924 cm-1 
and 2858 cm-1, and at 3010 cm-1 related to the bonding 
of = C-H from unsaturated fatty acyl chains (Mohseni 
& Goli 2019). The strong and sharp peak at 1749 cm-1 
in flaxseed oil is attributed to the C=O of the ester 
linkages, and the absorption band at 1160 cm-1 and 720 
cm-1 might refer to  C-O stretching and C-H vibrations 
(Ozen, Weiss & Mauer 2003). It was reported by de 
Barros Fernandes et al. (2016) that the bands around 1019 
cm-1 and 1458 cm-1 were the characteristic peaks of C-O 
stretching and C-H bending observed in gum arabic. 
In our samples, the disappearance of the bands related 
to GA can be observed from formulation F4 to F1, in 
which wall material included the highest and the lowest 
amount of GA. In terms of flaxseed oil encapsulation, 
all samples presented the peaks related to oil. In each 
oil: wall formulation the peaks related to oil got smaller 
when the RSG content was increased and GA content was 
reduced. The individual formulations of each oil: wall 
ratio had the same initial amount of flaxseed oil loading 
in the beginning, as a result of emulsion formation and 
freeze-drying, some of them stayed on the surface while 
some of them resided in the core of microcapsules. In 
both the samples with 1:2 and 1:4, oil: wall formulations 
followed the same trend related to RSG-GA content and 
flax-seed oil-related peaks. Our results confirmed that 
flaxseed oil was successfully encapsulated into freeze-
dried powder samples. 

Oxidative Stability of Microencapsulated Flaxseed Oil
Flaxseed oil has rich in polyunsaturated fatty acids, 

especially linolenic acid, therefore, it is susceptible 
to oxidation reactions when exposed to atmospheric 
oxygen and any thermal treatments. IP values obtained 
from the Oxitest analysis were used in the evaluation 
of the oxidative stability of the samples. IP value   of the 
nonencapsulated flaxseed oil (control) was 3.02 h, and 
the IP values   of the microcapsules were determined 
between 3.06 - 9.44 h for the samples with oil to wall 
ratio of 1: 2, and 4.34 - 17: 32 h for the samples with 
oil to wall ratio of 1: 4, respectively (Table 6). The 
oxidative stability of the flaxseed oil was significantly 
increased by the encapsulation process. Compared to free 
oil, the higher oxidative stability of flaxseed oil by the 
use of different encapsulation agents was also reported 
in previously published studies (Hadad & Goli 2019; 
Karaca, Nickerson & Low 2013; Kaushik et al. 2016). 
The increased oxidative stability of microencapsulated 
oil could be explained by the creation of a protective 
layer for the oil in the core of the microcapsules, which 
hindered the exposure of oil to the atmospheric oxygen 
(Goyal et al. 2015). The effect of the oil to wall material 
ratio and wall material types on the IP value was found 
to be significant (p<0.05). As the RSG ratio increased in 
wall material composition, IP values   of the encapsulated 
samples significantly increased, indicating that RSG 
provided better protection from oxidation than GA and 
GA/RSG combination. In microcapsules produced by 
RSG, the IP value of encapsulated oil was increased 
by 3.12 and 5.73 times of the control oil in 1:2 and 
1:4 oil: wall material ratio, respectively, indicating 
that encapsulation of flaxseed oil by RSG may provide 
considerable protection against atmospheric oxidation. 

TABLE 6. The IP values of the microencapsulated flaxseed oils

o:w Sample codes
IP

control+=3.02

1:2

F1.2 9.44Ab

F2.2 7.21Bb

F3.2 5.29Cb

F4.2 3.06Db

1:4

F1.4 17.32Aa

F2.4 15.11Ba

F3.4 5.42Ca

F4.4 4.34Da

+control: free-non encapsulated flaxseed oil. Results were given as mean±SD. Different uppercase letters indicate the difference for the samples with the same oil:wall 
material ratio (o:w); different lowercase letters indicate the difference for the samples with different oil:wall material ratios (p<0.05). In each o:w ratio, from F1 to 4 
RSG concentrations changed from 3 to 0% while GA increased from 0 to 3%
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Compared to free oil, the higher oxidative protection 
of the RSG microcapsules could be related to the 
entrapment of oil in microcapsules preventing the contact 
with atmospheric oxygen and also the existence of some 
compounds with antioxidant properties such as protein 
and phenolic compounds (García-Moreno et al. 2016; 
Goyal et al. 2015). In our previous study, the protein 
(23.1, w/w), total phenolic content (17.8 mg GAE/g), 
and CUPRAC antioxidant activity value (148.49 mg 
TE/g) of RSG gum were determined (Akcicek et al. 
2021). The powders produced only with GA showed 
the shortest IP value, thus provided limited protection 
from oxidation. The lower oxidative protection of the 
GA was also reported by Tonon et al. (2012). They 
reported that the flaxseed oil encapsulated with whey 
protein concentrate showed better oxidative stability 
than the samples encapsulated with GA, despite the 
lower encapsulation efficiency provided by whey protein 
concentrate. The lower IP value could be attributed to the 
porous structure of GA microcapsules, and those porous 
surfaces on the GA microcapsules could facilitate the 
oxygen diffusion from the air that would accelerate lipid 
oxidation (Jimenez, García & Beristain 2006). The results 
of the Oxitest suggested that RSG could be suggested as 
an novel encapsulating agent to improve the stability of 
flaxseed oil.

CONCLUSION

In this  s tudy,  the rocket  seed gum was used 
as an encapsulating agent for the production of 
microencapsulated flaxseed oil powders for the first 
time. The flow behaviour and dynamic rheological 
properties of emulsions depended on the gum arabic and 
rocket seed gum content, increasing the rocket seed gum 
provided more consistency and increased pseudoplastic 
characteristics of the emulsions. The droplet size of 
the emulsions was increased by the inclusion of rocket 
seed gum in the formulation probably due to its lower 
emulsifying property compared to gum arabic. FTIR 
analyzes showed more disappearance of oil related 
peaks when rocket seed gum content was higher that 
was related to residing of the oil in the core of the 
microcapsules. In terms of oxidative stability, the rocket 
seed gum provided superior protection of flaxseed oil 
against atmospheric oxygen compared to the both control 
free oil and microencapsulated oil with gum arabic 
alone. Our study showed that the use of rocket seed 
gum can be suggested as a novel encapsulation agent to 
improve the stability of flaxseed oil. 
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