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ABSTRACT

The objective of this research was to compare the efficiency among the test statistics which are used to detect outliers 
by testing hypothesis methods. The test statistics considered were Dixon’s test, Ferguson’s test, Grubbs’ test, Tw-test, 
and Tietjen-Moore’s test. The outliers were divided, by how far they are, into two groups: mild and extreme outliers. 
The efficiency of the test statistics was measured by the probability of type I error and the power of the test. 
The results showed that Tietjen-Moore’s test can control the probability of type I error according to Cochran and 
Bradley criteria in every situation. Tw-test has highest sensitivity in detecting one outlier when the sample size is small 
or moderate but, if the sample size is large, Grubbs’ test performs better. In the case of detecting one extreme 
outlier, the power of four tests tend to increase as the sample size increases at the significance level 0.01. Given that 
k outliers are detected, Tietjen-Moore’s test provides higher power than Tw-test when k equals 10% of sample size 
when the outliers are both mild and extreme, contrary to the case when k make up for 20%.
Keywords: Detection of outliers; normal distribution; power of the test; Tietjen-Moore’s test; type I error

ABSTRAK

Objektif kajian ini adalah untuk membandingkan kecekapan antara statistik ujian yang digunakan untuk mengesan 
maklumat tepian dengan menguji kaedah hipotesis. Statistik ujian yang dipertimbangkan ialah ujian Dixon, ujian 
Ferguson, ujian Grubbs, ujian Tw dan ujian Tietjen-Moore. Maklumat tepian dibahagikan mengikut jarak kepada 
dua kumpulan: maklumat tepian ringan dan maklumat tepian melampau. Kecekapan ujian statistik diukur dengan 
kebarangkalian ralat jenis I dan kuasa ujian. Keputusan menunjukkan bahawa ujian Tietjen-Moore boleh mengawal 
kebarangkalian ralat jenis I mengikut kriteria Cochran dan Bradley dalam setiap situasi. Ujian Tw mempunyai kepekaan 
tertinggi dalam mengesan satu maklumat tepian apabila saiz sampel kecil atau sederhana tetapi jika saiz sampel 
besar, ujian Grubbs menunjukkan prestasi yang lebih baik. Dalam kes mengesan satu maklumat tepian melampau, 
kuasa empat ujian cenderung meningkat apabila saiz sampel meningkat pada tahap keertian 0.01. Memandangkan 
k maklumat tepian dikesan, ujian Tietjen-Moore memberikan kuasa yang lebih tinggi daripada ujian Tw apabila k 
bersamaan dengan 10% saiz sampel apabila maklumat tepian adalah ringan dan melampau, bertentangan dengan 
kes apabila k membentuk 20%.
Kata kunci: Kuasa ujian; pengesan maklumat tepian; ralat jenis I; taburan normal; ujian Tietjen-Moore

INTRODUCTION

Applying statistical knowledge and analysis for solving 
a problem is very important to improve the quality of 
data and make it more reliable but dealing with the data is 
a challenge for researchers. One of the data management/

cleaning problems is that there are outliers in the collected 
data. The outliers are extreme values that deviate from 
the other values in the abnormal distance (Hawkins 
1980). In general, the outliers are between the inner and 
outer fences, shown in Figure 1, and can be calculated 
as follows.
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• Lower inner fence: Q1 − 1.5IQR     • Upper inner fence: Q3 + 1.5IQR

• Lower outer fence: Q1 − 3IQR       • Upper outer fence: Q3 + 3IQR

A point beyond an inner fence on either side is considered 
as a mild outlier and a point beyond an outer fence is 
considered as an extreme outlier.

In the data collection process, we may capture some 
inaccurate information which are the outliers. If there are 
some outliers in the data set, they may affect the mean 
of the data or may affect the distribution of the data.  
This can lead the statistician to pick up an incorrect 
statistical tool for analysis, resulting in a lack of quality 
and reliability, which in turn affect the research work 
could not be used properly.

FIGURE 1. Box plot

Outlier detection is an interesting problem to study. 
There are various statistical methods for detecting the 
outliers in the univariate data. For example, one can 
detect the outliers by the box plot method, which is an 
easy one, but using this method may give an unclear result 
and it depends on many reasons such as the experience 
of the analyst. The other way to detect the outlier is by 
using a statistical hypothesis test. It is a way to determine 
whether the data has an outlier, which has been studied 
and developed by many statisticians.

RELATED WORKS

Rattanaloetnusorn (1991) studied three methods, which 
are Tietjen Moore and Beckman method (TMB), 
Mervyn G. Marasinghe (M) method, and G. Barrie 
Wetherill (GB) method, for detecting outliers in the 
simple linear regression analysis with a view study 
of two residual distributions which are a heavy-tailed 
distribution (such as scale contaminated normal, location 
contaminated normal and t-distributions) and a right-
handed skew distribution (such as lognormal, gamma 
and Weibull distributions) when there are one, two, and 
three outliers in the sample. The probability of type I 
error and the power of the test statistic were compared 
in this research. The results showed that the TMB method 
can control the probability of type I error less than the 
other two methods. GB test gives the highest power when 
there is one outlier in the sample but, when there are 
two or three outliers, the M test has the highest power. 

In the overall conclusion, the two distributions give us 
the same results.

Efstathiou (2006) studied the efficiency of Dixon’s 
test (Dixon 1953) since the critical values used in the 
package may be outdated. He compared the probability 
of type I error of Dixon’s test when the sample sizes are 
3, 4, ..., 30 at significant levels 0.20, 0.10, 0.05, 0.04, 
0.02, and 0.01. The result showed that the test is accurate 
when the sample size is very small that is only a sample 
size of three or four.

Patchayaluck (2013) estimated the probability of 
type I error and the power of three test statistics for 
detecting an outlier by using stochastic and classical 
approaches. The test statistics considered were Dixon’s 
test (Dixon 1953), Grubbs’ test (Grubbs 1969), and 
Tietjen-Moore’s test (Tietjen & Moore 1972). The critical 
values of Dixon’s test and Grubbs’ test using stochastic 
and classical approaches are closed in all cases. Tietjen-
Moore’s test using the stochastic approach has higher 
critical values than those of classical one in all situations. 
All of the tests can control the probability of type I error 
in all cases except Tietjen-Moore’s test using stochastic 
approach cannot control the probability of type I error 
in all cases.

Jareankam (2013) proposed the test statistics (TP1 
and TP2) for detecting outliers based on Ferguson’s test 
(TN14 and TN15) which was calculated by skewness 
coefficient and kurtosis coefficient (Ferguson 1961). 
The efficiency of the TP1 and TP2 test statistics were 
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compared with the TN14 and TN15. The study is divided 
into two cases: detecting the outliers on right by TP1 
and TN14, and detecting the outliers on two sides of 
the sample by TP2 and TN15. The results of this study 
showed that TP1 can control the probability of type I 
error in all situations while TN14 can control only when 
the sample sizes are small. TN15 has the power of the test 
better than TP2 when the sample size is quite small but, 
with the large or very large sample sizes, the efficiency 
of TP2 and TN15 seems the same.

Rahman, Sathik and Kannan (2014) used three 
different methods to detect outliers in three variables 
which are Grubbs’ method, inner and outer fence rule 
method, and three-sigma rule method to find out how 
many outliers were detected for each variable from each 
method. The results showed that the inner fence rule 
method has the highest sensitivity in detecting outliers. 
Grubbs’ method gave the results close to the results from 
the outer fence rule method.

Jareankam (2020) studied the detection of outliers 
and proposed Tw-test which was developed from the 
concept idea of the generalized extreme Studentized 
deviate (GESD) test by Rosner (1975). The probability 
of type I error and the power of the test were considered 
under a simulation of normal distributions with 1000 
replications at significance level 0.05.  In this research, 
the probability of type I error was controlled by Cochran’s 
criterion (Cochran 1954) in every situation. The results 
when there are k outliers in the sample showed that the 
percentage of correct decision are greater than 95 in 
every situation.

As we have reviewed several different ways of 
outlier detection, therefore, the test statistics for detecting 
outliers, considered in this research, are Dixon’s test, 
Ferguson’s test, Grubbs’ test, Tietjen-Moore’s test, and 
Tw-test. The objective of this research was to consider 
the probability of type I error controlled by the criteria 
of Cochran and Bradley and to compare the power of 
the test statistics for detecting one outlier and k (≥ 
2) outliers in the normal population. The materials, 
methods, simulation process, results and discussion, and 
conclusion of this research will be provided as follows.

MATERIALS AND METHODS

We compare the efficiency of all test statistics for 
detecting outliers in a normal population through a 
simulation study (the process of simulation will be 
provided in the next section). The efficiency is in terms 
of the probability of type I error and the power of the 
tests. The test statistics can control the probability of 

type I error based on Cochran’s criteria (Cochran 1954) 
if they are within the following ranges:

1 2 1 2 1 2
ˆ ˆˆ ˆ ˆ ˆ, , , , ,α α β β ω ω is in the range (0.007, 0.015) at the significance level 

0.01,

1 2 1 2 1 2
ˆ ˆˆ ˆ ˆ ˆ, , , , ,α α β β ω ω  is in the range (0.04, 0.06) at the significance level 

0.05,

1 2 1 2 1 2
ˆ ˆˆ ˆ ˆ ˆ, , , , ,α α β β ω ω  is in the range (0.081, 0.119) at the significance level 

0.1.

The test statistics can control the probability of type I 
error based on Bradley’s criterion (Bradley 1978) if they 
are within the following ranges:

1 2 1 2 1 2
ˆ ˆˆ ˆ ˆ ˆ, , , , ,α α β β ω ω is in the range (0.005, 0.015) at the significance level 

0.01,

1 2 1 2 1 2
ˆ ˆˆ ˆ ˆ ˆ, , , , ,α α β β ω ω  is in the range (0.025, 0.075) at the significance level 

0.05,
1 2 1 2 1 2

ˆ ˆˆ ˆ ˆ ˆ, , , , ,α α β β ω ω  is in the range (0.05, 0.15) at the significance level 0.1.

The test statistics are divided into two cases, i.e., the 
ones for detecting one outlier and the other ones for 
detecting k (≥ 2) outliers which k are considered 
into two cases, that is, 10% and 20% of sample size n. 
The outliers, in this research, are also divided into two 
groups, i.e.,

•  mild outlier which is in the interval (Q3 + 1.5IQR, Q3 + 3IQR),

•  extreme outlier which is in the interval (Q3 + 3IQR, Q3 + 4.5IQR),

which we have considered only when the outliers are on 
the right side of the distribution. In the following, we 
will provide the materials for this research. It is divided 
into two subsections.

DETECTING ONE OUTLIER

This subsection provides the test statistics for detecting 
one outlier which are defined for the following 
hypotheses:

H0: There is no outlier in the population.
H1: There is an outlier on the right side of the mean.

Reject H0 at significance level α if each test statistic value 
is greater than its critical value.

Dixon’s Test
Dixon (1953) offered a test for detecting an outlier 
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in small sample sizes. The statistic is calculated by a 
different of a suspected outlier and the value that is closest 
to the suspected one divided by the range of the data as 
the following formula:

where the order statistics x(1), x(2), . . ., x(n) are defined 
by sorting the data x1, . . ., xn of the sample size n in 
ascending order. Critical values can be found in the 
table of Dixon’s critical values (Dixon 1951; Verma & 
Quiroz-Ruiz 2006).

Ferguson’s Test
Ferguson (1961) proposed the coefficient of skewness 
and the coefficient of kurtosis to be a statistic for detecting 
an outlier with the assumption that the data follows a 
normal distribution. The test statistic is used to determine 
whether a minimum or maximum observation value is an 
outlier which can be computed as follows.

where 
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the mean x  and r = 2, 3. Critical values can be found in 
Ferguson’s critical value table (Barnett & Lewis 1984).

Grubbs’ Test
Grubbs (1969) proposed a hypothesis testing for detecting 
a single outlier in a univariate data set that follows 
an approximately normal distribution. The statistic is 
calculated by a difference between the suspected outlier 
and the mean of the sample divided by the standard 
deviation which is calculated from all data including the 
outlier as follows.
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suspected outlier. Critical values can be found in the 
Grubbs’ critical value table (Grubbs 1969).

Detecting k (≥ 2) Outliers
The subsection provides the test statistics for detecting 
more than one outlier (k ≥ 2) which are defined for the 
hypotheses:

H0: There is no outlier in the population.

H1: There are k outliers on the right side of the mean.

Tietjen-Moore’s Test
Tietjen and Moore (1972) has developed Grubbs’ test to 
be able to detect multiple outliers with the assumption 
that the data follows a normal distribution. The developed 
test will become Grubbs’ test if there is only one outlier 
in the sample. The formula of the test is provided as 
follows.
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size n. Critical values are determined by Monte Carlo 
simulation. The simulation is typically performed by 
generating 10,000 standard normal random samples 
of size n and computing the Tietjen-Moore test. The 
statistical value obtained from the data is compared to 
the reference approximate distribution which is between 
zero and one. If there are some outliers in the sample, 
the test statistic is close to zero. Otherwise, there are no 
outliers in the sample.

Tw-Test
Tw-test is developed from the concept idea of GESD test 
by Rosner (1975) which fixed the problem of the outlier 
detection using Grubbs’ test that one or two outliers at 
a time may cause more error. Tw-test, therefore, may be 
used to test whether there is one or more than one outlier 
in the sample. This test statistic is under an assumption 
of a normally distributed population and calculated by 
Jareankam (2020)
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SIMULATION STUDY

The simulation processes of this research are provided 
in this section. The data are simulated from a normal 
distribution with zero mean and one variance, the sample 
sizes of 5, 10, 15, 20, 30, 50, and 100 with 104 replications 
for each situation by the R program version 4.1.2. The 
significant levels used are 0.01, 0.05, and 0.1. 

PROBABILITY OF TYPE I ERROR

The computations of the probability of type I error are 
done by the following iterative processes: 1. Generate a 
normal random sample of size n with zero mean and one 
variance. 2. Compute all test statistics. 3. Compare the test 
statistical values from step two with its critical regions 
to decide whether reject or accept the null hypothesis 
(H0) at a significance level α. 4. Repeat steps one to 
three for 104 replications and record how many times the 
null hypothesis is rejected at a significance level α. 5. 
Calculate the estimation of the probability of type I error 
for each test statistic:

Power of the Test
The computations of the power of the test, when there are 
one and k = 10%n, 20%n outliers in the sample, are 
done by the following iterative processes:1. Generate a 
normal random sample of size (n − 1) or (n − k) with 
zero mean and one variance. 2. Select (an) outlier(s) by 
a simple random sampling method from the following 
intervals divided by two types of outliers: a) mild outlier: 
(Q3 + 1.5IQR, Q3 + 3IQR) and b) extreme outlier: (Q3 
+ 3IQR, Q3 + 4.5IQR). 3. Calculate the test statistics 
for detecting one outlier which are Dixon’s test, 
Ferguson’s test, Grubbs’ test, and Tietjen-Moore’s test and 
calculate the test statistics for detecting k outliers which 
are Tietjen-Moore’s test and Tw-test. 4. Compare the test 
statistical values from step three with its critical regions 
to decide whether reject or accept the null hypothesis 
(H0) at a significance level α. 5. Repeat steps one to 
four for 104 replications and record how many times the 
null hypothesis is rejected at a significance level α. 6. 
Calculate the estimation of the power of each test statistic:

R code for the statistical analyses done are available at 
https://github.com/KullaphatP/R-code.

RESULTS AND DISCUSSION

For our simulation study to compare the performance 
of Dixon’s test, Ferguson’s test, Grubbs’ test, Tietjen-
Moore’s test, and Tw-test in terms of type I error, results 
of which are presented in Table 1 and Figure 2. We can 
see that Tietjen-Moore’s test can control the probability 
of type I error by Cochran and Bradley Criteria in 
every situation as considered but Dixon’s test can only 
control it by both criteria when n ≤ 30. The Tw-test 
cannot control type I error when the sample sizes are 
small such as n = 5 and 10 at significance level 0.01.  
Ferguson’s test can control the probability of type I 
error by Bradley Criteria when n ≤ 30 at significance 
levels 0.01 and 0.05 and by Cochran Criteria when n 
≤ 30 at significance levels 0.01 but not when n = 15 
at significance level 0.05. While Grubbs’ test can only 
control type I error by Bradley Criteria when the sample 
sizes are small (n = 5, 10, 15) at α = 0.01 and when n 
= 10 at α = 0.05 and 0.10.

For  our  s imulat ion s tudy to  compare the 
performance of Dixon’s test, Ferguson’s test, Grubbs’ 
test, and Tw-test in terms of power of the test when 
there is one outlier in the sample, results of which are 
presented in Table 2 and Figure 3. From the detection 
of one mild outlier results, we found that Tw-test has 
the highest power when n ≤ 30 compared to the other 
three tests (which are Dixon’s test, Ferguson’s test, and 
Grubbs’ test) but it performs worse as the sample 
size increases. This makes Grubbs’ test performs better 
than Tw-test when the sample size is large, say n = 100, 
since the power of Grubbs’ test tends to increase as the 
sample size increases. If the outlier is extreme, Tw-test 
still has the highest power when n ≤ 30 and performs 
better as the sample size increases as well as Dixon’s 
test, Grubbs’ test, and Ferguson’s test at α = 0.01.

For our  s imulat ion s tudy to compare the 
performance of Tietjen-Moore’s Test and Tw-Test in 
terms of power when there are k = 10%n and 20%n 
outliers in the sample, results of which are presented 
in Table 3 and Figures 4 and 5. From the results of the 
detection of k outliers, we can see that Tietjen-Moore’s 
test performs better than Tw-test in every situation 
when there are 10%n outliers in the sample either the 
outliers are mild or extreme but if there are 20%n mild 
outliers in the sample, Tw-test has higher power than 
Tietjen-Moore’s when n ≤ 30.

0 0number of {H  is rejected} when H  is trueˆ
10000

α =
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TABLE 1. Probability of type I error of the statistical tests for detecting outliers

α n Dixon Grubbs Ferguson TM Tw

0.01 5 0.0102∗,∗∗ 0.0064∗ 0.0142∗,∗∗ 0.0097∗,∗∗ 0.0161

10 0.0107∗,∗∗ 0.0051∗ 0.0149∗,∗∗ 0.0106∗,∗∗ 0.0151

15 0.0110∗,∗∗ 0.0053∗ 0.0133∗,∗∗ 0.0115∗,∗∗ 0.0138∗,∗∗

20 0.0091∗,∗∗ 0.0040 0.0095∗,∗∗ 0.0096∗,∗∗ 0.0112∗,∗∗

30 0.0099∗,∗∗ 0.0038 0.0071∗,∗∗ 0.0087∗,∗∗ 0.0103∗,∗∗

50 0.0027 0.0035 0.0016 0.0077∗,∗∗ 0.0102∗,∗∗

100 0.0006 0.0041 0.0000 0.0077∗,∗∗ 0.0101∗,∗∗

0.05 5 0.0504∗,∗∗ 0.0240 0.0578∗,∗∗ 0.0500∗,∗∗ 0.0523∗,∗∗

10 0.0490∗,∗∗ 0.0258∗ 0.0585∗,∗∗ 0.0518∗,∗∗ 0.0479∗,∗∗

15 0.0495∗,∗∗ 0.0233 0.0604∗ 0.0489∗,∗∗ 0.0471∗,∗∗

20 0.0506∗,∗∗ 0.0228 0.0414∗,∗∗ 0.0454∗,∗∗ 0.0473∗,∗∗

30 0.0497∗,∗∗ 0.0239 0.0492∗,∗∗ 0.0475∗,∗∗ 0.0458∗,∗∗

50 0.0200 0.0206 0.0209 0.0443∗,∗∗ 0.0455∗,∗∗

100 0.0070 0.0238 0.0028 0.0489∗,∗∗ 0.0475∗,∗∗

0.10 5 0.0974∗,∗∗ 0.0488 0.1004∗,∗∗ 0.0924∗,∗∗

10 0.0974∗,∗∗ 0.0509∗ 0.1049∗,∗∗ 0.0904∗,∗∗

15 0.0962∗,∗∗ 0.0478 0.0978∗,∗∗ 0.0906∗,∗∗

20 0.0962∗,∗∗ 0.0484 0.0979∗,∗∗ 0.0904∗,∗∗

30 0.0954∗,∗∗ 0.0485 0.0979∗,∗∗ 0.0916∗,∗∗

50 0.0509∗ 0.0460 0.0936∗,∗∗ 0.0909∗,∗∗

100 0.0233 0.0471 0.0939∗,∗∗ 0.0916∗,∗∗

TM = Tietjen-Moore’s test, ∗ satisfy Bradley’s criterion, ∗∗ satisfy Cochran’s criterion
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(a) α = 0.01 

 

(b) α = 0.05 

 

(c) α = 0.10 

 FIGURE 2. Probability of type I error of the statistical tests for detecting outliers against 
sample sizes n at significance levels (a) α = 0.01, (b) α = 0.05, and (c) α = 0.10
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TABLE 2. Power of four statistical tests for detecting one outlier
     

  mild outlier       extreme outlier   

α n Dixon Grubbs Ferguson Tw Dixon Grubbs Ferguson Tw

0.01 5 0.0000 0.0000 0.0000 0.7500 0.0994 0.0000 0.4121 0.9586

10 0.3338 0.1755 0.4056 0.6718 0.8097 0.8112 0.9192 0.9670

15 0.3908 0.2993 0.4404 0.6204 0.8475 0.8849 0.9315 0.9659

20 0.3998 0.3301 0.4273 0.5692 0.8663 0.9112 0.9350 0.9621

30 0.3885 0.3532 0.3755 0.5179 0.9009 0.9589 0.9497 0.9737

50 0.2272 0.3567 0.1861 0.4278 0.8539 0.9808 0.9055 0.9720

100 0.0797 0.3301 0.0109 0.2933 0.7308 0.9930 0.6444 0.9553

0.05 5 0.4796 0.0235 0.6049 0.8852 1.0000 0.9356 0.9999 0.9843

10 0.6640 0.5640 0.7510 0.8173 0.9419 0.9570 0.9786 0.9839

15 0.6599 0.6102 0.7267 0.7748 0.9454 0.9698 0.9774 0.9824

20 0.6456 0.6151 0.6456 0.7321 0.9531 0.9750 0.9733 0.9825

30 0.6275 0.6122 0.6352 0.6871 0.9663 0.9919 0.9838 0.9875

50 0.4895 0.6011 0.4436 0.6116 0.9634 0.9971 0.9735 0.9881

100 0.2878 0.5540 0.1505 0.4886 0.9352 0.9991 0.8966 0.9837

0.10 5 0.8929 0.4953 0.9397 1.0000 1.0000 0.9942

10 0.7948 0.7419 0.8816 0.9683 0.9792 0.9898

15 0.7656 0.7486 0.8442 0.9702 0.9872 0.9888

20 0.7467 0.7369 0.8075 0.9719 0.9873 0.9893

30 0.7378 0.7396 0.7705 0.9817 0.9969 0.9930

50 0.6174 0.7213 0.7072 0.9813 0.9989 0.9927

100 0.4332 0.6620 0.6053 0.9706 0.9999 0.9908
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(a1) mild outlier                                                 (a2) extreme outlier 

(a) α = 0.01 

 
(b1) mild outlier                                                 (b2) extreme outlier 

(b) α = 0.05 

 
(c1) mild outlier                                                 (c2) extreme outlier 

(c) α = 0.10 

 

 
 

 
 

 
 

 
 

 
 

 
 

FIGURE 3. Graphs of power of four tests for detecting one outlier against sample 
sizes n at significant levels (a) α = 0.01, (b) α = 0.05, and (c) α = 0.10 when the 

outliers are mild and extreme

(c2) extreme outlier

extreme outlier

extreme outlier
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TABLE 3. Power of two statistical tests for detecting k outliers when k is 10% and
20% of sample sizes

 

k mild outliers    k extreme outliers  

10%n  20%n  10%n  20%n

α n TM Tw TM Tw TM Tw TM Tw

0.01 10 0.2036 0.0135 0.2087 0.5343 0.8332 0.0156 0.9263 0.9629

20 0.5106 0.4174 0.7142 0.7061 0.9641 0.9475 0.9856 0.9888

30 0.7095 0.3788 0.8093 0.8302 0.9961 0.9718 0.9967 0.9980

50 0.9106 0.2790 0.9661 0.9106 1.0000 0.9812 1.0000 1.0000

100 0.9951 0.2035 0.9996 0.9615 1.0000 0.9728 1.0000 0.9999

0.05 10 0.5736 0.0649 0.8121 0.8614 0.9585 0.0548 0.9918 0.9920

20 0.7815 0.6814 0.8151 0.9009 0.9914 0.9813 0.9894 0.9978

30 0.8928 0.6530 0.9382 0.9588 0.9994 0.9896 0.9997 1.0000

50 0.9712 0.5647 0.9930 0.9845 1.0000 0.9935 1.0000 1.0000

100 0.9997 0.4864 0.9999 0.9940 1.0000 0.9937 1.0000 0.9999

0.1 10 0.7437 0.1203 0.9106 0.9309 0.9793 0.1021 0.9955 0.9964

20 0.8680 0.7903 0.8746 0.9574 0.9959 0.9895 0.9942 0.9993

30 0.9458 0.7752 0.9755 0.9834 0.9997 0.9942 0.9998 1.0000

50 0.9901 0.7101 0.9970 0.9953 1.0000 0.9965 1.0000 1.0000

100 0.9999 0.6519 0.9999 0.9982 1.0000 0.9976 1.0000 1.0000

TM = Tietjen-Moore’s Test
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(a1) 10%n mild outliers                                            (a2) 20%n mild outliers 

(a) α = 0.01 

 
(b1) 10%n mild outliers                                            (b2) 20%n mild outliers 

(b) α = 0.05 

 
(c1) 10%n mild outliers                                            (c2) 20%n mild outliers 

(c) α = 0.10 

 

 
 

 
 

 
 

 
 

 
 

 
 

FIGURE 4. Graphs of power of two tests for detecting k = 10%n and k = 20%n 
outliers against sample sizes n at significant levels (a) α = 0.01, (b) α = 0.05, and (c) 

α = 0.10 (mild outliers)
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(a1) 10%n extreme outliers                                       (a2) 20%n extreme outliers 

(a) α = 0.01 

 
(b1) 10%n extreme outliers                                       (b2) 20%n extreme outliers 

(b) α = 0.05 

 
(c1) 10%n extreme outliers                                       (c2) 20%n extreme outliers 

(c) α = 0.10 

 

 
 

 
 

 
 

 
 

 
 

 
 

FIGURE 5. Graphs of power of two tests for detecting k = 10%n and k = 20%n 
outliers against sample sizes n at significant levels (a) α = 0.01, (b) α = 0.05, and 

(c) α = 0.10 (extreme outliers)
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TABLE 3. Power of two statistical tests for detecting k outliers when k is 10% and
20% of sample sizes

 

k mild outliers    k extreme outliers  

10%n  20%n  10%n  20%n

α n TM Tw TM Tw TM Tw TM Tw

0.01 10 0.2036 0.0135 0.2087 0.5343 0.8332 0.0156 0.9263 0.9629

20 0.5106 0.4174 0.7142 0.7061 0.9641 0.9475 0.9856 0.9888

30 0.7095 0.3788 0.8093 0.8302 0.9961 0.9718 0.9967 0.9980

50 0.9106 0.2790 0.9661 0.9106 1.0000 0.9812 1.0000 1.0000

100 0.9951 0.2035 0.9996 0.9615 1.0000 0.9728 1.0000 0.9999

0.05 10 0.5736 0.0649 0.8121 0.8614 0.9585 0.0548 0.9918 0.9920

20 0.7815 0.6814 0.8151 0.9009 0.9914 0.9813 0.9894 0.9978

30 0.8928 0.6530 0.9382 0.9588 0.9994 0.9896 0.9997 1.0000

50 0.9712 0.5647 0.9930 0.9845 1.0000 0.9935 1.0000 1.0000

100 0.9997 0.4864 0.9999 0.9940 1.0000 0.9937 1.0000 0.9999

0.1 10 0.7437 0.1203 0.9106 0.9309 0.9793 0.1021 0.9955 0.9964

20 0.8680 0.7903 0.8746 0.9574 0.9959 0.9895 0.9942 0.9993

30 0.9458 0.7752 0.9755 0.9834 0.9997 0.9942 0.9998 1.0000

50 0.9901 0.7101 0.9970 0.9953 1.0000 0.9965 1.0000 1.0000

100 0.9999 0.6519 0.9999 0.9982 1.0000 0.9976 1.0000 1.0000

TM = Tietjen-Moore’s Test

CONCLUSION

Outlier detection is one of the most important tasks 
in applied research and outlier extraction is a problem 
in the process of discovering knowledge Discovery 
in Databases (KDD) which can improve the quality of 
the data and reduce the impact of having outliers in the 
sample. In this research, we studied the outlier detection 

methods in normal data by testing the hypothesis 
which is that the outliers come from whether the same 
or different populations. This work is on comparison of 
the efficiency of statistical tests for detecting outliers in 
terms of the probability of type I error and the power 
of the tests which can conclude that the Tw-test has 
the highest sensitivity in detecting one outlier when 
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the sample size is small or moderate but, if the sample 
size is large, Grubbs’ test performs better which is why 
many researchers have used and studied Grubbs’ method 
(Grubbs 1969, 1950; Rahman, Sathik & Kannan 2014; 
Tietjen & Moore 1972). However, the performance of 
four test statistics which are Dixon’s test, Ferguson’s 
test, Grubbs’ test, and Tw-test for detecting an 
extreme outlier is not that different especially when the 
significance level is 0.05 and 0.10. The power of Tietjen-
Moore’s test and Tw- test for detecting k ≥ 2 outliers in 
the sample tends to increase as the sample size increases. 
Tietjen-Moore’s test has higher sensitivity than Tw-test 
when k equals 10% of sample size, contrary to the case 
of when k makes up for 20%.

For future work, there are also other statistical tests 
for detecting outliers in the sample by using statistical 
hypothesis testing method which may have more 
efficiency. Also, some test statistics may be suitable for 
detecting outliers when the data has other distributions 
such as Weibull distribution, gamma distribution, or 
skew-normal distribution. Moreover, we recommend 
that the researchers may consider adjusting the variance 
of the sample to determine whether it affects the test 
power.
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