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ABSTRACT
If G is a finite group and Z(G) is the centre of G, then the commuting graph for G, denoted by ΓG, has G\Z(G)  as its 
vertices set with two distinct vertices vp and vq are adjacent if vp vq = vq vp. The degree of the vertex vp of ΓG, denoted 
by 𝑑𝑑𝑣𝑣𝑝𝑝  , is the number of vertices adjacent to vp. The maximum (or minimum) degree matrix of ΓG is a square matrix 
whose (p,q)-th entry is max{𝑑𝑑𝑣𝑣𝑝𝑝, 𝑑𝑑𝑣𝑣𝑞𝑞  } (or min{𝑑𝑑𝑣𝑣𝑝𝑝, 𝑑𝑑𝑣𝑣𝑞𝑞  }) whenever vp and vq are adjacent, otherwise, it is zero. This study 
presents the maximum and minimum degree energies of ΓG for dihedral groups of order 2n, D2n by using the absolute 
eigenvalues of the corresponding maximum degree matrices (MaxD(ΓG)) and minimum degree matrices (MinD(ΓG)). 
Here, the comparison of maximum and minimum degree energy of ΓG for D2n  is discussed by considering odd and 
even n cases. The result shows that for each case, both energies are non-negative even integers and always equal.
Keywords: Commuting graph; degree of vertex; dihedral group; energy of a graph
 

ABSTRAK
Jika G adalah suatu kumpulan terhingga dan Z(G) adalah pusat bagi G, maka graf kalis tukar tertib bagi G, ditatatandakan 
dengan ΓG, mempunyai G\Z(G)  sebagai set bucunya dengan dua bucu berbeza vp dan vq adalah bersebelahan jika vp 
vq= vq vp. Darjah bucu vp dalam ΓG, ditatatandakan dengan  𝑑𝑑𝑣𝑣𝑝𝑝  , adalah bilangan bucu bersebelahan dengan vp. Matriks 
darjah maksimum (atau minimum) bagi ΓG ialah matriks segiempat sama yang mana unsur ke-(p,q) adalah maks{
𝑑𝑑𝑣𝑣𝑝𝑝, 𝑑𝑑𝑣𝑣𝑞𝑞  } (atau min{𝑑𝑑𝑣𝑣𝑝𝑝, 𝑑𝑑𝑣𝑣𝑞𝑞  }) apabila vp dan vq bersebelahan, jika tidak, ia adalah sifar. Kajian ini mengemukakan 
tenaga darjah maksimum dan minimum ΓG bagi kumpulan dwihedron berperingkat 2n, D2n  dengan menggunakan nilai 
eigen mutlak bagi matriks darjah maksimum (MaxD(ΓG)) dan matriks darjah minimum (MinD(ΓG)) yang sepadan. 
Di sini, perbandingan tenaga darjah maksimum dan minimum ΓG bagi D2n dibincangkan dengan mempertimbangkan 
kes  n ganjil dan genap. Hasilnya menunjukkan bahawa bagi setiap kes, kedua-dua tenaga adalah integer genap bukan 
negatif dan sentiasa sama.
Kata kunci: Darjah bucu; graf kalis tukar tertib; kumpulan dwihedron; tenaga graf

INTRODUCTION

The non-abelian dihedral group of order 2n, n ≥ 3, is 
defined as D2n = 〈a, b∶ an = b2 = e, bab = a-1〉 (Aschbacher 
2000). The centre of D2n, Z(D2n) is either {e}, if n is odd 
or {e,𝐶𝐶𝐷𝐷2𝑛𝑛(𝑎𝑎𝑖𝑖𝑏𝑏) = {𝑒𝑒, 𝑎𝑎𝑛𝑛

2, 𝑎𝑎𝑖𝑖𝑏𝑏, 𝑎𝑎𝑛𝑛
2+𝑖𝑖𝑏𝑏} }, if n  is even. The centralizer of the element ai 

in the group D2n is 𝐶𝐶𝐷𝐷2𝑛𝑛(𝑎𝑎𝑖𝑖𝑏𝑏) = {𝑒𝑒, 𝑎𝑎𝑛𝑛
2, 𝑎𝑎𝑖𝑖𝑏𝑏, 𝑎𝑎𝑛𝑛

2+𝑖𝑖𝑏𝑏} (ai) = {aj:1 ≤ j ≤ n }   and for the 
element aib is either 𝐶𝐶𝐷𝐷2𝑛𝑛(𝑎𝑎𝑖𝑖𝑏𝑏) = {𝑒𝑒, 𝑎𝑎𝑛𝑛

2, 𝑎𝑎𝑖𝑖𝑏𝑏, 𝑎𝑎𝑛𝑛
2+𝑖𝑖𝑏𝑏} (aib) = {e,aib}, if n is odd or 

𝐶𝐶𝐷𝐷2𝑛𝑛(𝑎𝑎𝑖𝑖𝑏𝑏) = {𝑒𝑒, 𝑎𝑎𝑛𝑛
2, 𝑎𝑎𝑖𝑖𝑏𝑏, 𝑎𝑎𝑛𝑛

2+𝑖𝑖𝑏𝑏} , if n is even. 

Suppose now that G is a finite group and Z(G) is the 
centre of G, then the commuting graph for G, denoted by 
ΓG, has G\Z(G)  as its vertices set with two distinct vertices 
vp and vq  are adjacent if  vp vq = vq vp (Brauer & Fowler 
1955). This graph is also related to the result from Bundy 
(2006), Nawawi (2013), Nawawi and Rowley (2015), and 
Nawawi, Husain and Ariffin (2019), who worked on the 
symmetric group of degree n, while for the symplectic 
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group, it can be seen in Kasim and Nawawi (2021, 2018). 
The discussion of graphs related to semigroups is also 
found in Gheisari and Ahmad (2012).

Furthermore, ΓG can be associated with the 
adjacency matrix of ΓG, which is an n × n matrix A(ΓG ) = 
[apq] whose entries apq are equal to one if there is an edge 
between vp and vq, and zero otherwise. The characteristic 
polynomial PA(ΓG) (λ) of ΓG is defined by det (λIn - A(ΓG 
)), where In is an n×n identity matrix. The roots of an 
equation PA(ΓG) (λ) = 0 are called the eigenvalues of ΓG and 
they are labelled as λ1, λ2, …, λn. The spectrum of ΓG is the 
list of eigenvalues, which will be denoted by Spec(ΓG) = 
{𝜆𝜆1

(𝑘𝑘1), 𝜆𝜆2
(𝑘𝑘2), … , 𝜆𝜆𝑚𝑚

(𝑘𝑘𝑚𝑚)}  with λ1, λ2, …, λm together with their 
respective multiplicities k1, k2,…, km, where m ≤ n. The 
energy of a graph is the sum of the absolute eigenvalues 
of the corresponding matrix (Gutman 1978).

This field of study is indeed significant and has its 
own contribution to several other areas. For instance, 
chemical graph theory is a branch of mathematical 
chemistry that applies graph theory to the mathematical 
modeling of chemical compounds (Trinajstic 1992), 
which then includes discussion of graph energies (Gutman 
1978) by considering a chemical molecule as a graph 
and estimating the π-electron energy. This graph energy 
concept is also a useful tool for predicting the boiling 
points, the heat of vaporization, and critical temperatures 
of alkanes (Hosamani et al. 2017). Additionally, the 
ordering index for chemical structure coding indicates 
the correlation with boiling points (Wang & Ma 2016). 
Furthermore, graphs also play remarkable roles in solving 
network problems (Loh, Salleh & Sarmin 2014; Razak 
& Expert 2021).

Furthermore, associating matrices with several 
types of graphs with group elements as a set of vertices 
has become a very popular area of research at present. 
Abdussakir et al. (2019) described the energy of subgroup 
graphs for dihedral group by using the corresponding 
adjacency matrix. On the other hand, Romdhini and 
Nawawi (2022) presented the formula of energy of non-
commuting graphs for dihedral group by considering 
the eigenvalues of the characteristic polynomial of the 
degree sum matrix. Moreover, Romdhini, Nawawi and 
Chen (2022) explored the degree exponent sum energy 
of commuting graphs for the same type of group. 

Here, we focus on representing the commuting 
graphs for dihedral groups as the maximum degree 
matrix, defined by Adiga and Smitha (2009), and the 
minimum degree matrix, defined by Adiga and Swamy 
(2010). Taking the summation of the absolute eigenvalues 
computed from the corresponding matrices leads us to 
derive the formula of maximum and minimum degree 

energies of commuting graphs for dihedral groups, 
denoted by EmaxD (ΓG) and EminD (ΓG), respectively.

This paper is organized as follows. We set forth 
several existing results which are relevant to our study 
in the next section. Subsequently, we provide the general 
formula of maximum and minimum degree energies for 
different subsets of dihedral groups accompanied by two 
examples of computation. In the end, we summarize the 
findings of this study in the last section. 
 

PRELIMINARIES

We define 𝑑𝑑𝑣𝑣𝑝𝑝   as the degree of vp which is the number 
of vertices adjacent to vp. The maximum degree matrix 
(MaxD) and minimum degree matrix (MinD) of order 
n × n associated with elements of G\Z(G) are given 
by MaxD(ΓG) = [maxdpq], and MinD(ΓG) = [mindpq], 
respectively, whose (p,q)-th entry are as follows:

Moreover, if every vertex in a graph has the same degree 
r, then the graph is called r-regular graph.

In this section, we include some previous results which 
are beneficial for the next section. The two following 
results are important in computing the characteristic 
polynomial of the commuting graph ΓG.
 
Lemma 2.1 (Ramane & Shinde 2017) If a,b,c and d are 
real numbers, and Jn is an n × n matrix whose all elements 
are equal to 1, then the determinant of the (n1 + n2) × (n1 
+ n2) matrix of the form 

can be simplified in an expression as

where 1 ≤ n1, n2 ≤ n and n1 + n2 = n.

Theorem 2.1 (Gantmacher 1959) If a square matrix M 
= [𝐴𝐴 𝐵𝐵

𝐶𝐶 𝐷𝐷]  is the partition into four blocks, where A is a 
square non-singular matrix, then 

(𝜆𝜆 + 𝑎𝑎)𝑛𝑛1−1(𝜆𝜆 + 𝑏𝑏)𝑛𝑛2−1((𝜆𝜆 − (𝑛𝑛1 − 1)𝑎𝑎)(𝜆𝜆 − (𝑛𝑛2 − 1)𝑏𝑏) − 𝑛𝑛1𝑛𝑛2𝑐𝑐𝑐𝑐), 

 

 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝 = { 𝑚𝑚𝑚𝑚𝑚𝑚{𝑚𝑚𝑣𝑣𝑝𝑝, 𝑚𝑚𝑣𝑣𝑞𝑞},    if 𝑣𝑣𝑝𝑝 and 𝑣𝑣𝑝𝑝 are adjacent 
0,                             otherwise,                              

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝 = { 𝑚𝑚𝑚𝑚𝑚𝑚{𝑚𝑚𝑣𝑣𝑝𝑝, 𝑚𝑚𝑣𝑣𝑞𝑞},    if 𝑣𝑣𝑝𝑝 and 𝑣𝑣𝑝𝑝 are adjacent
0,                            otherwise.                            

 

|
(𝜆𝜆 + 𝑎𝑎)𝐼𝐼𝑛𝑛1 − 𝑎𝑎𝐽𝐽𝑛𝑛1 −𝑐𝑐𝐽𝐽𝑛𝑛1×𝑛𝑛2

−𝑑𝑑𝐽𝐽𝑛𝑛2×𝑛𝑛1 (𝜆𝜆 + 𝑏𝑏)𝐼𝐼𝑛𝑛2 − 𝑏𝑏𝐽𝐽𝑛𝑛2
| 

 

Theorem 2.1 (Gantmacher 1959) If a square matrix 𝑀𝑀 = [𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷] is the partition into four blocks, 

where 𝐴𝐴 is a square non-singular matrix, then  

|𝑀𝑀| = |𝐴𝐴 𝐵𝐵
0 𝐷𝐷 − 𝐶𝐶𝐴𝐴−1𝐵𝐵| = |𝐴𝐴||𝐷𝐷 − 𝐶𝐶𝐴𝐴−1𝐵𝐵|. 
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Additionally, a graph of order n with every vertex 
having degree n - 1 is called a complete graph Kn and 
the complement of Kn, is denoted by �̅�𝐾𝑛𝑛 n The following 
lemma is the result of the spectrum of Kn, which is useful 
in computing the maximum and minimum energy of ΓG.

Lemma 2.2 (Brouwer & Haemers 2011) If Kn is the 
complete graph on n vertices, then its adjacency matrix 
is Jn - In and the spectrum of Kn is {(n - 1)(1), (-1)(n - 1)}.

This present work focuses on the dihedral groups 
of order 2n, D2n – the group which consists of the 
reflection and rotation movements of a regular n-gon 
to its original position. Let G1 = {ai : 1 ≤ i ≤ n}\Z(D2n) 
be the set of rotation elements of D2n which are not 
members of Z(D2n) and G2 = {aib : 1 ≤ i ≤ n} be the set 
of reflection elements of D2n. The following is the result 
of the degree of each vertex of the commuting graph ΓG 
for G = G1 ∪ G2.

Theorem 2.2 (Romdhini, Nawawi & Chen 2022) Let ΓG 
be the commuting graph for G, where G = G1 ∪ G2. Then

1. The degree of ai on ΓG is 

 

1. The degree of 𝑎𝑎𝑖𝑖 on 𝛤𝛤𝐺𝐺  is 𝑑𝑑𝑎𝑎𝑖𝑖 = {𝑛𝑛 − 2, if 𝑛𝑛 is odd
𝑛𝑛 − 3, if 𝑛𝑛 is even, 

2. the degree of 𝑎𝑎𝑖𝑖𝑏𝑏 on 𝛤𝛤𝐺𝐺  is 𝑑𝑑𝑎𝑎𝑖𝑖𝑏𝑏 = {0, if 𝑛𝑛 is odd
1, if 𝑛𝑛 is even. 

2. The degree of aib on ΓG is 

 

1. The degree of 𝑎𝑎𝑖𝑖 on 𝛤𝛤𝐺𝐺  is 𝑑𝑑𝑎𝑎𝑖𝑖 = {𝑛𝑛 − 2, if 𝑛𝑛 is odd
𝑛𝑛 − 3, if 𝑛𝑛 is even, 

2. the degree of 𝑎𝑎𝑖𝑖𝑏𝑏 on 𝛤𝛤𝐺𝐺  is 𝑑𝑑𝑎𝑎𝑖𝑖𝑏𝑏 = {0, if 𝑛𝑛 is odd
1, if 𝑛𝑛 is even. 

Consequently, the isomorphism of commuting graph 
with common type of graphs can be seen in the following 
result:

Theorem 2.3 (Romdhini, Nawawi & Chen 2022) Let ΓGbe 
the commuting graph for G.

1. If  G = G1, then ΓG 1. If  𝐺𝐺 = 𝐺𝐺1, then 𝛤𝛤𝐺𝐺 ≅ 𝐾𝐾𝑚𝑚, where 𝑚𝑚 = |𝐺𝐺1|.    

2. If  𝐺𝐺 = 𝐺𝐺2, then 𝛤𝛤𝐺𝐺 ≅ { �̅�𝐾𝑛𝑛,                               if 𝑛𝑛 is odd
1 − regular graph, if 𝑛𝑛 is even. 

 

  
 
2. If  G = G2, then ΓG 

1. If  𝐺𝐺 = 𝐺𝐺1, then 𝛤𝛤𝐺𝐺 ≅ 𝐾𝐾𝑚𝑚, where 𝑚𝑚 = |𝐺𝐺1|.    

2. If  𝐺𝐺 = 𝐺𝐺2, then 𝛤𝛤𝐺𝐺 ≅ { �̅�𝐾𝑛𝑛,                               if 𝑛𝑛 is odd
1 − regular graph, if 𝑛𝑛 is even. 

 

 

MAIN RESULTS

This section will present several results on the maximum 
and minimum degree energy of the commuting graph 
for the dihedral group of order 2n. We divide n into 
two cases, namely when n is odd and n is even. This is 
strictly for n ≥ 3 since the dihedral group is abelian for 
n = 1 and n = 2. 

Theorem 3.1 Let ΓG be the commuting graph for G.

1. If G = G1, then  EMaxD (ΓG) = EMinD (ΓG) 

2. If G = G2, then EMaxD (ΓG) = EMinD (ΓG) 

Proof.

When n is odd. From Theorem 2.3 (1),  ΓG ≅ Km, for 
G = G1 and m = | G1  | = n - 1, removing e in Z(D2n). 
Clearly every vertex of ΓG has degree n - 2. Then we can 
construct (n - 1) × (n - 1) maximum degree matrices of ΓG, 
MaxD(ΓG) = [maxdpq] and minimum degree matrices of 
ΓG, MinD(ΓG) = [mindpq] whose (p,q)-th entry is maxdpq= 
max{n - 2, n - 2}= n - 2, and mindpq = min{n - 2, n - 2} 
= n - 2 for adjacent vp  and vq, and 0 for diagonal entries.

In other words, MaxD(ΓG and MinD(ΓG) are the 
product of n - 2 and the adjacency matrix of Kn - 1. Based 
on Lemma 2.2, Spec(Kn - 1) is given by {(n - 2)(1), (-1)(n - 2)}. 
Since the adjacency energy of Kn - 1 is |n - 2| + (n - 2)|-1| 
=2(n - 2), the maximum and minimum degree energy of 
ΓGwill be (n - 2)∙ 2(n - 1) = 2(n - 2)2.  

When n is even. From Theorem 2.3 (1),  ΓG ≅ Km, for 
G = G1 and m = |G1 | = n - 2, removing all elements in 
Z(D2n) which are e and 𝑎𝑎𝑛𝑛2  . Then every vertex of ΓG has 
degree n - 3. Then we can construct (n - 2) × (n - 2) 
maximum degree matrices of ΓG, MaxD(ΓG) = [maxdpq] 
and minimum degree matrices of ΓG, MinD(ΓG) = [mindpq] 
whose (p,q)-th entry is maxdpq = max{n - 3, n - 3} = n - 3 
and mindpq = min{n - 3, n - 3}= n - 3, for adjacent vp  and 
vq, and 0 for diagonal entries.

Thus, MaxD(ΓG) and MinD(ΓG) are the product of n 
- 3 and the adjacency matrix of Kn - 2. Again by using 
Lemma 2.2, Spec(Kn - 2) is {(n - 3)(1), (-1)(n - 3)}. Since 
the adjacency energy of Kn - 2 is | n - 3 | + (n - 3) | - 1| = 
2(n - 3), the maximum and minimum degree energy of 
ΓG will be (n - 3)∙ 2(n - 3) = 2(n - 3)2.  

 

1. If 𝐺𝐺 = 𝐺𝐺1, then  𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = {2(𝑛𝑛 − 2)2,    if 𝑛𝑛 is odd
2(𝑛𝑛 − 3)2,    if 𝑛𝑛 is even. 

2. If 𝐺𝐺 = 𝐺𝐺2, then 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = {0,    if 𝑛𝑛 is odd
𝑛𝑛,    if 𝑛𝑛 is even. 

 

 

1. If 𝐺𝐺 = 𝐺𝐺1, then  𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = {2(𝑛𝑛 − 2)2,    if 𝑛𝑛 is odd
2(𝑛𝑛 − 3)2,    if 𝑛𝑛 is even. 

2. If 𝐺𝐺 = 𝐺𝐺2, then 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = {0,    if 𝑛𝑛 is odd
𝑛𝑛,    if 𝑛𝑛 is even. 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = [
0 𝑀𝑀 − 3 ⋯ 𝑀𝑀 − 3

𝑀𝑀 − 3 0 ⋯ 𝑀𝑀 − 3
⋮ ⋮ ⋱ ⋮

𝑀𝑀 − 3 𝑀𝑀 − 3 ⋯ 0
] = (𝑀𝑀 − 3) [

0 1 ⋯ 1
1 0 ⋯ 1
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 0

]. 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = [
0 𝑀𝑀 − 3 ⋯ 𝑀𝑀 − 3

𝑀𝑀 − 3 0 ⋯ 𝑀𝑀 − 3
⋮ ⋮ ⋱ ⋮

𝑀𝑀 − 3 𝑀𝑀 − 3 ⋯ 0
] = (𝑀𝑀 − 3) [

0 1 ⋯ 1
1 0 ⋯ 1
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 0

]. 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 

[
0 𝑀𝑀 − 2 ⋯ 𝑀𝑀 − 2

𝑀𝑀 − 2 0 ⋯ 𝑀𝑀 − 2
⋮ ⋮ ⋱ ⋮

𝑀𝑀 − 2 𝑀𝑀 − 2 ⋯ 0
] = (𝑀𝑀 − 2) [

0 1 ⋯ 1
1 0 ⋯ 1
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 0

]. 
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When n is odd. From Theorem 2.3 (2),  ΓG ≅ �̅�𝐾𝑛𝑛 n, for G 
= G2, which clearly shows that all of the vertices have 
degree zero. Then we can construct an n × n maximum 
degree matrix of ΓG, MaxD(ΓG) = [maxdpq ] and minimum 
degree matrix of ΓG, MinD(ΓG) = [mindpq] whose (p,q)-
th entry is maxdpq = max {0,0}0 and mindpq = min{0,0} 
= 0, for adjacent vp and vq, and diagonal entries as well.

In other words, MaxD(ΓG) and MinD(ΓG)  are zero 
matrices. Thus, EMaxD (ΓG) = EMinD (ΓG) = 0.

When n is even. By Theorem 2.3 (2),  for G = G2, ΓG is 
a regular graph with degree one due to there is only an 
edge between the vertices aib and 𝑎𝑎

𝑛𝑛
2+𝑖𝑖𝑏𝑏.  Then we can 

construct  n×n maximum and minimum degree matrices 
of ΓG as follows:

Consider the characteristic polynomial of MaxD(ΓG) and 
MinD(ΓG),

Suppose that Ri is the i-th row and Ri' is the new i-th 
row obtained from a row operation of PMaxD(ΓG) (λ) and 
PMinD(ΓG)(λ). Also, let that Ci is the i-th row and Ci' is the 
new i-th column obtained from a column operation of 
PMaxD(ΓG) (λ) and PMinD(ΓG)(λ). To begin, we replace 𝑅𝑅𝑛𝑛

2+𝑖𝑖
 by 𝑅𝑅𝑛𝑛

2+𝑖𝑖
′ = 𝑅𝑅𝑛𝑛

2+𝑖𝑖
− 𝑅𝑅𝑖𝑖,   

by 𝑅𝑅𝑛𝑛
2+𝑖𝑖

 by 𝑅𝑅𝑛𝑛
2+𝑖𝑖
′ = 𝑅𝑅𝑛𝑛

2+𝑖𝑖
− 𝑅𝑅𝑖𝑖,   for every 1 ≤ i ≤ 𝑛𝑛2 . Then, we note 

that PMaxD(ΓG)  (λ) and PMinD(ΓG)(λ) can be expressed as

as |
𝜆𝜆𝜆𝜆𝑛𝑛

2
−𝜆𝜆𝑛𝑛

2
−(𝜆𝜆 + 1)𝑛𝑛

2
(𝜆𝜆 + 1)𝜆𝜆𝑛𝑛

2

|. 

 

 

|
(𝜆𝜆 − 1)𝜆𝜆𝑛𝑛

2
−𝜆𝜆𝑛𝑛

2
0𝑛𝑛
2

(𝜆𝜆 + 1)𝜆𝜆𝑛𝑛
2

|. 

Consequently, we replace Ci by 

Ci ' = Ci  + 𝐶𝐶𝑛𝑛
2+𝑖𝑖

,  for every 1 ≤ i ≤ 𝑛𝑛2 . Then we observe 

that PMaxD(ΓG)(λ) and PMinD(ΓG)(λ) can be expressed as 

as |
𝜆𝜆𝜆𝜆𝑛𝑛

2
−𝜆𝜆𝑛𝑛

2
−(𝜆𝜆 + 1)𝑛𝑛

2
(𝜆𝜆 + 1)𝜆𝜆𝑛𝑛

2

|. 

 

 

|
(𝜆𝜆 − 1)𝜆𝜆𝑛𝑛

2
−𝜆𝜆𝑛𝑛

2
0𝑛𝑛
2

(𝜆𝜆 + 1)𝜆𝜆𝑛𝑛
2

|. 

By using Theorem 2.1, it is the form of  |𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷| = |𝐴𝐴||𝐷𝐷 − 𝐶𝐶𝐴𝐴−1𝐵𝐵| = |𝐴𝐴||𝐷𝐷|, 

|𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷| = |𝐴𝐴||𝐷𝐷 − 𝐶𝐶𝐴𝐴−1𝐵𝐵| = |𝐴𝐴||𝐷𝐷|,  since C = 0. It implies that 

Therefore, 

Theorem 3.2 Let ΓG be the commuting graph for G = 
G1 ∪ G2 ⊂ D2n, then the characteristic polynomial of 
maximum and minimum degree matrices for ΓG are as 
follows.

1. For n is odd,

 

2. For n is even

Proof

When n is odd, from Theorem 2.2, the degree of ai ∈ 
G, 𝑑𝑑𝑎𝑎𝑖𝑖  = n - 2 and the degree of aib ∈ G, 𝑑𝑑𝑎𝑎𝑖𝑖𝑏𝑏  = 0, 
for all 1 ≤ i ≤ n. Then, by using the fact that Z(D2n) = 
{e}, we have 2n - 1 vertices for ΓG. The set of vertices 
consists of n - 1 vertices of ai, for 1 ≤ i ≤ n - 1, and n 
vertices of aib, for 1 ≤ i ≤ n. Then the maximum and 
minimum degree matrices for ΓG are both of dimension 
(2n - 1) × (2n - 1), denoted by MaxD(ΓG) = [maxdpq] 
and MinD(ΓG) = [mindpq] whose (p,q)-th entry are:

(i) maxdpq = mindpq = n  - 2 , for p ≠ q, and 1 ≤  p,q ≤ n - 1;

(ii) maxdpq = mindpq = 0  for 1≤ p ≤ n  - 1 and n ≤ q ≤ 2n  - 1;

(iii) maxdpq = mindpq = 0, for n ≤ p ≤ 2n  - 1 and 1 ≤ q ≤ 
n  - 1; 

(iv) maxdpq = mindpq = 0, for p ≠ q, n ≤ p,q ≤ 2n  - 1;

(v) maxdpq = mindpq = 0, for p = q.

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = [
0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

]. 

 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) =

[
 
 
 
 
 0 ⋯ 0 1 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 0 ⋯ 1
1 ⋯ 0 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 ⋯ 1 0 ⋯ 0]

 
 
 
 
 

= [
0𝑛𝑛

2
𝐼𝐼𝑛𝑛

2
𝐼𝐼𝑛𝑛

2
0𝑛𝑛

2

]. 

 

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = |(𝜆𝜆 − 1)𝐼𝐼𝑛𝑛
2
| |(𝜆𝜆 + 1)𝐼𝐼𝑛𝑛

2
| = (𝜆𝜆 + 1)

𝑛𝑛
2(𝜆𝜆 − 1)

𝑛𝑛
2. 

 

𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) =
𝑀𝑀
2 |−1| +

𝑀𝑀
2 |1| = 𝑛𝑛. 

 

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = (𝜆𝜆 + 𝑛𝑛 − 2)𝑀𝑀−2𝜆𝜆𝑀𝑀(𝜆𝜆 − (𝑛𝑛 − 2)2). 

2. For 𝑛𝑛 is even 

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = (𝜆𝜆 + 𝑛𝑛 − 3)𝑀𝑀−3(𝜆𝜆 − (𝑛𝑛 − 3)2)(𝜆𝜆 + 1)
𝑛𝑛
2(𝜆𝜆 − 1)

𝑛𝑛
2. 

 

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = (𝜆𝜆 + 𝑛𝑛 − 2)𝑀𝑀−2𝜆𝜆𝑀𝑀(𝜆𝜆 − (𝑛𝑛 − 2)2). 

2. For 𝑛𝑛 is even 

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = (𝜆𝜆 + 𝑛𝑛 − 3)𝑀𝑀−3(𝜆𝜆 − (𝑛𝑛 − 3)2)(𝜆𝜆 + 1)
𝑛𝑛
2(𝜆𝜆 − 1)

𝑛𝑛
2. 

 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = |
𝜆𝜆𝜆𝜆𝑀𝑀

2
−𝜆𝜆𝑀𝑀

2
−𝜆𝜆𝑀𝑀

2
𝜆𝜆𝜆𝜆𝑀𝑀

2
|. 

 

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = |(𝜆𝜆 − 1)𝐼𝐼𝑛𝑛
2
| |(𝜆𝜆 + 1)𝐼𝐼𝑛𝑛

2
| = (𝜆𝜆 + 1)

𝑛𝑛
2(𝜆𝜆 − 1)

𝑛𝑛
2. 

 

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = (𝜆𝜆 + 𝑛𝑛 − 2)𝑀𝑀−2𝜆𝜆𝑀𝑀(𝜆𝜆 − (𝑛𝑛 − 2)2). 

 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = (𝜆𝜆 + 𝑛𝑛 − 2)𝑀𝑀−2𝜆𝜆𝑀𝑀(𝜆𝜆 − (𝑛𝑛 − 2)2). 
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We can construct MaxD(ΓG) and MinD(ΓG) as follows:

Then we obtain the characteristic polynomial of 
MaxD(ΓG)  and MinD(ΓG)   f rom the fol lowing 
determinant

By using Lemma 2.1, with n1 = n - 1, n2 = n and a = n - 2, 
b = 0, c = 0, d = 0, we get the required result.

When n is even, using Theorem 2.2, we know that 𝑑𝑑𝑎𝑎𝑖𝑖  
= n - 3 and 𝑑𝑑𝑎𝑎𝑖𝑖𝑏𝑏  = 1, for all 1 ≤ i ≤ n. Then, using the 
fact that Z(D2n) = {𝑒𝑒, 𝑎𝑎𝑛𝑛

2  

 

 

 

}, we have 2n - 2 vertices for 
ΓG, where G = G1 ∪ G2. The set of vertices consists of 
n - 2 vertices of ai, with i ≠ n,𝑒𝑒, 𝑎𝑎𝑛𝑛

2  

 

 

 

, and n vertices of aib, 
for 1 ≤ i ≤ n. Then the maximum and minimum degree 
matrices for ΓG are both of dimension (2n - 2) × (2n - 
2), denoted by MaxD(ΓG) = [maxdpq] and MinD(ΓG) = 
[mindpq] whose (p,q)-th entry are:

(i) maxdpq = mindpq = n - 3, for p ≠ q, and 1 ≤ p,q ≤ n - 2;

(ii) maxdpq = mindpq = 0 , for 1 ≤ p ≤ n - 2 and n - 1 ≤ q 
≤ 2n - 2;

(iii) maxdpq = mindpq = 0, for n - 1 ≤ p ≤ 2n - 2 and 1 ≤ 
q ≤ n - 2;

(iv) maxdpq = mindpq = 0, for p = q.

Since there exists only an edge between the vertices aib 
and 𝑎𝑎𝑛𝑛2+𝑖𝑖𝑏𝑏 

 

 

in ΓG, for all 1 ≤ i ≤ n, then the next entries 
are:

(v) maxdpq= mindpq = 0, for n - 1 ≤ p,q ≤ n -2 + 𝑒𝑒, 𝑎𝑎𝑛𝑛
2  

 

 

 

;

(vi) maxdpq= mindpq = 1, for q =  𝑒𝑒, 𝑎𝑎𝑛𝑛
2  

 

 

 

 + p, n - 1 ≤ p ≤ n  - 2 
+ 𝑒𝑒, 𝑎𝑎𝑛𝑛

2  

 

 

 

 and n - 1 + 𝑒𝑒, 𝑎𝑎𝑛𝑛
2  

 

 

 

 ≤ q ≤ 2n  - 2;

(vii) maxdpq= mindpq = 0, for q ≠ 𝑒𝑒, 𝑎𝑎𝑛𝑛
2  

 

 

 

+ p, n - 1 ≤ p ≤ n - 2 
+𝑒𝑒, 𝑎𝑎𝑛𝑛
2  

 

 

 

 and n - 1 +𝑒𝑒, 𝑎𝑎𝑛𝑛
2  

 

 

 

 ≤ q ≤ 2n - 2;

(viii) maxdpq= mindpq = 1, for p = 𝑒𝑒, 𝑎𝑎𝑛𝑛
2  

 

 

 

 + q, n - 1 + 𝑒𝑒, 𝑎𝑎𝑛𝑛
2  

 

 

 

 ≤ p ≤ 
n-2 and n - 1 ≤ q ≤ n - 2 +𝑒𝑒, 𝑎𝑎𝑛𝑛

2  

 

 

 

 ;

(ix)  maxdpq= mindpq = 0, for p ≠ 𝑒𝑒, 𝑎𝑎𝑛𝑛
2  

 

 

 

 + q, n  - 1 + 𝑒𝑒, 𝑎𝑎𝑛𝑛
2  

 

 

 

  ≤ p ≤ 
n - 2 and n  - 1 ≤ q ≤ n  - 2 + 𝑒𝑒, 𝑎𝑎𝑛𝑛

2  

 

 

 

 ;

(x) maxdpq= mindpq = 0, for n - 1 + 𝑒𝑒, 𝑎𝑎𝑛𝑛
2  

 

 

 

 ≤ p,q ≤ 2n - 2.

We can construct MaxD(ΓG) and MinD(ΓG) as the 
following:

Then the characteristic polynomial of MaxD(ΓG) and 
MinD(ΓG) is

By using Theorem 2.1 with A = (λ + n - 3) In - 2 - (n - 3) 

Jn - 2, B = 0(n - 2) × n), C = 0n × (n-2), D = 

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = ||
(λ + 𝑛𝑛 − 3)𝐼𝐼𝑀𝑀−2 − (𝑛𝑛 − 3)𝐽𝐽𝑀𝑀−2 0(𝑀𝑀−2)×𝑀𝑀

2
0(𝑀𝑀−2)×𝑀𝑀

2
0𝑀𝑀

2×(𝑀𝑀−2) 𝜆𝜆𝐼𝐼𝑀𝑀
2

−𝐼𝐼𝑀𝑀
2

0𝑀𝑀
2×(𝑀𝑀−2) −𝐼𝐼𝑀𝑀

2
𝜆𝜆𝐼𝐼𝑀𝑀

2

||. 

By using Theorem 2.1 with 𝐴𝐴 = (λ + 𝑛𝑛 − 3)𝐼𝐼𝑀𝑀−2 − (𝑛𝑛 − 3)𝐽𝐽𝑀𝑀−2, 𝐵𝐵 = 0(𝑀𝑀−2)×𝑀𝑀, 𝐶𝐶 =

0𝑀𝑀×(𝑀𝑀−2), 𝐷𝐷 = [
𝜆𝜆𝐼𝐼𝑛𝑛

2
−𝐼𝐼𝑛𝑛

2
−𝐼𝐼𝑛𝑛

2
𝜆𝜆𝐼𝐼𝑛𝑛

2

], and |𝐴𝐴| ≠ 0, we get the form of |𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷| = |𝐴𝐴||𝐷𝐷 − 𝐶𝐶𝐴𝐴−1𝐵𝐵| =

|𝐴𝐴||𝐷𝐷|. Now we consider |𝐴𝐴|.  By using Lemma 2.1, with 𝑛𝑛1 = 𝑀𝑀−2
2 , 𝑛𝑛2 = 𝑀𝑀−2

2  and 𝑎𝑎 = 𝑛𝑛 − 3, 

𝑏𝑏 = 𝑛𝑛 − 3, 𝑐𝑐 = 𝑛𝑛 − 3, 𝑑𝑑 = 𝑛𝑛 − 3, we obtain that |𝐴𝐴| = (𝜆𝜆 + 𝑛𝑛 − 3)𝑀𝑀−3(𝜆𝜆 − (𝑛𝑛 − 3)2). 

Meanwhile for |𝐷𝐷|, by the same argument of Theorem 3.1 (2) for even 𝑛𝑛, then |𝐷𝐷| =

(𝜆𝜆 + 1)
𝑛𝑛
2(𝜆𝜆 − 1)

𝑛𝑛
2. Therefore, 

 

and  |A 

| ≠ 0, we get the form of 

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = ||
(λ + 𝑛𝑛 − 3)𝐼𝐼𝑀𝑀−2 − (𝑛𝑛 − 3)𝐽𝐽𝑀𝑀−2 0(𝑀𝑀−2)×𝑀𝑀

2
0(𝑀𝑀−2)×𝑀𝑀

2
0𝑀𝑀

2×(𝑀𝑀−2) 𝜆𝜆𝐼𝐼𝑀𝑀
2

−𝐼𝐼𝑀𝑀
2

0𝑀𝑀
2×(𝑀𝑀−2) −𝐼𝐼𝑀𝑀

2
𝜆𝜆𝐼𝐼𝑀𝑀

2

||. 

By using Theorem 2.1 with 𝐴𝐴 = (λ + 𝑛𝑛 − 3)𝐼𝐼𝑀𝑀−2 − (𝑛𝑛 − 3)𝐽𝐽𝑀𝑀−2, 𝐵𝐵 = 0(𝑀𝑀−2)×𝑀𝑀, 𝐶𝐶 =

0𝑀𝑀×(𝑀𝑀−2), 𝐷𝐷 = [
𝜆𝜆𝐼𝐼𝑛𝑛

2
−𝐼𝐼𝑛𝑛

2
−𝐼𝐼𝑛𝑛

2
𝜆𝜆𝐼𝐼𝑛𝑛

2

], and |𝐴𝐴| ≠ 0, we get the form of |𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷| = |𝐴𝐴||𝐷𝐷 − 𝐶𝐶𝐴𝐴−1𝐵𝐵| =

|𝐴𝐴||𝐷𝐷|. Now we consider |𝐴𝐴|.  By using Lemma 2.1, with 𝑛𝑛1 = 𝑀𝑀−2
2 , 𝑛𝑛2 = 𝑀𝑀−2

2  and 𝑎𝑎 = 𝑛𝑛 − 3, 

𝑏𝑏 = 𝑛𝑛 − 3, 𝑐𝑐 = 𝑛𝑛 − 3, 𝑑𝑑 = 𝑛𝑛 − 3, we obtain that |𝐴𝐴| = (𝜆𝜆 + 𝑛𝑛 − 3)𝑀𝑀−3(𝜆𝜆 − (𝑛𝑛 − 3)2). 

Meanwhile for |𝐷𝐷|, by the same argument of Theorem 3.1 (2) for even 𝑛𝑛, then |𝐷𝐷| =

(𝜆𝜆 + 1)
𝑛𝑛
2(𝜆𝜆 − 1)

𝑛𝑛
2. Therefore, 

 

 | 
A||D|. Now we consider |A|.  By using Lemma 2.1, with 
n1 = 

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = ||
(λ + 𝑛𝑛 − 3)𝐼𝐼𝑀𝑀−2 − (𝑛𝑛 − 3)𝐽𝐽𝑀𝑀−2 0(𝑀𝑀−2)×𝑀𝑀

2
0(𝑀𝑀−2)×𝑀𝑀

2
0𝑀𝑀

2×(𝑀𝑀−2) 𝜆𝜆𝐼𝐼𝑀𝑀
2

−𝐼𝐼𝑀𝑀
2

0𝑀𝑀
2×(𝑀𝑀−2) −𝐼𝐼𝑀𝑀

2
𝜆𝜆𝐼𝐼𝑀𝑀

2

||. 

By using Theorem 2.1 with 𝐴𝐴 = (λ + 𝑛𝑛 − 3)𝐼𝐼𝑀𝑀−2 − (𝑛𝑛 − 3)𝐽𝐽𝑀𝑀−2, 𝐵𝐵 = 0(𝑀𝑀−2)×𝑀𝑀, 𝐶𝐶 =

0𝑀𝑀×(𝑀𝑀−2), 𝐷𝐷 = [
𝜆𝜆𝐼𝐼𝑛𝑛

2
−𝐼𝐼𝑛𝑛

2
−𝐼𝐼𝑛𝑛

2
𝜆𝜆𝐼𝐼𝑛𝑛

2

], and |𝐴𝐴| ≠ 0, we get the form of |𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷| = |𝐴𝐴||𝐷𝐷 − 𝐶𝐶𝐴𝐴−1𝐵𝐵| =

|𝐴𝐴||𝐷𝐷|. Now we consider |𝐴𝐴|.  By using Lemma 2.1, with 𝑛𝑛1 = 𝑀𝑀−2
2 , 𝑛𝑛2 = 𝑀𝑀−2

2  and 𝑎𝑎 = 𝑛𝑛 − 3, 

𝑏𝑏 = 𝑛𝑛 − 3, 𝑐𝑐 = 𝑛𝑛 − 3, 𝑑𝑑 = 𝑛𝑛 − 3, we obtain that |𝐴𝐴| = (𝜆𝜆 + 𝑛𝑛 − 3)𝑀𝑀−3(𝜆𝜆 − (𝑛𝑛 − 3)2). 

Meanwhile for |𝐷𝐷|, by the same argument of Theorem 3.1 (2) for even 𝑛𝑛, then |𝐷𝐷| =

(𝜆𝜆 + 1)
𝑛𝑛
2(𝜆𝜆 − 1)

𝑛𝑛
2. Therefore, 

 

  and a = n - 3, b = n - 3, c = n - 3, d 
= n - 3, we obtain that |A| = (λ + n - 3)n - 3 (λ - (n - 3)2). 
Meanwhile for |D|, by the same argument of Theorem 
3.1 (2) for even n, then |D| = 

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = ||
(λ + 𝑛𝑛 − 3)𝐼𝐼𝑀𝑀−2 − (𝑛𝑛 − 3)𝐽𝐽𝑀𝑀−2 0(𝑀𝑀−2)×𝑀𝑀

2
0(𝑀𝑀−2)×𝑀𝑀

2
0𝑀𝑀

2×(𝑀𝑀−2) 𝜆𝜆𝐼𝐼𝑀𝑀
2

−𝐼𝐼𝑀𝑀
2

0𝑀𝑀
2×(𝑀𝑀−2) −𝐼𝐼𝑀𝑀

2
𝜆𝜆𝐼𝐼𝑀𝑀

2

||. 

By using Theorem 2.1 with 𝐴𝐴 = (λ + 𝑛𝑛 − 3)𝐼𝐼𝑀𝑀−2 − (𝑛𝑛 − 3)𝐽𝐽𝑀𝑀−2, 𝐵𝐵 = 0(𝑀𝑀−2)×𝑀𝑀, 𝐶𝐶 =

0𝑀𝑀×(𝑀𝑀−2), 𝐷𝐷 = [
𝜆𝜆𝐼𝐼𝑛𝑛

2
−𝐼𝐼𝑛𝑛

2
−𝐼𝐼𝑛𝑛

2
𝜆𝜆𝐼𝐼𝑛𝑛

2

], and |𝐴𝐴| ≠ 0, we get the form of |𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷| = |𝐴𝐴||𝐷𝐷 − 𝐶𝐶𝐴𝐴−1𝐵𝐵| =

|𝐴𝐴||𝐷𝐷|. Now we consider |𝐴𝐴|.  By using Lemma 2.1, with 𝑛𝑛1 = 𝑀𝑀−2
2 , 𝑛𝑛2 = 𝑀𝑀−2

2  and 𝑎𝑎 = 𝑛𝑛 − 3, 

𝑏𝑏 = 𝑛𝑛 − 3, 𝑐𝑐 = 𝑛𝑛 − 3, 𝑑𝑑 = 𝑛𝑛 − 3, we obtain that |𝐴𝐴| = (𝜆𝜆 + 𝑛𝑛 − 3)𝑀𝑀−3(𝜆𝜆 − (𝑛𝑛 − 3)2). 

Meanwhile for |𝐷𝐷|, by the same argument of Theorem 3.1 (2) for even 𝑛𝑛, then |𝐷𝐷| =

(𝜆𝜆 + 1)
𝑛𝑛
2(𝜆𝜆 − 1)

𝑛𝑛
2. Therefore, 

 

 Therefore,
 

 
Theorem 3.3 Let ΓG be the commuting graph for G, where 
G = G1 ∪ G2, then the maximum and minimum degree 
energy for ΓG is

                         

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) =

[
 
 
 
 
 
 
 
 
 
 
 0 𝑀𝑀 − 3 ⋯ 𝑀𝑀 − 3 0 0 ⋯ 0 0 0 ⋯ 0
𝑀𝑀 − 3 0 ⋯ 𝑀𝑀 − 3 0 0 ⋯ 0 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝑀𝑀 − 3 𝑀𝑀 − 3 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0

0 0 ⋯ 0 0 0 ⋯ 0 1 0 ⋯ 0
0 0 ⋯ 0 0 0 ⋯ 0 0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 1
0 0 ⋯ 0 1 0 ⋯ 0 0 0 ⋯ 0
0 0 ⋯ 0 0 1 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 0 0 ⋯ 1 0 0 ⋯ 0]

 
 
 
 
 
 
 
 
 
 
 

 

=
[
 
 
 (𝑀𝑀 − 3)(𝐽𝐽𝑛𝑛−2 − 𝐼𝐼𝑛𝑛−2) 0(𝑛𝑛−2)×𝑛𝑛

2
0(𝑛𝑛−2)×𝑛𝑛

2
0𝑛𝑛

2×(𝑛𝑛−2) 0𝑛𝑛
2

𝐼𝐼𝑛𝑛
2

0𝑛𝑛
2×(𝑛𝑛−2) 𝐼𝐼𝑛𝑛

2
0𝑛𝑛

2 ]
 
 
 
. 

 

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = ||
(λ + 𝑛𝑛 − 3)𝐼𝐼𝑀𝑀−2 − (𝑛𝑛 − 3)𝐽𝐽𝑀𝑀−2 0(𝑀𝑀−2)×𝑀𝑀

2
0(𝑀𝑀−2)×𝑀𝑀

2
0𝑀𝑀

2×(𝑀𝑀−2) 𝜆𝜆𝐼𝐼𝑀𝑀
2

−𝐼𝐼𝑀𝑀
2

0𝑀𝑀
2×(𝑀𝑀−2) −𝐼𝐼𝑀𝑀

2
𝜆𝜆𝐼𝐼𝑀𝑀

2

||. 

By using Theorem 2.1 with 𝐴𝐴 = (λ + 𝑛𝑛 − 3)𝐼𝐼𝑀𝑀−2 − (𝑛𝑛 − 3)𝐽𝐽𝑀𝑀−2, 𝐵𝐵 = 0(𝑀𝑀−2)×𝑀𝑀, 𝐶𝐶 =

0𝑀𝑀×(𝑀𝑀−2), 𝐷𝐷 = [
𝜆𝜆𝐼𝐼𝑛𝑛

2
−𝐼𝐼𝑛𝑛

2
−𝐼𝐼𝑛𝑛

2
𝜆𝜆𝐼𝐼𝑛𝑛

2

], and |𝐴𝐴| ≠ 0, we get the form of |𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷| = |𝐴𝐴||𝐷𝐷 − 𝐶𝐶𝐴𝐴−1𝐵𝐵| =

|𝐴𝐴||𝐷𝐷|. Now we consider |𝐴𝐴|.  By using Lemma 2.1, with 𝑛𝑛1 = 𝑀𝑀−2
2 , 𝑛𝑛2 = 𝑀𝑀−2

2  and 𝑎𝑎 = 𝑛𝑛 − 3, 

𝑏𝑏 = 𝑛𝑛 − 3, 𝑐𝑐 = 𝑛𝑛 − 3, 𝑑𝑑 = 𝑛𝑛 − 3, we obtain that |𝐴𝐴| = (𝜆𝜆 + 𝑛𝑛 − 3)𝑀𝑀−3(𝜆𝜆 − (𝑛𝑛 − 3)2). 

Meanwhile for |𝐷𝐷|, by the same argument of Theorem 3.1 (2) for even 𝑛𝑛, then |𝐷𝐷| =

(𝜆𝜆 + 1)
𝑛𝑛
2(𝜆𝜆 − 1)

𝑛𝑛
2. Therefore, 

 

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = ||
(λ + 𝑛𝑛 − 3)𝐼𝐼𝑀𝑀−2 − (𝑛𝑛 − 3)𝐽𝐽𝑀𝑀−2 0(𝑀𝑀−2)×𝑀𝑀

2
0(𝑀𝑀−2)×𝑀𝑀

2
0𝑀𝑀

2×(𝑀𝑀−2) 𝜆𝜆𝐼𝐼𝑀𝑀
2

−𝐼𝐼𝑀𝑀
2

0𝑀𝑀
2×(𝑀𝑀−2) −𝐼𝐼𝑀𝑀

2
𝜆𝜆𝐼𝐼𝑀𝑀

2

||. 

By using Theorem 2.1 with 𝐴𝐴 = (λ + 𝑛𝑛 − 3)𝐼𝐼𝑀𝑀−2 − (𝑛𝑛 − 3)𝐽𝐽𝑀𝑀−2, 𝐵𝐵 = 0(𝑀𝑀−2)×𝑀𝑀, 𝐶𝐶 =

0𝑀𝑀×(𝑀𝑀−2), 𝐷𝐷 = [
𝜆𝜆𝐼𝐼𝑛𝑛

2
−𝐼𝐼𝑛𝑛

2
−𝐼𝐼𝑛𝑛

2
𝜆𝜆𝐼𝐼𝑛𝑛

2

], and |𝐴𝐴| ≠ 0, we get the form of |𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷| = |𝐴𝐴||𝐷𝐷 − 𝐶𝐶𝐴𝐴−1𝐵𝐵| =

|𝐴𝐴||𝐷𝐷|. Now we consider |𝐴𝐴|.  By using Lemma 2.1, with 𝑛𝑛1 = 𝑀𝑀−2
2 , 𝑛𝑛2 = 𝑀𝑀−2

2  and 𝑎𝑎 = 𝑛𝑛 − 3, 

𝑏𝑏 = 𝑛𝑛 − 3, 𝑐𝑐 = 𝑛𝑛 − 3, 𝑑𝑑 = 𝑛𝑛 − 3, we obtain that |𝐴𝐴| = (𝜆𝜆 + 𝑛𝑛 − 3)𝑀𝑀−3(𝜆𝜆 − (𝑛𝑛 − 3)2). 

Meanwhile for |𝐷𝐷|, by the same argument of Theorem 3.1 (2) for even 𝑛𝑛, then |𝐷𝐷| =

(𝜆𝜆 + 1)
𝑛𝑛
2(𝜆𝜆 − 1)

𝑛𝑛
2. Therefore, 

 

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = |(λ + 𝑛𝑛 − 3)𝐼𝐼𝑀𝑀−2 − (𝑛𝑛 − 3)𝐽𝐽𝑀𝑀−2| |
𝜆𝜆𝐼𝐼𝑀𝑀

2×𝑀𝑀
2

−𝐼𝐼𝑀𝑀
2×𝑀𝑀

2
−𝐼𝐼𝑀𝑀

2×𝑀𝑀
2

𝜆𝜆𝐼𝐼𝑀𝑀
2×𝑀𝑀

2
| 

 = (𝜆𝜆 + 𝑛𝑛 − 3)𝑀𝑀−3(𝜆𝜆 − (𝑛𝑛 − 3)2)(𝜆𝜆 + 1)
𝑛𝑛
2(𝜆𝜆 − 1)

𝑛𝑛
2. 

 

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = |(λ + 𝑛𝑛 − 3)𝐼𝐼𝑀𝑀−2 − (𝑛𝑛 − 3)𝐽𝐽𝑀𝑀−2| |
𝜆𝜆𝐼𝐼𝑀𝑀

2×𝑀𝑀
2

−𝐼𝐼𝑀𝑀
2×𝑀𝑀

2
−𝐼𝐼𝑀𝑀

2×𝑀𝑀
2

𝜆𝜆𝐼𝐼𝑀𝑀
2×𝑀𝑀

2
| 

 = (𝜆𝜆 + 𝑛𝑛 − 3)𝑀𝑀−3(𝜆𝜆 − (𝑛𝑛 − 3)2)(𝜆𝜆 + 1)
𝑛𝑛
2(𝜆𝜆 − 1)

𝑛𝑛
2. 

 

𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = {2(𝑛𝑛 − 2)2,            if 𝑛𝑛 is odd
2(𝑛𝑛 − 3)2 + 𝑛𝑛,    if 𝑛𝑛 is even.           

𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷(𝛤𝛤𝐺𝐺) = 𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷(𝛤𝛤𝐺𝐺) = [(𝑀𝑀 − 2)(𝐽𝐽𝑛𝑛−1 − 𝐼𝐼𝑛𝑛−1) 0(𝑛𝑛−1)×𝑛𝑛
0𝑛𝑛×(𝑛𝑛−1) 0𝑛𝑛 ]. 

 

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺)(𝜆𝜆) = 

           |(𝜆𝜆 + 𝑛𝑛 − 2)𝐼𝐼𝑀𝑀−1 − (𝑛𝑛 − 2)𝐽𝐽𝑀𝑀−1 0(𝑀𝑀−1)×𝑀𝑀
 0𝑀𝑀×(𝑀𝑀−1) 0𝑀𝑀

|. 

 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) =

[
 
 
 
 
 
 
 
 
 
 
 0 𝑀𝑀 − 3 ⋯ 𝑀𝑀 − 3 0 0 ⋯ 0 0 0 ⋯ 0
𝑀𝑀 − 3 0 ⋯ 𝑀𝑀 − 3 0 0 ⋯ 0 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝑀𝑀 − 3 𝑀𝑀 − 3 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0

0 0 ⋯ 0 0 0 ⋯ 0 1 0 ⋯ 0
0 0 ⋯ 0 0 0 ⋯ 0 0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 1
0 0 ⋯ 0 1 0 ⋯ 0 0 0 ⋯ 0
0 0 ⋯ 0 0 1 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 0 0 ⋯ 1 0 0 ⋯ 0]

 
 
 
 
 
 
 
 
 
 
 

 

=
[
 
 
 (𝑀𝑀 − 3)(𝐽𝐽𝑛𝑛−2 − 𝐼𝐼𝑛𝑛−2) 0(𝑛𝑛−2)×𝑛𝑛

2
0(𝑛𝑛−2)×𝑛𝑛

2
0𝑛𝑛

2×(𝑛𝑛−2) 0𝑛𝑛
2

𝐼𝐼𝑛𝑛
2

0𝑛𝑛
2×(𝑛𝑛−2) 𝐼𝐼𝑛𝑛

2
0𝑛𝑛

2 ]
 
 
 
. 

 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) =

[
 
 
 
 
 
 
 
 
 
 
 0 𝑀𝑀 − 3 ⋯ 𝑀𝑀 − 3 0 0 ⋯ 0 0 0 ⋯ 0
𝑀𝑀 − 3 0 ⋯ 𝑀𝑀 − 3 0 0 ⋯ 0 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝑀𝑀 − 3 𝑀𝑀 − 3 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0

0 0 ⋯ 0 0 0 ⋯ 0 1 0 ⋯ 0
0 0 ⋯ 0 0 0 ⋯ 0 0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 1
0 0 ⋯ 0 1 0 ⋯ 0 0 0 ⋯ 0
0 0 ⋯ 0 0 1 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 0 0 ⋯ 1 0 0 ⋯ 0]

 
 
 
 
 
 
 
 
 
 
 

 

=
[
 
 
 (𝑀𝑀 − 3)(𝐽𝐽𝑛𝑛−2 − 𝐼𝐼𝑛𝑛−2) 0(𝑛𝑛−2)×𝑛𝑛

2
0(𝑛𝑛−2)×𝑛𝑛

2
0𝑛𝑛

2×(𝑛𝑛−2) 0𝑛𝑛
2

𝐼𝐼𝑛𝑛
2

0𝑛𝑛
2×(𝑛𝑛−2) 𝐼𝐼𝑛𝑛

2
0𝑛𝑛

2 ]
 
 
 
. 
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Proof
By Theorem 3.2 (1) for the odd n, the characteristic 
polynomial of MaxD(ΓG) and MinD(ΓG) has three 
eigenvalues, with the first eigenvalue is λ1= -(n - 2) of 
multiplicity (n - 2), the second eigenvalue is λ2 = 0 of 
multiplicity (n), and the last eigenvalue is λ3 = (n - 2)2 
of multiplicity (1). Hence, the maximum and minimum 
degree energy for ΓG is

By Theorem 3.2 (2) for the even n, the characteristic 
polynomial of MaxD(ΓG) and MinD(ΓG) has four 
eigenvalues, with the first eigenvalue is λ1= -(n - 3) of 
multiplicity (n - 3), and the second eigenvalue λ1 = (n - 3)2 
of multiplicity (1). The two last eigenvalues are λ3 = -1 
and λ3 = 1 of multiplicity 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = (𝑛𝑛 − 3)|−(𝑛𝑛 − 3)| + |(𝑛𝑛 − 3)2| + (𝑛𝑛2) |−1| + (𝑛𝑛2) |1| 

= 2(𝑛𝑛 − 3)2 + 𝑛𝑛. 

 

each. Thus, the maximum 
and minimum degree energy for ΓG is

𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = (𝑛𝑛 − 3)|−(𝑛𝑛 − 3)| + |(𝑛𝑛 − 3)2| + (𝑛𝑛2) |−1| + (𝑛𝑛2) |1| 

= 2(𝑛𝑛 − 3)2 + 𝑛𝑛. 

 

𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = (𝑛𝑛 − 3)|−(𝑛𝑛 − 3)| + |(𝑛𝑛 − 3)2| + (𝑛𝑛2) |−1| + (𝑛𝑛2) |1| 

= 2(𝑛𝑛 − 3)2 + 𝑛𝑛. 

 

𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = (𝑛𝑛 − 3)|−(𝑛𝑛 − 3)| + |(𝑛𝑛 − 3)2| + (𝑛𝑛2) |−1| + (𝑛𝑛2) |1| 

= 2(𝑛𝑛 − 3)2 + 𝑛𝑛. 

 

FIGURE 1. [Commuting graph for G = G1 ∪ G2 ⊂ D8]

 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷(𝛤𝛤𝐺𝐺) = 𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷(𝛤𝛤𝐺𝐺) =

[
 
 
 
 
 0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0]

 
 
 
 
 

 

 

𝑀𝑀 𝑀𝑀3 

𝑏𝑏 

𝑀𝑀2𝑏𝑏 𝑀𝑀3𝑏𝑏 

𝑀𝑀𝑏𝑏 

The maximum degree energy is equal to the 
minimum degree energy of commuting graph for dihedral 
groups of order 2n, D2n, when n = 4 and n = 5 as illustrated 
in the following examples.

FIGURE 2. [Commuting graph for G = G1 ∪G2 ⊂ D10]

Example 1. Let ΓG be the commuting graph for G, the 
maximum and minimum degree matrices of ΓG as in 
Figure 1, where G = G1 ∪ G1 ⊂ D8, G1 = {a, a3 } and G2 
= {b, ab, a2 b, a3 b}.

  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) 

=

[
 
 
 
 
 
 
 
 0 3 3 3 0 0 0 0 0
3 0 3 3 0 0 0 0 0
3 3 0 3 0 0 0 0 0
3 3 3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 

 

 

 

𝑀𝑀 

𝑀𝑀3 

𝑏𝑏 

𝑀𝑀2𝑏𝑏 
𝑀𝑀𝑏𝑏 𝑀𝑀3𝑏𝑏 

𝑀𝑀2 

𝑀𝑀4 

𝑀𝑀4𝑏𝑏 

𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = (𝑛𝑛 − 2)|−(𝑛𝑛 − 2)| + (𝑛𝑛)|0| + 

|(𝑛𝑛 − 2)2| = 2(𝑛𝑛 − 2)2. 

 

𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛤𝛤𝐺𝐺) = (𝑛𝑛 − 3)|−(𝑛𝑛 − 3)| + |(𝑛𝑛 − 3)2| + (𝑛𝑛2) |−1| + (𝑛𝑛2) |1| 

= 2(𝑛𝑛 − 3)2 + 𝑛𝑛. 
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By using Theorem 3.2 (2), the characteristic polynomial 
of MaxD(ΓG) and MinD(ΓG) is (λ + 1)3 (λ - 1)3. It implies 
that the eigenvalues of MaxD(ΓG) and MinD(ΓG) are 
λ = -1 with multiplicity (3) and λ = 1 with multiplicity 
(3). Therefore, EMaxD(ΓG) = EMinD (ΓG) = 3 | - 1 | + 3 | 1 | 
= 6 = 2(4 - 3)2 + 4, conforming Theorem 3.3. for even n.

Example 2. Let ΓG be the commuting graph for G, the 
maximum and minimum degree matrices of ΓG as in 
Figure 2, where G = G1∪ G2 ⊂ D10, G1 = {a, a2, a3, a4}, 
and G2 = {b, ab, a2 b, a3 b, a4 b}.

By using Theorem 3.2.(1), the characteristic 
polynomial of MaxD(ΓG) and MinD(ΓG) is (λ + 3)3 λ5 

(λ - 9). It implies that the eigenvalues of MaxD(ΓG) and 
MinD(ΓG) are λ = - 3 with multiplicity (3), λ = 0 with 
multiplicity (5), and λ = 9 with multiplicity (1). Therefore, 
EMaxD(ΓG) = EMinD(ΓG)=3|-3|+5|0|+|9|=18=2(5-2)2, 
conforming Theorem 3.3. for odd n.

CONCLUSIONS

We discuss the maximum and minimum degree energies 
of ΓG for G being the set of non-center reflection 
elements, the set of rotation elements, and the union of 
the non-center reflection and rotation sets of D2n, where 
n ≥ 3. It is apparent that the maximum degree energy is 
always equal to the minimum degree energy of ΓG, and 
they are always non-negative even integers.
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