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ABSTRACT

In this paper, the Bayesian method which involves informative and weakly informative priors are considered 
to estimate the parameters and percentiles of the time to failure distribution. The parameters of the time to failure 
distribution and its percentiles are determined based on linear degradation model where the degradation parameter is 
assumed to follow the skew normal distribution. For the prior distributions, location and scale parameters of the skew 
normal distribution is assumed to follow the uniform distribution while the shape parameter is assumed to follow 
gamma distribution. Two gamma priors are considered, either informative or weakly informative prior, depending on 
the assumed values of the hyper parameters. The performance of the method under the different prior assumptions is 
compared using a simulation study based on Markov Chain Monte Carlo method as well as a real data application. It 
is found that the parameter estimation based on informative prior is more precise as opposed to the weakly informative 
prior, especially in the case of small sample size. In addition, the skew normal degradation model is compared 
to the log-logistic degradation model through a simulation study and a real application of GaAs laser data. When 
modeling the percentiles of the time to failure distribution, results found based on the skew normal distribution is 
generally found to be more precise, particularly for the higher percentile values.
Keywords: Bayesian method; linear degradation model; log-logistic distribution; skew normal distribution; time to 
failure distribution

ABSTRAK

Dalam kertas ini, kaedah Bayesan yang melibatkan prior bermaklumat dan kurang bermaklumat dipertimbangkan 
untuk menganggar parameter dan persentil untuk taburan masa kegagalan. Parameter dan persentil bagi taburan masa 
kegagalan ditentukan berdasarkan model degradasi linear yang mana parameter degradasi diandaikan mengikuti 
taburan normal pencong. Untuk taburan prior, parameter skala dan lokasi bagi taburan normal pencong diandaikan 
mengikuti taburan seragam manakala parameter bentuk diandaikan mengikuti taburan gama. Dua prior gama yang 
dipertimbangkan, iaitu sama ada bermaklumat atau kurang bermaklumat, bergantung kepada nilai parameter hiper 
yang diandaikan. Prestasi kaedah berkenaan di bawah andaian yang berbeza dibandingkan menerusi kajian simulasi 
berdasarkan kaedah Rantai Markov Monte Carlo dan juga aplikasi data sebenar. Didapati bahawa penganggaran 
parameter berdasarkan prior bermaklumat adalah lebih persis berbanding prior kurang bermaklumat, khususnya 
apabila saiz sampel kecil. Seterusnya, model degradasi normal pencong dibandingkan dengan model degradasi 
log-logistik menerusi kajian simulasi dan aplikasi data laser GaAs. Bila memodelkan persentil bagi taburan masa 
kegagalan, secara amnya, hasil menunjukkan bahawa keputusan berdasarkan taburan normal pencong adalah lebih 
persis, khususnya untuk persentil yang bernilai tinggi.
Kata kunci: Kaedah Bayesian; model degradasi linear; taburan log-logistik; taburan masa kegagalan; taburan normal 
pencong
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INTRODUCTION

It is desirable in life that we have products or tools 
which have a high quality and reliable, continue to 
function well after being in used for a substantial period 
of time. Accordingly, quality and reliability of product 
are always a matter of concern of both the manufacturers 
and customers. (Meeker & Escobar 1998) have defined 
reliability of a unit as the probability that the unit will 
perform its intended function until a specified point of 
time under encountered use conditions.

Problems of reliability such as degradation have 
always been considered in many areas of the engineering 
discipline and many methodologies have been 
developed to investigate the degradation phenomena of 
certain products. In particular, degradation phenomena 
which involves wear and tear of machinery parts, for 
example, have been identified as a possible cause of 
accident. Thus, early warning signs on possible accident 
that may occur due to degradation phenomena could be 
identified based on certain research works such as time 
to failure modeling.

Modeling the degradation measurements of a 
product over time is not straight forward since the 
degradation measure could be affected by the presence 
of more than one underlying degradation process. Many 
methods have been applied to estimate the parameter of 
time to failure distribution for the degradation models 
such as maximum likelihood method which has been 
applied by Meeker, Escobar and Lu (1999). In their 
paper, they have described some useful reliability models 
which considered degradation over time based on the 
physical-failure mechanisms. Also, they have presented 
some models which relate degradation and failure. They 
have used maximum likelihood method to estimate the 
mixed-effect accelerated degradation model parameters. 
In addition, the cumulative distribution function of time 
to failure distribution based on four different methods, 
which are analytical expressions, numerical evaluation, 
Monte Carlo evaluation and estimation, are also being 
considered. Confidence intervals based on bootstrap 
sampling for the quantities of interest are also determined.
Semi-parametric method has also been applied in 
estimating time to failure distribution by many 
researchers, such as Ba Dakhn, Ebrahem and Eidous 
(2017), Jin (2016), and Robins and Tsiatis (1992). 
Ba Dakhn, Ebrahem and Eidous (2017) have applied 
the semi-parametric method to estimate the time-to-
failure distribution and its percentiles for simple linear 
degradation model with no intercept. In this method, the 

parametric estimator is assumed to follow either half-
normal or exponential distributions. The performance of 
this estimator is compared with the maximum likelihood 
estimator and ordinary least square estimator which 
have been derived based on half normal distribution 
and exponential distribution. It is found that based on 
their study the performance of semi-parametric method 
is the best when the distribution of the random effect is 
unknown.

To estimate the parameters of the time to failure 
distribution, the Bayesian approach is widely used by 
many researchers such as Guure and Akma (2014), 
Puggard, Niwitpong and Niwitpong (2022), Shafiq and 
Atif (2016), and Thangjai, Niwitpong and Niwitpong 
(2021). In addition, Hamada (2005) has applied a linear 
degradation model based on the Bayesian approach to 
estimate the parameters of the Weibull distribution. In 
this approach, flat priors are assumed for the parameters 
of interest. A comparison is carried out between the use 
of degradation data, lifetime data and pseudo lifetime 
data in computing the reliability function and percentiles. 
Also, Ebrahem, Alodat and Arman (2009) and 
Rawashdeh, Ebrahem and Momani (2018)  have applied 
the Bayesian approach in two types of data, namely 
grouped and non-grouped, to estimate the parameters 
and percentiles of the time-to-failure distribution. 
While Rawashdeh, Ebrahem and Momani (2018) have 
assumed the degradation rate following the log-logistic 
distribution, Ebrahem, Alodat, and Arman (2009) have 
assumed the degradation rate following the exponential 
distribution. 

In addition, the non-parametric methods have 
also been applied to estimate the parameter of time 
to failure distribution for the degradation models. 
Ebrahem, Eidous and Kmail (2009) have applied the 
nonparametric kernel density method to estimate the 
time to failure distribution and its percentiles based on 
a linear degradation model with no intercept. Eidous, 
Ebrahem and Ba Dakhn (2017) have estimated time-
to-failure distribution and its percentiles for simple 
linear degradation model with no intercept based on 
double kernel method. Al-haj Ebrahem, Al-Momani and 
Eidous (2021) have presented the variable scale kernel 
method to estimate the time to failure distribution under 
linear degradation model with no intercept. In their 
work, the performance of the nonparametric methods is 
compared with the existing parametric methods such as 
maximum likelihood method and ordinary least square 
method based on different distributions such as Weibull, 
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exponential, half normal and log logistic. The simulation 
study shows that the performance of the nonparametric 
methods is superior than the parametric method such as 
maximum likelihood and ordinary least squares methods 
in the case when the assumption of the data distribution 
is violated. 

The flexibility of the skew normal distribution 
makes it to be quite versatile in certain areas of 
degradation modeling. Skewed normal distribution 
has attracted many researchers due to its flexibility. 
Skew normal distribution can be reduced to other 
symmetric distribution based on the value of skewness 
parameter, say λ, such as the normal distribution if λ the 
skewness parameter λ = 0 and half normal distribution 
if approaches to infinity (Alhamidie et al. 2019; Bayes 
& Branco 2007; Pan, Liu & Yang 2018). Tsai and Lin 
(2015) have assumed that the error term under nonlinear 
accelerated destructive degradation test model follows 
the skew normal distribution. Pan, Liu, and Yang (2018) 
have assumed the drift parameter based on the Wiener 
degradation model follows the skew normal distribution 
for estimating the lifetime distribution. Chen et al. (2019) 
have presented the stochastic degradation model based 
on the inverse Gaussian process where the reciprocal of 
the degradation rate parameter is assumed to follow the 
skew normal distribution. 

In addition, there are some authors who consider 
certain skewed and heavy-tailed distributions (Bryson 
1974; Gómez 2005), for describing the degradation 
parameter of the degradation model. For example, 
Oliveira, Loschi, and Freitas (2018) have assumed that 
the degradation parameter follows the scale and log 
scale mixture of skew normal distribution in order to 
accommodate skewness and heavy-tail behavior which 
are present in the data. In analyzing the train wheel 
degradation data, particularly at the wheel position 
which observes heavy-tail data, they have found 
that their model performed better than the Weibull 
degradation model. It seems that the skew normal 
degradation model presents as an alternative model when 
analyzing degradation data. Accordingly, in this study 
the performance of skew normal degradation model is 
further studied based on the comparison with log-logistic 
linear degradation model using a simulation study and an 
application of GaAs laser degradation data. 
 Accordingly, the outline of this paper is described as 
the following. Next section provides an explanation on 
GaAs laser degradation data and usage of the data as a 
motivating example. In the third section, estimation of the 
time to failure distribution is determined based on linear 

degradation model where the degradation parameter 
follows the skew normal distribution. This is followed 
by the fourth section, where the Bayesian modeling is 
presented. In the fifth section, the simulation study for 
comparing the performance of the estimated parameter 
using the Bayesian approach based on informative and 
weakly informative prior is carried out by using Markov 
Chain Monte-Carlo method under JAGS platform. A 
comparison is made between log-logistic degradation 
model and skew normal degradation model using 
simulated data in the sixth section. In the seventh section, 
the results found based on fitting of Bayesian models to 
the GaAs laser degradation data are discussed. The last 
section provides the conclusion of the study.
 

GaAs LASER DEGRADATION DATA 
The Laser Degradation Data from Meeker and Escobar 
(1998) is considered. The dataset provides the percent 
increase in laser operating current for 15 GaAs laser 
devices which are tested at 80 °C when the output light 
is kept at a nearly constant reading. The data which are 
presented in Table 1 and Figure 1 consists of 15 units 
of device, and for each unit the measurements are taken 
at the time range from 250 to 4000 h with step equals 
to 250 h. The failure is assumed to occur at the critical 
degradation level, which is, denoted as Df, and in this 
study Df  is assumed equal to 5. We belief that the choice 
made on this value is sensible based on the allowance 
of 5% increase in the operating current demarcating the 
start for failure of the laser device (Ebrahem, Alodat & 
Arman 2009). This limit is pertinent in order to allow 
for a prudent monitoring of the device. Based on linear 
interpolation carried out on the data, we found one failure 
for each unit. Figure 1 shows that the laser degradation 
data follows a linear degradation path and thus it is 
reasonable to apply the linear degradation model.

In conducting data analysis, the goodness of fit of 
a particular parametric probability distribution on the 
data studied is often investigated. In this subsection, 
the adequacy of some candidate distributions such as 
exponential, log-logistic, and skew normal distributions 
in fitting the GaAs laser degradation data is studied. In 
order to assess the performance of these distributions, 
the two criteria which are the probability plotting 
procedure (P-P plot) and the Akaike information criterion 
(AIC) are used. The probability plots of the GaAs laser 
degradation data based on the candidate distributions are 
shown in Figure 2. From the figure, it is found that the 
skew normal and log-logistic distributions fit the data 
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almost equally well and it is difficult to differentiate 
between them. In order to decide which model fits the 
data better, the AIC is computed.
 In addition, the AIC is computed for comparing the 
performance of several model in fitting certain dataset 
based on the equation given by 

(1)   𝐴𝐴𝐴𝐴𝐴𝐴 =  −2 ln(�̂�𝐿) + 2 𝜔𝜔            
 
 

where    𝐴𝐴𝐴𝐴𝐴𝐴 =  −2 ln(�̂�𝐿) + 2 𝜔𝜔            
 
 

 is the likelihood function of the candidate 
distribution based on the maximum likelihood estimator 
and ω is the number of the unknown parameters. The 
distribution that has the smallest value of AIC is chosen 
as the best fitted model. The result of the values of AIC 
found are provided in Table 2.

TABLE 1. The data for GaAs Lasers Tested at 80 °C

Time (h)
Device unit number        

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

250 0.47 0.71 0.71 0.36 0.27 0.36 0.36 0.46 0.51 0.41 0.44 0.39 0.30 0.44 0.51

500 0.93 1.22 1.17 0.62 0.61 1.39 0.92 1.07 0.93 1.49 1.00 0.80 0.74 0.70 0.83

750 2.11 1.90 1.73 1.36 1.11 1.95 1.21 1.42 1.57 2.38 1.57 1.35 1.52 1.05 1.29

1000 2.72 2.30 1.99 1.95 1.77 2.86 1.46 1.77 1.96 3.00 1.96 1.74 1.85 1.35 1.52

1250 3.51 2.87 2.53 2.30 2.06 3.46 1.93 2.11 2.59 3.84 2.51 2.98 2.39 1.80 1.91

1500 4.34 3.75 2.97 2.95 2.58 3.81 2.39 2.40 3.29 4.50 2.84 3.59 2.95 2.55 2.27

1750 4.91 4.42 3.30 3.39 2.99 4.53 2.68 2.78 3.61 5.25 3.47 4.03 3.51 2.83 2.78

2000 5.48 4.99 3.94 3.79 3.38 5.35 2.94 3.02 4.11 6.26 4.01 4.44 3.92 3.39 3.42

2250 5.99 5.51 4.16 4.11 4.05 5.92 3.42 3.29 4.60 7.05 4.51 4.79 5.03 3.72 3.78

2500 9.72 6.07 4.45 4.50 4.63 6.71 4.09 3.75 4.91 7.80 4.80 5.22 5.47 4.09 4.11

2750 7.13 6.64 4.89 4.72 5.24 7.70 4.58 4.16 5.34 8.32 5.20 5.48 5.84 4.83 4.38

3000 8.00 7.16 5.27 4.98 5.62 8.61 4.84 4.76 5.84 8.93 5.66 5.96 6.50 5.41 4.63

3250 8.92 7.78 5.69 5.28 6.04 9.15 5.11 5.16 6.40 9.55 6.20 6.23 6.94 5.76 5.38

3500 9.49 8.42 6.02 5.61 6.32 9.95 5.57 5.46 6.84 10.5 6.54 6.99 7.39 6.14 5.84

3750 9.87 8.91 6.45 5.95 7.10 10.5 6.11 5.81 7.20 11.3 6.96 7.37 7.85 6.51 6.16

4000 10.9 9.28 6.88 6.14 7.59 11.0 7.17 6.24 7.88 12.2 7.42 7.88 8.09 6.88 6.62
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TABLE 2. The AIC values found for skew normal, log-logistic and exponential linear degradation models using GaAs laser 
degradation data

Distributions AIC

Skew normal 67.97

Log-logistic 68.35

exponential 101.63

FIGURE 1. Percent increase in operating current for GaAs laser tested at 80 °C

FIGURE 2. Skew normal, log-logistic and exponential probability plots for 
GaAs laser degradation data
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From Table 2, AIC is found the smallest for skew 
normal distribution, slightly smaller for skew normal 
distribution as opposed to log logistic distribution, 
indicating that the most adequate model for describing 
the GaAs laser degradation data is the skew normal 
distribution among the candidate distributions 
considered. This finding supports the choice of skew 
normal distribution as a plausible candidate distribution 
for describing the time to failure distribution. 

TIME TO FAILURE DISTRIBUTION FOR LINEAR 
DEGRADATION MODEL 

The general degradation path model can be expressed as

where yij denotes the observed degradation measurement 
of the ith unit at time tij, D (tij; α, βi) is the actual path of 
the ith unit at time tij, the term α is the vector of fixed 
effect parameters, βi = (β1i, β 2i,…, βki) is a vector of k 
unknown parameters for the ith unit, εij is the random 
error term where εij are iid with N(0, σε

2) and σε
2 is a 

constant, the term n is the number of units that are tested 
and the term mi is the total number of inspections on unit 
i. It is assumed that {εij} and {βi} are independent and 
βi's are independent.

Failure is assumed to occur when the degradation 
measure exceeds the critical level of degradation. In the 
linear degradation path model, the actual degradation 
path of a particular unit, denoted as Df, is assumed to 
follow a linear equation given by    

where α is a fixed effect parameter; β is a random effect
parameter; and t is the time to failure. Note that the 
slope in the linear equation is 1𝛽𝛽 . Several studies such as 
Eidous, Ebrahem, and Ba Dakhn (2017) and Rawashdeh, 
Ebrahem and Momani (2018) have considered the linear 
degradation path model with the slope β; however, in 
this study we have modified the linear degradation path 
model where the slope is 1𝛽𝛽 . 

The modification involving the reciprocal of 
the degradation parameter is done for mathematical 
convenient since it is proven in the later part of this 
section that the pdf of the time to failure distribution 
is shown to be skew normal. This facilitates our 
data generating task because we have an identifiable 

distribution to work with. Apart from the rational 
of mathematical convenient, we believe that in our 
modification, we allow for a smaller degradation rate 
since 1𝛽𝛽  is generally smaller than β, particularly for the
case when β > 1.    
It can be shown that 

(2)

where F(.) and G(.) are the cumulative distribution 
functions (cdfs).

In this work, the degradation parameter is assumed 
to follow the skew normal distribution, which is a flexible 
distribution that includes the skewness parameter in 
addition to the location and scale parameters. This skew 
normal distribution has been introduced by (Azzalini 
1985) who defines that a random variable x follows a skew 
normal distribution if the probability density function
(pdf) of x is given by 

where ϕ(.) is the pdf and Φ(.) is the cdf of standard 
normal distribution, λ

𝛽𝛽~𝑆𝑆𝑆𝑆(𝜇𝜇, 𝜎𝜎2, 𝜆𝜆)

Then, the pdf of 𝛽𝛽 is

𝑔𝑔𝛽𝛽(𝛽𝛽; 𝜇𝜇, 𝜎𝜎2, 𝜆𝜆) = 2
𝜎𝜎 𝜙𝜙 (𝛽𝛽 − 𝜇𝜇

𝜎𝜎 ) 𝛷𝛷 ( 𝜆𝜆 (𝛽𝛽 − 𝜇𝜇
𝜎𝜎 )) (3)

and the cdf of 𝛽𝛽 is 

𝐺𝐺𝛽𝛽(𝛽𝛽; 𝜇𝜇, 𝜎𝜎2, 𝜆𝜆) = 𝛷𝛷 (𝛽𝛽 − 𝜇𝜇
𝜎𝜎 ) − 2𝑻𝑻 (𝛽𝛽 − 𝜇𝜇

𝜎𝜎 , 𝜆𝜆) (4)

where 𝜙𝜙(. ) is the pdf of standard normal distribution; 𝛷𝛷(. ) is the cdf of standard normal 

distribution; 𝛽𝛽 ∈ ℝ, 𝜆𝜆 ∈ ℝ is the skewness (shape) parameter; 𝜇𝜇 ∈ ℝ is the location parameter;

𝜎𝜎2 ∈ ℝ+ is the scale parameter and T(h, a) is Owen's T function defined as

𝑻𝑻(ℎ, 𝑎𝑎) = 1
2𝜋𝜋 ∫ 𝑒𝑒−ℎ2(1+𝑥𝑥2)

2

1 + 𝑥𝑥2 𝑑𝑑𝑥𝑥
𝑎𝑎

0
, − ∞ < 𝑎𝑎, ℎ < +∞

Based on Equation (4), we modify Equation (2) to obtain the cdf of time to failure which can

be given by

𝐹𝐹𝑇𝑇(𝑡𝑡) = Φ (
𝑡𝑡

𝐷𝐷𝑓𝑓 − 𝛼𝛼 − 𝜇𝜇

𝜎𝜎 ) − 2𝑇𝑇 (
𝑡𝑡

𝐷𝐷𝑓𝑓 − 𝛼𝛼 − 𝜇𝜇

𝜎𝜎 , 𝜆𝜆)

 is the skewness or shape 
parameter.
Suppose that β belongs to a skew normal distribution. 
So, we denote

𝛽 ~ 𝑆N(𝜇, 𝜎2,  𝜆)

Then, the pdf of  is

(3)

and the cdf of is 

(4)

where ϕ(.) is the pdf of standard normal distribution; 
Φ(.) is the cdf of standard normal distribution; β

𝛽𝛽~𝑆𝑆𝑆𝑆(𝜇𝜇, 𝜎𝜎2, 𝜆𝜆)
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𝜎𝜎 )) (3)
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𝜎𝜎 ) − 2𝑻𝑻 (𝛽𝛽 − 𝜇𝜇

𝜎𝜎 , 𝜆𝜆) (4)

where 𝜙𝜙(. ) is the pdf of standard normal distribution; 𝛷𝛷(. ) is the cdf of standard normal 
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2𝜋𝜋 ∫ 𝑒𝑒−ℎ2(1+𝑥𝑥2)

2

1 + 𝑥𝑥2 𝑑𝑑𝑥𝑥
𝑎𝑎

0
, − ∞ < 𝑎𝑎, ℎ < +∞

Based on Equation (4), we modify Equation (2) to obtain the cdf of time to failure which can

be given by

𝐹𝐹𝑇𝑇(𝑡𝑡) = Φ (
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𝐷𝐷𝑓𝑓 − 𝛼𝛼 − 𝜇𝜇

𝜎𝜎 ) − 2𝑇𝑇 (
𝑡𝑡

𝐷𝐷𝑓𝑓 − 𝛼𝛼 − 𝜇𝜇

𝜎𝜎 , 𝜆𝜆)

 
λ
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be given by

𝐹𝐹𝑇𝑇(𝑡𝑡) = Φ (
𝑡𝑡

𝐷𝐷𝑓𝑓 − 𝛼𝛼 − 𝜇𝜇

𝜎𝜎 ) − 2𝑇𝑇 (
𝑡𝑡

𝐷𝐷𝑓𝑓 − 𝛼𝛼 − 𝜇𝜇

𝜎𝜎 , 𝜆𝜆)

 is the skewness (shape) parameter; μ

𝛽𝛽~𝑆𝑆𝑆𝑆(𝜇𝜇, 𝜎𝜎2, 𝜆𝜆)

Then, the pdf of 𝛽𝛽 is

𝑔𝑔𝛽𝛽(𝛽𝛽; 𝜇𝜇, 𝜎𝜎2, 𝜆𝜆) = 2
𝜎𝜎 𝜙𝜙 (𝛽𝛽 − 𝜇𝜇

𝜎𝜎 ) 𝛷𝛷 ( 𝜆𝜆 (𝛽𝛽 − 𝜇𝜇
𝜎𝜎 )) (3)

and the cdf of 𝛽𝛽 is 

𝐺𝐺𝛽𝛽(𝛽𝛽; 𝜇𝜇, 𝜎𝜎2, 𝜆𝜆) = 𝛷𝛷 (𝛽𝛽 − 𝜇𝜇
𝜎𝜎 ) − 2𝑻𝑻 (𝛽𝛽 − 𝜇𝜇

𝜎𝜎 , 𝜆𝜆) (4)

where 𝜙𝜙(. ) is the pdf of standard normal distribution; 𝛷𝛷(. ) is the cdf of standard normal 

distribution; 𝛽𝛽 ∈ ℝ, 𝜆𝜆 ∈ ℝ is the skewness (shape) parameter; 𝜇𝜇 ∈ ℝ is the location parameter;

𝜎𝜎2 ∈ ℝ+ is the scale parameter and T(h, a) is Owen's T function defined as

𝑻𝑻(ℎ, 𝑎𝑎) = 1
2𝜋𝜋 ∫ 𝑒𝑒−ℎ2(1+𝑥𝑥2)

2

1 + 𝑥𝑥2 𝑑𝑑𝑥𝑥
𝑎𝑎

0
, − ∞ < 𝑎𝑎, ℎ < +∞

Based on Equation (4), we modify Equation (2) to obtain the cdf of time to failure which can

be given by

𝐹𝐹𝑇𝑇(𝑡𝑡) = Φ (
𝑡𝑡

𝐷𝐷𝑓𝑓 − 𝛼𝛼 − 𝜇𝜇

𝜎𝜎 ) − 2𝑇𝑇 (
𝑡𝑡

𝐷𝐷𝑓𝑓 − 𝛼𝛼 − 𝜇𝜇

𝜎𝜎 , 𝜆𝜆)

is the 
location parameter; σ2

𝛽𝛽~𝑆𝑆𝑆𝑆(𝜇𝜇, 𝜎𝜎2, 𝜆𝜆)

Then, the pdf of 𝛽𝛽 is

𝑔𝑔𝛽𝛽(𝛽𝛽; 𝜇𝜇, 𝜎𝜎2, 𝜆𝜆) = 2
𝜎𝜎 𝜙𝜙 (𝛽𝛽 − 𝜇𝜇

𝜎𝜎 ) 𝛷𝛷 ( 𝜆𝜆 (𝛽𝛽 − 𝜇𝜇
𝜎𝜎 )) (3)

and the cdf of 𝛽𝛽 is 

𝐺𝐺𝛽𝛽(𝛽𝛽; 𝜇𝜇, 𝜎𝜎2, 𝜆𝜆) = 𝛷𝛷 (𝛽𝛽 − 𝜇𝜇
𝜎𝜎 ) − 2𝑻𝑻 (𝛽𝛽 − 𝜇𝜇

𝜎𝜎 , 𝜆𝜆) (4)

where 𝜙𝜙(. ) is the pdf of standard normal distribution; 𝛷𝛷(. ) is the cdf of standard normal 

distribution; 𝛽𝛽 ∈ ℝ, 𝜆𝜆 ∈ ℝ is the skewness (shape) parameter; 𝜇𝜇 ∈ ℝ is the location parameter;

𝜎𝜎2 ∈ ℝ+ is the scale parameter and T(h, a) is Owen's T function defined as

𝑻𝑻(ℎ, 𝑎𝑎) = 1
2𝜋𝜋 ∫ 𝑒𝑒−ℎ2(1+𝑥𝑥2)

2

1 + 𝑥𝑥2 𝑑𝑑𝑥𝑥
𝑎𝑎

0
, − ∞ < 𝑎𝑎, ℎ < +∞

Based on Equation (4), we modify Equation (2) to obtain the cdf of time to failure which can

be given by

𝐹𝐹𝑇𝑇(𝑡𝑡) = Φ (
𝑡𝑡

𝐷𝐷𝑓𝑓 − 𝛼𝛼 − 𝜇𝜇

𝜎𝜎 ) − 2𝑇𝑇 (
𝑡𝑡

𝐷𝐷𝑓𝑓 − 𝛼𝛼 − 𝜇𝜇

𝜎𝜎 , 𝜆𝜆)

is the scale parameter and 
T(h, a) is Owen’s T function defined as

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝐷𝐷(𝑡𝑡𝑖𝑖𝑖𝑖 ; 𝜶𝜶, 𝜷𝜷𝑖𝑖) + 𝜀𝜀𝑖𝑖𝑖𝑖, 𝑖𝑖 = 1, … , 𝑛𝑛;  𝑗𝑗 = 1, … , 𝑚𝑚𝑖𝑖 

𝐷𝐷𝑓𝑓 = 𝛼𝛼 + 𝑡𝑡
𝛽𝛽

  𝐹𝐹𝑇𝑇(𝑡𝑡) = 𝐺𝐺𝛽𝛽 ( 𝑡𝑡
𝐷𝐷𝑓𝑓 − 𝛼𝛼)  ,   𝑡𝑡 > 0 

 𝑔𝑔𝑿𝑿(𝑥𝑥) = 2 𝜙𝜙(𝑥𝑥) 𝛷𝛷( 𝜆𝜆𝑥𝑥)  , 𝑥𝑥 ∈ ℝ 

𝛽𝛽~𝑆𝑆𝑆𝑆(𝜇𝜇, 𝜎𝜎2, 𝜆𝜆)

Then, the pdf of 𝛽𝛽 is

   𝑔𝑔𝛽𝛽(𝛽𝛽;  𝜇𝜇, 𝜎𝜎2, 𝜆𝜆) = 2
𝜎𝜎  𝜙𝜙 (𝛽𝛽 − 𝜇𝜇

𝜎𝜎 ) 𝛷𝛷 ( 𝜆𝜆 (𝛽𝛽 − 𝜇𝜇
𝜎𝜎 ))  (3)

and the cdf of 𝛽𝛽 is 

𝐺𝐺𝛽𝛽(𝛽𝛽; 𝜇𝜇, 𝜎𝜎2, 𝜆𝜆) = 𝛷𝛷 (𝛽𝛽 − 𝜇𝜇
𝜎𝜎 ) − 2𝑻𝑻 (𝛽𝛽 − 𝜇𝜇

𝜎𝜎 , 𝜆𝜆) (4)

where 𝜙𝜙(. ) is the pdf of standard normal distribution; 𝛷𝛷(. ) is the cdf of standard normal 

distribution; 𝛽𝛽 ∈ ℝ, 𝜆𝜆 ∈ ℝ is the skewness (shape) parameter; 𝜇𝜇 ∈ ℝ is the location parameter;

𝜎𝜎2 ∈ ℝ+ is the scale parameter and T(h, a) is Owen's T function defined as

𝑻𝑻(ℎ, 𝑎𝑎) = 1
2𝜋𝜋 ∫ 𝑒𝑒−ℎ2(1+𝑥𝑥2)

2

1 + 𝑥𝑥2 𝑑𝑑𝑥𝑥
𝑎𝑎

0
, − ∞ < 𝑎𝑎, ℎ < +∞

Based on Equation (4), we modify Equation (2) to obtain the cdf of time to failure which can

be given by

𝐹𝐹𝑇𝑇(𝑡𝑡) = Φ (
𝑡𝑡

𝐷𝐷𝑓𝑓 − 𝛼𝛼 − 𝜇𝜇

𝜎𝜎 ) − 2𝑇𝑇 (
𝑡𝑡

𝐷𝐷𝑓𝑓 − 𝛼𝛼 − 𝜇𝜇

𝜎𝜎 , 𝜆𝜆)

𝛽𝛽~𝑆𝑆𝑆𝑆(𝜇𝜇, 𝜎𝜎2, 𝜆𝜆)

Then, the pdf of 𝛽𝛽 is

𝑔𝑔𝛽𝛽(𝛽𝛽; 𝜇𝜇, 𝜎𝜎2, 𝜆𝜆) = 2
𝜎𝜎 𝜙𝜙 (𝛽𝛽 − 𝜇𝜇

𝜎𝜎 ) 𝛷𝛷 ( 𝜆𝜆 (𝛽𝛽 − 𝜇𝜇
𝜎𝜎 )) (3)

and the cdf of 𝛽𝛽 is 

  𝐺𝐺𝛽𝛽(𝛽𝛽;  𝜇𝜇, 𝜎𝜎2, 𝜆𝜆) = 𝛷𝛷 (𝛽𝛽 − 𝜇𝜇
𝜎𝜎 ) − 2𝑻𝑻 (𝛽𝛽 − 𝜇𝜇

𝜎𝜎 , 𝜆𝜆) (4)

where 𝜙𝜙(. ) is the pdf of standard normal distribution; 𝛷𝛷(. ) is the cdf of standard normal 

distribution; 𝛽𝛽 ∈ ℝ, 𝜆𝜆 ∈ ℝ is the skewness (shape) parameter; 𝜇𝜇 ∈ ℝ is the location parameter;

𝜎𝜎2 ∈ ℝ+ is the scale parameter and T(h, a) is Owen's T function defined as

𝑻𝑻(ℎ, 𝑎𝑎) = 1
2𝜋𝜋 ∫ 𝑒𝑒−ℎ2(1+𝑥𝑥2)

2

1 + 𝑥𝑥2 𝑑𝑑𝑥𝑥
𝑎𝑎

0
, − ∞ < 𝑎𝑎, ℎ < +∞

Based on Equation (4), we modify Equation (2) to obtain the cdf of time to failure which can

be given by

𝐹𝐹𝑇𝑇(𝑡𝑡) = Φ (
𝑡𝑡

𝐷𝐷𝑓𝑓 − 𝛼𝛼 − 𝜇𝜇

𝜎𝜎 ) − 2𝑇𝑇 (
𝑡𝑡

𝐷𝐷𝑓𝑓 − 𝛼𝛼 − 𝜇𝜇

𝜎𝜎 , 𝜆𝜆)

,

𝛽𝛽~𝑆𝑆𝑆𝑆(𝜇𝜇, 𝜎𝜎2, 𝜆𝜆)

Then, the pdf of 𝛽𝛽 is

𝑔𝑔𝛽𝛽(𝛽𝛽; 𝜇𝜇, 𝜎𝜎2, 𝜆𝜆) = 2
𝜎𝜎 𝜙𝜙 (𝛽𝛽 − 𝜇𝜇

𝜎𝜎 ) 𝛷𝛷 ( 𝜆𝜆 (𝛽𝛽 − 𝜇𝜇
𝜎𝜎 )) (3)

and the cdf of 𝛽𝛽 is 

𝐺𝐺𝛽𝛽(𝛽𝛽; 𝜇𝜇, 𝜎𝜎2, 𝜆𝜆) = 𝛷𝛷 (𝛽𝛽 − 𝜇𝜇
𝜎𝜎 ) − 2𝑻𝑻 (𝛽𝛽 − 𝜇𝜇

𝜎𝜎 , 𝜆𝜆) (4)

where 𝜙𝜙(. ) is the pdf of standard normal distribution; 𝛷𝛷(. ) is the cdf of standard normal 

distribution; 𝛽𝛽 ∈ ℝ, 𝜆𝜆 ∈ ℝ is the skewness (shape) parameter; 𝜇𝜇 ∈ ℝ is the location parameter;

𝜎𝜎2 ∈ ℝ+ is the scale parameter and T(h, a) is Owen's T function defined as

𝑻𝑻(ℎ, 𝑎𝑎) = 1
2𝜋𝜋 ∫ 𝑒𝑒−ℎ2(1+𝑥𝑥2)

2

1 + 𝑥𝑥2  𝑑𝑑𝑥𝑥
𝑎𝑎

0
     ,   − ∞ < 𝑎𝑎, ℎ < +∞    

Based on Equation (4), we modify Equation (2) to obtain the cdf of time to failure which can

be given by

𝐹𝐹𝑇𝑇(𝑡𝑡) = Φ (
𝑡𝑡

𝐷𝐷𝑓𝑓 − 𝛼𝛼 − 𝜇𝜇

𝜎𝜎 ) − 2𝑇𝑇 (
𝑡𝑡

𝐷𝐷𝑓𝑓 − 𝛼𝛼 − 𝜇𝜇

𝜎𝜎 , 𝜆𝜆)
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Based on Equation (4), we modify Equation (2) to obtain 
the cdf of time to failure which can be given by

By taking the derivative of F with respect to t, we get the 
pdf of time to failure distribution as follows:

(5)

(6)

Let T1,T2,…,Tn denoted a random sample of size n 
from the time to failure distribution with parameters 
λ,σ and μ. Given that T1= t1, T2 = t1,…and Tn = tn, based 
on Equation (5), we obtain the likelihood function 
given by

(7)

BAYESIAN APPROACH FOR SKEW NORMAL 
DEGRADATION MODEL 

In this section, Bayesian approach is considered for 
skew normal degradation model. Both informative and 
non-informative priors are represented by gamma and 
uniform distributions, respectively, with certain known 
parameters. It is known that if non-informative priors 
are used to specify the prior distribution, the sample data 
would dominate the posterior distribution, particularly 
when the sample size is large. The posterior distribution  
can be given by

(8)

where L( λ, σ, μ; t) is the likelihood function of the time
to failure distribution for the parameters λ,σ and μ and
q(λ,σ,μ) is the joint prior distribution of λ,σ and μ. These
parameters are assumed independent. So, q(λ,σ,μ) = 
h(λ)u(σ) w(μ), where h(λ), u(σ) and w(μ) are the prior 
distributions.

Gamma distribution is assumed for the prior 
distribution of λ while the prior distribution of σ and μ 
are assumed uniform. These prior distributions are given
as follows:

i) Given that

𝜋𝜋(𝜆𝜆, 𝜎𝜎, 𝜇𝜇|𝒕𝒕) = 𝐿𝐿(𝜆𝜆, 𝜎𝜎, 𝜇𝜇; 𝒕𝒕)𝑞𝑞(𝜆𝜆, 𝜎𝜎, 𝜇𝜇)
∫ ∬ 𝐿𝐿(𝜆𝜆, 𝜎𝜎, 𝜇𝜇; 𝒕𝒕)𝑞𝑞(𝜆𝜆, 𝜎𝜎, 𝜇𝜇)𝑑𝑑𝜆𝜆𝑑𝑑𝜎𝜎𝑑𝑑𝜇𝜇 (8)

i) Given that 𝜆𝜆~ 𝐺𝐺(𝑎𝑎, 𝑏𝑏), then ℎ(𝜆𝜆) = {
𝜆𝜆𝑎𝑎−1 𝑒𝑒−𝑏𝑏𝑏𝑏

Γ(𝑎𝑎)𝑏𝑏−𝑎𝑎  ,          𝜆𝜆 > 0
0,          otherwise    

 

ii) Given that 𝜎𝜎~𝑈𝑈(0, 𝑐𝑐), then 𝑢𝑢(𝜎𝜎) = {
1
𝑐𝑐 , 0 < 𝜎𝜎 < 𝑐𝑐

0, otherwise

iii) Given that 𝜇𝜇 ~ 𝑈𝑈(0, 𝑑𝑑), then 𝑤𝑤(𝜇𝜇) = {
1
𝑑𝑑 , 0 < 𝜇𝜇 < 𝑑𝑑

0, otherwise

 

ii) Given that 

iii) Given that 

where a, b, c, and d are assumed known constants.
The basic mechanism in the Bayesian approach 

involves updating of the prior distribution for the 
parameter of interest using the current information based 
on the following relationship:

posterior ∝ prior × likelihood

Based on this relationship, involving informative and 
non-informative prior distributions explained earlier and 
the likelihood function given in Equation (7), the joint 
posterior density function π(λ, σ, μ│t) is proportional to 

(9)

SIMULATION STUDY FOR COMPARING THE PARAMETER 
ESTIMATION UNDER DIFFERENT PRIOR ASSUMPTIONS

The performance of Bayesian model under informative 
prior and weakly informative priors is studied based on 
simulated data which are generated using certain value 
of the true parameter values and the critical level of 
degradation Df. The assumed true parameter values and
Df   are respectively given as follows:

λ = 3; σ = 2 ; μ = 1 and Df = 20

𝛽𝛽~𝑆𝑆𝑆𝑆(𝜇𝜇, 𝜎𝜎2, 𝜆𝜆)

Then, the pdf of 𝛽𝛽 is

𝑔𝑔𝛽𝛽(𝛽𝛽; 𝜇𝜇, 𝜎𝜎2, 𝜆𝜆) = 2
𝜎𝜎 𝜙𝜙 (𝛽𝛽 − 𝜇𝜇

𝜎𝜎 ) 𝛷𝛷 ( 𝜆𝜆 (𝛽𝛽 − 𝜇𝜇
𝜎𝜎 )) (3)

and the cdf of 𝛽𝛽 is 

𝐺𝐺𝛽𝛽(𝛽𝛽; 𝜇𝜇, 𝜎𝜎2, 𝜆𝜆) = 𝛷𝛷 (𝛽𝛽 − 𝜇𝜇
𝜎𝜎 ) − 2𝑻𝑻 (𝛽𝛽 − 𝜇𝜇

𝜎𝜎 , 𝜆𝜆) (4)

where 𝜙𝜙(. ) is the pdf of standard normal distribution; 𝛷𝛷(. ) is the cdf of standard normal 

distribution; 𝛽𝛽 ∈ ℝ, 𝜆𝜆 ∈ ℝ is the skewness (shape) parameter; 𝜇𝜇 ∈ ℝ is the location parameter;

𝜎𝜎2 ∈ ℝ+ is the scale parameter and T(h, a) is Owen's T function defined as

𝑻𝑻(ℎ, 𝑎𝑎) = 1
2𝜋𝜋 ∫ 𝑒𝑒−ℎ2(1+𝑥𝑥2)

2

1 + 𝑥𝑥2 𝑑𝑑𝑥𝑥
𝑎𝑎

0
, − ∞ < 𝑎𝑎, ℎ < +∞

Based on Equation (4), we modify Equation (2) to obtain the cdf of time to failure which can

be given by

𝐹𝐹𝑇𝑇(𝑡𝑡) = Φ (
𝑡𝑡

𝐷𝐷𝑓𝑓 − 𝛼𝛼 − 𝜇𝜇

𝜎𝜎 ) − 2𝑇𝑇 (
𝑡𝑡

𝐷𝐷𝑓𝑓 − 𝛼𝛼 − 𝜇𝜇

𝜎𝜎 , 𝜆𝜆) 

𝑓𝑓𝑇𝑇(𝑡𝑡) = 2
(𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜎𝜎 ϕ (

𝑡𝑡 − (𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜇𝜇
(𝐷𝐷𝑓𝑓 − 𝛼𝛼) 𝜎𝜎 ) Φ ( 𝜆𝜆 (

𝑡𝑡 − (𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜇𝜇
(𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜎𝜎 )) (5)

 𝑡𝑡𝑟𝑟 =  (𝐷𝐷𝑓𝑓 − 𝛼𝛼) 𝐺𝐺𝛽𝛽
−1(𝑟𝑟) (6)

𝐿𝐿(𝜆𝜆, 𝜎𝜎, 𝜇𝜇 ; 𝒕𝒕) = ( 2
(𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜎𝜎)

𝑛𝑛
∏ 𝜙𝜙 (

𝑡𝑡𝑖𝑖 − (𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜇𝜇
(𝐷𝐷𝑓𝑓 − 𝛼𝛼) 𝜎𝜎 ) 𝛷𝛷 ( 𝜆𝜆 (

𝑡𝑡𝑖𝑖 − (𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜇𝜇
(𝐷𝐷𝑓𝑓 − 𝛼𝛼) 𝜎𝜎 ))

𝑛𝑛

𝑖𝑖=1
(7)

  𝑓𝑓𝑇𝑇(𝑡𝑡)  =  2
(𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜎𝜎 ϕ (

𝑡𝑡 − (𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜇𝜇
(𝐷𝐷𝑓𝑓 − 𝛼𝛼) 𝜎𝜎 ) Φ ( 𝜆𝜆 (

𝑡𝑡 −  (𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜇𝜇
(𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜎𝜎 ))        (5)

𝑡𝑡𝑟𝑟 = (𝐷𝐷𝑓𝑓 − 𝛼𝛼) 𝐺𝐺𝛽𝛽
−1(𝑟𝑟) (6)

𝐿𝐿(𝜆𝜆, 𝜎𝜎, 𝜇𝜇 ; 𝒕𝒕) = ( 2
(𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜎𝜎)

𝑛𝑛
∏ 𝜙𝜙 (

𝑡𝑡𝑖𝑖 − (𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜇𝜇
(𝐷𝐷𝑓𝑓 − 𝛼𝛼) 𝜎𝜎 ) 𝛷𝛷 ( 𝜆𝜆 (

𝑡𝑡𝑖𝑖 − (𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜇𝜇
(𝐷𝐷𝑓𝑓 − 𝛼𝛼) 𝜎𝜎 ))

𝑛𝑛

𝑖𝑖=1
(7)

𝑓𝑓𝑇𝑇(𝑡𝑡) = 2
(𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜎𝜎 ϕ (

𝑡𝑡 − (𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜇𝜇
(𝐷𝐷𝑓𝑓 − 𝛼𝛼) 𝜎𝜎 ) Φ ( 𝜆𝜆 (

𝑡𝑡 − (𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜇𝜇
(𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜎𝜎 )) (5)

𝑡𝑡𝑟𝑟 = (𝐷𝐷𝑓𝑓 − 𝛼𝛼) 𝐺𝐺𝛽𝛽
−1(𝑟𝑟) (6)

𝐿𝐿(𝜆𝜆, 𝜎𝜎, 𝜇𝜇 ; 𝒕𝒕) = ( 2
(𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜎𝜎)

𝑛𝑛
∏ 𝜙𝜙 (

𝑡𝑡𝑖𝑖 − (𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜇𝜇
(𝐷𝐷𝑓𝑓 − 𝛼𝛼) 𝜎𝜎 ) 𝛷𝛷 ( 𝜆𝜆 (

𝑡𝑡𝑖𝑖 − (𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜇𝜇
(𝐷𝐷𝑓𝑓 − 𝛼𝛼) 𝜎𝜎 ))

𝑛𝑛

𝑖𝑖=1
(7)

𝑓𝑓𝑇𝑇(𝑡𝑡) = 2
(𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜎𝜎 ϕ (

𝑡𝑡 − (𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜇𝜇
(𝐷𝐷𝑓𝑓 − 𝛼𝛼) 𝜎𝜎 ) Φ ( 𝜆𝜆 (

𝑡𝑡 − (𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜇𝜇
(𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜎𝜎 )) (5)

𝑡𝑡𝑟𝑟 = (𝐷𝐷𝑓𝑓 − 𝛼𝛼) 𝐺𝐺𝛽𝛽
−1(𝑟𝑟) (6)

𝐿𝐿(𝜆𝜆, 𝜎𝜎, 𝜇𝜇 ; 𝒕𝒕) = ( 2
(𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜎𝜎)

𝑛𝑛
∏ 𝜙𝜙 (

𝑡𝑡𝑖𝑖 − (𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜇𝜇
(𝐷𝐷𝑓𝑓 − 𝛼𝛼) 𝜎𝜎 ) 𝛷𝛷 ( 𝜆𝜆 (

𝑡𝑡𝑖𝑖 − (𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜇𝜇
(𝐷𝐷𝑓𝑓 − 𝛼𝛼) 𝜎𝜎 ))

𝑛𝑛

𝑖𝑖=1
  (7)

 𝜋𝜋(𝜆𝜆, 𝜎𝜎, 𝜇𝜇|𝒕𝒕) = 𝐿𝐿(𝜆𝜆, 𝜎𝜎, 𝜇𝜇; 𝒕𝒕)𝑞𝑞(𝜆𝜆, 𝜎𝜎, 𝜇𝜇)
∫ ∬ 𝐿𝐿(𝜆𝜆, 𝜎𝜎, 𝜇𝜇; 𝒕𝒕)𝑞𝑞(𝜆𝜆, 𝜎𝜎, 𝜇𝜇)𝑑𝑑𝜆𝜆𝑑𝑑𝜎𝜎𝑑𝑑𝜇𝜇 (8)

i) Given that 𝜆𝜆~ 𝐺𝐺(𝑎𝑎, 𝑏𝑏), then ℎ(𝜆𝜆) = {
𝜆𝜆𝑎𝑎−1 𝑒𝑒−𝑏𝑏𝑏𝑏

Γ(𝑎𝑎)𝑏𝑏−𝑎𝑎 , 𝜆𝜆 > 0
0, otherwise

ii) Given that 𝜎𝜎~𝑈𝑈(0, 𝑐𝑐), then 𝑢𝑢(𝜎𝜎) = {
1
𝑐𝑐 , 0 < 𝜎𝜎 < 𝑐𝑐

0, otherwise

iii) Given that 𝜇𝜇 ~ 𝑈𝑈(0, 𝑑𝑑), then 𝑤𝑤(𝜇𝜇) = {
1
𝑑𝑑 , 0 < 𝜇𝜇 < 𝑑𝑑

0, otherwise

𝜋𝜋(𝜆𝜆, 𝜎𝜎, 𝜇𝜇|𝒕𝒕) = 𝐿𝐿(𝜆𝜆, 𝜎𝜎, 𝜇𝜇; 𝒕𝒕)𝑞𝑞(𝜆𝜆, 𝜎𝜎, 𝜇𝜇)
∫ ∬ 𝐿𝐿(𝜆𝜆, 𝜎𝜎, 𝜇𝜇; 𝒕𝒕)𝑞𝑞(𝜆𝜆, 𝜎𝜎, 𝜇𝜇)𝑑𝑑𝜆𝜆𝑑𝑑𝜎𝜎𝑑𝑑𝜇𝜇 (8)

i) Given that 𝜆𝜆~ 𝐺𝐺(𝑎𝑎, 𝑏𝑏), then ℎ(𝜆𝜆) = {
𝜆𝜆𝑎𝑎−1 𝑒𝑒−𝑏𝑏𝑏𝑏

Γ(𝑎𝑎)𝑏𝑏−𝑎𝑎 , 𝜆𝜆 > 0
0, otherwise

ii) Given that 𝜎𝜎~𝑈𝑈(0, 𝑐𝑐), then 𝑢𝑢(𝜎𝜎) = {
1
𝑐𝑐 ,    0 < 𝜎𝜎 < 𝑐𝑐

0,    otherwise

iii) Given that 𝜇𝜇 ~ 𝑈𝑈(0, 𝑑𝑑), then 𝑤𝑤(𝜇𝜇) = {
1
𝑑𝑑 , 0 < 𝜇𝜇 < 𝑑𝑑

0, otherwise

𝜋𝜋(𝜆𝜆, 𝜎𝜎, 𝜇𝜇|𝒕𝒕) = 𝐿𝐿(𝜆𝜆, 𝜎𝜎, 𝜇𝜇; 𝒕𝒕)𝑞𝑞(𝜆𝜆, 𝜎𝜎, 𝜇𝜇)
∫ ∬ 𝐿𝐿(𝜆𝜆, 𝜎𝜎, 𝜇𝜇; 𝒕𝒕)𝑞𝑞(𝜆𝜆, 𝜎𝜎, 𝜇𝜇)𝑑𝑑𝜆𝜆𝑑𝑑𝜎𝜎𝑑𝑑𝜇𝜇 (8)

i) Given that 𝜆𝜆~ 𝐺𝐺(𝑎𝑎, 𝑏𝑏), then ℎ(𝜆𝜆) = {
𝜆𝜆𝑎𝑎−1 𝑒𝑒−𝑏𝑏𝑏𝑏

Γ(𝑎𝑎)𝑏𝑏−𝑎𝑎 , 𝜆𝜆 > 0
0, otherwise

ii) Given that 𝜎𝜎~𝑈𝑈(0, 𝑐𝑐), then 𝑢𝑢(𝜎𝜎) = {
1
𝑐𝑐 ,         0 < 𝜎𝜎 < 𝑐𝑐

0,       otherwise    
 

iii) Given that 𝜇𝜇 ~ 𝑈𝑈(0, 𝑑𝑑), then 𝑤𝑤(𝜇𝜇) = {
1
𝑑𝑑 , 0 < 𝜇𝜇 < 𝑑𝑑

0, otherwise

𝜋𝜋(𝜆𝜆, 𝜎𝜎, 𝜇𝜇|𝒕𝒕) = 𝐿𝐿(𝜆𝜆, 𝜎𝜎, 𝜇𝜇; 𝒕𝒕)𝑞𝑞(𝜆𝜆, 𝜎𝜎, 𝜇𝜇)
∫ ∬ 𝐿𝐿(𝜆𝜆, 𝜎𝜎, 𝜇𝜇; 𝒕𝒕)𝑞𝑞(𝜆𝜆, 𝜎𝜎, 𝜇𝜇)𝑑𝑑𝜆𝜆𝑑𝑑𝜎𝜎𝑑𝑑𝜇𝜇 (8)

i) Given that 𝜆𝜆~ 𝐺𝐺(𝑎𝑎, 𝑏𝑏), then ℎ(𝜆𝜆) = {
𝜆𝜆𝑎𝑎−1 𝑒𝑒−𝑏𝑏𝑏𝑏

Γ(𝑎𝑎)𝑏𝑏−𝑎𝑎 , 𝜆𝜆 > 0
0, otherwise

ii) Given that 𝜎𝜎~𝑈𝑈(0, 𝑐𝑐), then 𝑢𝑢(𝜎𝜎) = {
1
𝑐𝑐 , 0 < 𝜎𝜎 < 𝑐𝑐

0, otherwise

iii) Given that 𝜇𝜇 ~ 𝑈𝑈(0, 𝑑𝑑), then 𝑤𝑤(𝜇𝜇) = {
1
𝑑𝑑 ,  0 < 𝜇𝜇 < 𝑑𝑑

0,  otherwise

𝜋𝜋(𝜆𝜆, 𝜎𝜎, 𝜇𝜇|𝒕𝒕) = 𝐿𝐿(𝜆𝜆, 𝜎𝜎, 𝜇𝜇; 𝒕𝒕)𝑞𝑞(𝜆𝜆, 𝜎𝜎, 𝜇𝜇)
∫ ∬ 𝐿𝐿(𝜆𝜆, 𝜎𝜎, 𝜇𝜇; 𝒕𝒕)𝑞𝑞(𝜆𝜆, 𝜎𝜎, 𝜇𝜇)𝑑𝑑𝜆𝜆𝑑𝑑𝜎𝜎𝑑𝑑𝜇𝜇 (8)

i) Given that 𝜆𝜆~ 𝐺𝐺(𝑎𝑎, 𝑏𝑏), then ℎ(𝜆𝜆) = {
𝜆𝜆𝑎𝑎−1 𝑒𝑒−𝑏𝑏𝑏𝑏

Γ(𝑎𝑎)𝑏𝑏−𝑎𝑎 , 𝜆𝜆 > 0
0, otherwise

ii) Given that 𝜎𝜎~𝑈𝑈(0, 𝑐𝑐), then 𝑢𝑢(𝜎𝜎) = {
1
𝑐𝑐 , 0 < 𝜎𝜎 < 𝑐𝑐

0, otherwise

iii) Given that 𝜇𝜇 ~ 𝑈𝑈(0, 𝑑𝑑), then 𝑤𝑤(𝜇𝜇) = {
1
𝑑𝑑 ,   0 < 𝜇𝜇 <  𝑑𝑑

0,   otherwise    
 

𝜆𝜆𝑎𝑎−1 𝑒𝑒−𝑏𝑏𝑏𝑏

Γ(𝑎𝑎) 𝑐𝑐 𝑑𝑑 𝑏𝑏−𝑎𝑎 ( 2
(𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜎𝜎)

𝑛𝑛
∏ 𝜙𝜙 (

𝑡𝑡𝑖𝑖 − (𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜇𝜇
(𝐷𝐷𝑓𝑓 − 𝛼𝛼) 𝜎𝜎 ) 𝛷𝛷 ( 𝜆𝜆 (

𝑡𝑡𝑖𝑖 − (𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜇𝜇
(𝐷𝐷𝑓𝑓 − 𝛼𝛼) 𝜎𝜎 ))

𝑛𝑛

𝑖𝑖=1
 (9)

𝐹𝐹𝑇𝑇𝐿𝐿(𝑡𝑡𝐿𝐿; 𝛼𝛼𝐿𝐿, 𝛽𝛽𝐿𝐿, ∅) = 1

1 + (𝑡𝑡𝐿𝐿
𝛼𝛼∗

)
−𝛽𝛽𝐿𝐿

, 𝛼𝛼∗ = 𝐷𝐷 − ∅
𝛼𝛼𝐿𝐿

(10)

𝑡𝑡𝐿𝐿−𝑟𝑟 = 𝐷𝐷 − ∅
𝛼𝛼𝐿𝐿

( 𝑟𝑟
1 − 𝑟𝑟)

1
𝛽𝛽𝐿𝐿 (11)

𝜋𝜋(𝛼𝛼𝐿𝐿, 𝛽𝛽𝐿𝐿, ∅|𝑡𝑡𝐿𝐿, 𝐷𝐷)

∝ 𝛽𝛽𝐿𝐿
𝑛𝑛

𝐷𝐷 (∏ 𝑡𝑡𝐿𝐿𝑖𝑖

𝑛𝑛

𝑖𝑖=1
)

𝛽𝛽𝐿𝐿−1

𝛼𝛼𝐿𝐿
𝑛𝑛𝛽𝛽𝐿𝐿−1(𝐷𝐷 − ∅)−𝑛𝑛𝛽𝛽𝐿𝐿

1

∏ (1 + ( 𝛼𝛼𝐿𝐿𝑡𝑡𝐿𝐿𝑖𝑖
𝐷𝐷 − ∅)

𝛽𝛽𝐿𝐿
)

2
𝑛𝑛
𝑖𝑖=1

(12)

𝐹𝐹𝑇𝑇𝐿𝐿(𝑡𝑡𝐿𝐿; 𝛼𝛼𝐿𝐿, 𝛽𝛽𝐿𝐿) = 1

1 + ( 𝑡𝑡𝐿𝐿
(𝐷𝐷 − ∅)𝛼𝛼𝐿𝐿

)
−𝛽𝛽𝐿𝐿

(13)

𝜆𝜆𝑎𝑎−1 𝑒𝑒−𝑏𝑏𝑏𝑏

Γ(𝑎𝑎) 𝑐𝑐 𝑑𝑑 𝑏𝑏−𝑎𝑎 ( 2
(𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜎𝜎)

𝑛𝑛
∏ 𝜙𝜙 (

𝑡𝑡𝑖𝑖 − (𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜇𝜇
(𝐷𝐷𝑓𝑓 − 𝛼𝛼) 𝜎𝜎 ) 𝛷𝛷 ( 𝜆𝜆 (

𝑡𝑡𝑖𝑖 − (𝐷𝐷𝑓𝑓 − 𝛼𝛼)𝜇𝜇
(𝐷𝐷𝑓𝑓 − 𝛼𝛼) 𝜎𝜎 ))

𝑛𝑛

𝑖𝑖=1
(9)

𝐹𝐹𝑇𝑇𝐿𝐿(𝑡𝑡𝐿𝐿; 𝛼𝛼𝐿𝐿, 𝛽𝛽𝐿𝐿, ∅) = 1

1 + (𝑡𝑡𝐿𝐿
𝛼𝛼∗

)
−𝛽𝛽𝐿𝐿

, 𝛼𝛼∗ = 𝐷𝐷 − ∅
𝛼𝛼𝐿𝐿

(10)

𝑡𝑡𝐿𝐿−𝑟𝑟 = 𝐷𝐷 − ∅
𝛼𝛼𝐿𝐿

( 𝑟𝑟
1 − 𝑟𝑟)

1
𝛽𝛽𝐿𝐿 (11)

𝜋𝜋(𝛼𝛼𝐿𝐿, 𝛽𝛽𝐿𝐿, ∅|𝑡𝑡𝐿𝐿, 𝐷𝐷)

∝ 𝛽𝛽𝐿𝐿
𝑛𝑛

𝐷𝐷 (∏ 𝑡𝑡𝐿𝐿𝑖𝑖

𝑛𝑛

𝑖𝑖=1
)

𝛽𝛽𝐿𝐿−1

𝛼𝛼𝐿𝐿
𝑛𝑛𝛽𝛽𝐿𝐿−1(𝐷𝐷 − ∅)−𝑛𝑛𝛽𝛽𝐿𝐿

1

∏ (1 + ( 𝛼𝛼𝐿𝐿𝑡𝑡𝐿𝐿𝑖𝑖
𝐷𝐷 − ∅)

𝛽𝛽𝐿𝐿
)

2
𝑛𝑛
𝑖𝑖=1

(12)

𝐹𝐹𝑇𝑇𝐿𝐿(𝑡𝑡𝐿𝐿; 𝛼𝛼𝐿𝐿, 𝛽𝛽𝐿𝐿) = 1

1 + ( 𝑡𝑡𝐿𝐿
(𝐷𝐷 − ∅)𝛼𝛼𝐿𝐿

)
−𝛽𝛽𝐿𝐿

(13)

Now, it is clear that the cdf and the pdf of time 
to failure distribution are the cdf and the pdf of skew 
normal distribution with location parameter μ*=  (D - α)
μ, scale parameter σ = (Df - α)σ and shape parameter
λ. To compute the r th  percentile of the time to failure
distribution, denoted as tr, we determine the inverse cdf 
of F and solved Equation (2) for tr to obtain
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      In the real application, we have Df = 5, but in 
the simulation study we assumed Df = 20. A much 
large value of Df in the simulation study is not 
surprising since the simulated data depict an ideal 
situation, which may be related to a very reliable 
product, where only large values of degradation data 
represent cases of failure. In addition, Df = 20has been 
considered in the study of Rawashdeh, Ebrahem and 
Momani (2018). The initial value of parameter  is 
assumed 6, while the sample sizes considered are n = 
30, 60 and 200.

Based on these assumed values, the data for time 
to failure distribution are generated using the skew 

normal distribution with location parameter μ*= (Df - α) 
μ, scale parameter σ*=  (Df - α)σ and shape parameter λ. 
Since the joint posterior distribution of the parameters 
cannot be determined in a closed form, MCMC method 
is applied. In particular, samples from the joint 
posterior distribution of Equation (9) is generated using 
the JAGS (Just Another Gibbs Sampler) algorithm. 
The weakly informative gamma prior is represented 
based on the assumed values of the shape and scale 
hyper parameters of 0.1 and 0.01, respectively, i.e., a = 
0.1 and b = 0.01, while the informative gamma prior 
is represented by 

a = 2 and b = 2. The choice made on the true values of 
the shape and scale hyper parameters, although may be 
arbitrary, reflects the level of uncertainty on the gamma 
priors. The variances for the weakly informative and 
informative gamma priors are 1000 and 1/2, respectively. 
In addition, for the uniform priors, we assume the upper 
limits c = 4 and d = 2. We believe that this is a fair 
representation of the level of uncertainty that we have 
on the little information regarding the prior parameters.

The JAGS algorithm which has been developed 
by Plummer (2003) can be used to carry out  MCMC 
simulation based on Gibbs sampling, making the 
posterior analysis comparatively easy.  For details on the 
implementation of JAGS algorithm, refer to Albert (2008) 
and Coro (2017). For computation, the programming 
language R version 4.0.3 is used.

The results for the estimation of the parameters and 
certain percentiles based on Bayesian approach of the 
skew normal linear degradation model under informative 
and weakly informative priors for the different sample 
sizes are provided in Table 3. The properties of point 
estimates are evaluated using bias (B) and mean squared 
error (MSE) values of the estimators. Estimators with 
small bias and mean squared error are preferred.

TABLE 3. B and MSE for the parameter estimate and certain percentiles of the time to failure distribution under informative and 
weakly informative prior for n = 30, 60 and 200

Parameter 
values

Informative prior Weakly Informative prior

n = 30 n = 60 n = 200 n = 30 n = 60 n = 200

B MSE B MSE B MSE B MSE B MSE B MSE

μ = 1 0.268 0.178 0.025 0.049 0.069 0.023 0.464 0.363 0.044 0.075 0.063 0.024

σ = 2 0.469 0.318 0.089 0.071 0.101 0.032 0.617 0.497 0.111 0.0956 0.095 0,032

λ = 3 0.314 2.808 1.332 4.870 0.554 1.027 0.970 7.535 2.937 80.400 0.523 1.062

t0.05 1.894 14.870 1.331 7.845 0.100 2.043 0.312 19.200 1.112 7.946 0.127 2.091

t0.2 0.719 7.819 0.410 4.590 0.336 1.578 0.042 9.978 0.104 5.479 0.324 1.594

t0.5 1.332 9.300 0.462 5.715 0.014 1.770 1.641 10.510 0.333 6.201 0.003 1.801

t0.75 4.027 28.240 1.071 11.290 0.656 3.393 4.664 33.630 1.131 11.800 0.641 3.384

t0.9 7.131 75.320 1.697 23.500 1.357 7.976 8.443 95.880 1.925 26.000 1.299 7.910
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The estimators are evaluated based on bias and 
MSE. From Table 3, we have found the following 
results: In most cases, B and MSE values of the estimated 
parameters and the associated percentiles in the 
Bayesian approach of skew normal linear degradation 
model under informative and weakly informative 
gamma prior decrease as n increase. The MSE of the rth 
percentiles of the time to failure distribution increases as 
r increase for all sample sizes, except in the case of the 
low value of the rth percentile. In most cases, the B values 
of the estimated parameters and the associated percentiles 
under informative gamma prior are smaller than the B 
values found under weakly informative gamma prior for 
small sample size and these results are quite close for 
large sample size. 

Generally, in the small sample size, the performance 
of the Bayesian approach of skew normal linear 
degradation model under informative gamma prior is 
better than the performance of the Bayesian approach 
of skew normal linear degradation model under weakly 
informative gamma prior, while in the case of large 
sample size, the results found based on the two different 
prior assumptions are close.

COMPARISON BETWEEN LOG-LOGISTIC AND SKEW 
NORMAL DEGRADATION MODEL UNDER THE BAYESIAN 

APPROACH

In this section, the performance of Bayesian approach 
for modeling the time to failure distribution and its 
percentiles based on linear degradation model with 
the degradation parameter following the log-logistic 
distribution and skew normal distribution is compared 
in terms of bias and mean squared error.

Rawashdeh, Ebrahem and Momani (2018) have 
estimated the time to failure distribution based on linear 
degradation path D = +X  with random degradation rate 
X which follows log-logistic distribution. The cdf of 
time to failure distribution is given as

where ∅ is the degradation level at at tL = 0; αL and 
βL are the scale and the shape parameters of log-
logistic distribution, respectively, and D is the critical 
degradation level at which failure is declared. It has been 
shown that the time to failure distribution is also log-
logistic with scale parameter α* and the shape parameter
βL. The percentiles of the time to failure distribution based 
on Equation (10) can be shown as

(11)

The Bayesian method has been applied for grouped 
and non-grouped data and the results found are 
compared. The prior distributions of parameters and  are 
assumed to be non-informative prior. The non-informative 
prior that has been considered by them are uniform and 
Jeffery’s priors.

In the conclusion of this study, they have stated 
that the performance of the Bayesian model for the non-
grouped method is better due to the smaller value of mean 
squared error. They have shown that the joint posterior 
distribution of non-grouped data is given as 

(12)

In this work, a slight modification is done in the 
work by Rawashdeh, Ebrahem and Momani (2018) 
where we consider the linear degradation path model  
D = D = ∅+𝑡𝑡

𝑋𝑋    which involves reciprocal of the degradation
rate instead of the degradation rate. Here X is assumed 
to follow log-logistic distribution. Thus, the cdf of time 
to failure distribution can be shown as 

(13)

Then, the pdf of time to failure distribution is given as

(14)

Note that the time to failure distribution is also 
log-logistic distribution with scale parameter (D-∅)αL 
and the shape parameter βL. Based on Equation (13), it 
can be shown that the percentiles of the time to failure 
distribution is
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(14)
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𝛽𝛽𝐿𝐿
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𝑛𝑛
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(16)𝑓𝑓𝑇𝑇𝐿𝐿(𝑡𝑡𝐿𝐿; 𝛼𝛼𝐿𝐿, 𝛽𝛽𝐿𝐿) = 𝛽𝛽𝐿𝐿

(𝐷𝐷 − ∅)𝛼𝛼𝐿𝐿
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(1 + ( 𝑡𝑡𝐿𝐿
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𝛽𝛽𝐿𝐿
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−2
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   𝑡𝑡𝐿𝐿−𝑟𝑟 = (𝐷𝐷 − ∅)𝛼𝛼𝐿𝐿  ( 𝑟𝑟
1 − 𝑟𝑟)

1
𝛽𝛽𝐿𝐿    (15)

𝛽𝛽𝐿𝐿
𝑑𝑑−1 𝑒𝑒−𝛽𝛽𝐿𝐿

𝑠𝑠

𝛤𝛤(𝑑𝑑) 𝑑𝑑𝑠𝑠 𝑏𝑏 ( 𝛽𝛽𝐿𝐿
(𝐷𝐷 − ∅)𝛼𝛼𝐿𝐿

)
𝑛𝑛
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)

𝛽𝛽𝐿𝐿−1
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)
𝛽𝛽𝐿𝐿

)
−2𝑛𝑛

𝑖𝑖=1
(16)
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To make the skew normal and log-logistic 
degradation models comparable, both the prior 
distributions for the scale and the shape parameters 
for each model are assumed to be the same as in 
the previous section where the values of the hyper 
parameters of the informative gamma prior for both 
models are equal, i.e., a = b = 2 and d = s = 2. Note that 
the location parameter, which is another parameter
for the skew normal distribution, is assumed fixed

 and it is not estimated. In addition, for both models, 
the initial and the critical degradation values are also 
assumed the same as previous section. Then, it can be 
shown that the joint posterior distribution πL (αL, βL; tL) 
is proportional to 

(16)

       The results of the simulation study for comparison 
between the models are provided in Table 4.

The estimators are evaluated based on bias and 
MSE. From Table 4, we have found the following results: 
In most cases, the MSE of the estimated percentiles in 
the Bayesian approach of skew normal and log-logistic 
linear degradation model decreases as n increase. The 
MSE of the rth percentile positions increases as r increases 
for all sample sizes except in the lower percentile 
position where n = 30 and 60 for skew normal linear 
degradation model. In most cases for all sample sizes, 
the B values of the estimated percentiles in both models 
increase as r increase. In most cases, for small sample 
size such as n = 30 and 60, for lower percentile position 
of time to failure distribution, the B values for skew 
normal linear degradation model are larger than the B 
values for log-logistic linear degradation model and vice 
versa for the case of larger percentile position. 

Generally, the performance of the Bayesian 
approach of skew normal linear degradation model 
is found better than the performance of the Bayesian 
approach of log-logistic linear degradation model, 
particularly in the case of higher percentile position of 
time to failure distribution.

𝑓𝑓𝑇𝑇𝐿𝐿(𝑡𝑡𝐿𝐿; 𝛼𝛼𝐿𝐿, 𝛽𝛽𝐿𝐿) = 𝛽𝛽𝐿𝐿
(𝐷𝐷 − ∅)𝛼𝛼𝐿𝐿

( 𝑡𝑡𝐿𝐿
(𝐷𝐷 − ∅)𝛼𝛼𝐿𝐿

)
𝛽𝛽𝐿𝐿−1

(1 + ( 𝑡𝑡𝐿𝐿
(𝐷𝐷 − ∅)𝛼𝛼𝐿𝐿

)
𝛽𝛽𝐿𝐿

)
−2

(14)

𝑡𝑡𝐿𝐿−𝑟𝑟 = (𝐷𝐷 − ∅)𝛼𝛼𝐿𝐿 ( 𝑟𝑟
1 − 𝑟𝑟)

1
𝛽𝛽𝐿𝐿 (15)

𝛽𝛽𝐿𝐿
𝑑𝑑−1 𝑒𝑒−𝛽𝛽𝐿𝐿

𝑠𝑠

 𝛤𝛤(𝑑𝑑) 𝑑𝑑𝑠𝑠 𝑏𝑏 ( 𝛽𝛽𝐿𝐿
(𝐷𝐷 − ∅)𝛼𝛼𝐿𝐿

)
𝑛𝑛

 ∏ (
𝑡𝑡𝐿𝐿𝑖𝑖

(𝐷𝐷 − ∅)𝛼𝛼𝐿𝐿
)

𝛽𝛽𝐿𝐿−1
 (1 + (

𝑡𝑡𝐿𝐿𝑖𝑖
(𝐷𝐷 − ∅)𝛼𝛼𝐿𝐿

)
𝛽𝛽𝐿𝐿

)
−2𝑛𝑛

𝑖𝑖=1
(16)

𝑓𝑓𝑇𝑇𝐿𝐿(𝑡𝑡𝐿𝐿; 𝛼𝛼𝐿𝐿, 𝛽𝛽𝐿𝐿) = 𝛽𝛽𝐿𝐿
(𝐷𝐷 − ∅)𝛼𝛼𝐿𝐿

( 𝑡𝑡𝐿𝐿
(𝐷𝐷 − ∅)𝛼𝛼𝐿𝐿

)
𝛽𝛽𝐿𝐿−1

(1 + ( 𝑡𝑡𝐿𝐿
(𝐷𝐷 − ∅)𝛼𝛼𝐿𝐿

)
𝛽𝛽𝐿𝐿

)
−2

(14)

𝑡𝑡𝐿𝐿−𝑟𝑟 = (𝐷𝐷 − ∅)𝛼𝛼𝐿𝐿 ( 𝑟𝑟
1 − 𝑟𝑟)

1
𝛽𝛽𝐿𝐿 (15)

𝛽𝛽𝐿𝐿
𝑑𝑑−1 𝑒𝑒−𝛽𝛽𝐿𝐿

𝑠𝑠

𝛤𝛤(𝑑𝑑) 𝑑𝑑𝑠𝑠 𝑏𝑏 ( 𝛽𝛽𝐿𝐿
(𝐷𝐷 − ∅)𝛼𝛼𝐿𝐿

)
𝑛𝑛

∏ (
𝑡𝑡𝐿𝐿𝑖𝑖

(𝐷𝐷 − ∅)𝛼𝛼𝐿𝐿
)

𝛽𝛽𝐿𝐿−1
 (1 + (

𝑡𝑡𝐿𝐿𝑖𝑖
(𝐷𝐷 − ∅)𝛼𝛼𝐿𝐿

)
𝛽𝛽𝐿𝐿

)
−2𝑛𝑛

𝑖𝑖=1
(16)

TABLE 4. Bias (B) and MSE of the percentiles for the skew normal and log-logistic degradation models for the simulated data 
for n = 30, 60 and 200

Parameter 
values

Skew normal degradation model Log-logistic degradation model

n = 30 n = 60 n = 200 n = 30 n = 60 n = 200

B MSE B MSE B MSE B MSE B MSE B MSE

t0.05 0.787 17.805 0.466 7.825 0.613 2.900 0.027 2.420 1.226 3.194 0.672 0.806

t0.2 0.679 6.845 1.080 4.090 0.668 1.347 0.656 6.099 1.659 6.295 1.594 3.346

t0.5 2.686 17.146 1.997 7.333 2.246 5.943 2.093 21.337 1.760 12.834 3.372 13.649

t0.75 4.790 48.523 3.048 17.183 3.779 16.386 4.380 84.856 1.172 38.467 6.043 45.353

t0.9 6.927 99.588 4.252 33.804 5.375 33.108 8.412 395.311 0.851 177.867 10.739 159.160

APPLICATION OF REAL DEGRADATION DATA

In the second section, the GaAs laser degradation data is 
described and applied to investigate the adequacy of the 
skew normal, log-logistic and exponential degradation 
models based on probability plotting and the computed 
values of AIC of all models. In this section, the GaAs laser 

degradation data is applied to compare the performance 
of the weakly informative and informative prior of the 
skew normal degradation model. The comparison is made 
in terms of point estimate (PE) and standard error (SE) 
of the percentiles of the time to failure distribution. The 
results found are provided in Table (5).
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TABLE 5. PE and SE for certain percentiles of the skew normal linear degradation model under informative and weakly 
informative prior based on the GaAs laser degradation data

parameters
Informative prior Weakly informative prior

PE SE PE SE

t0.05 4.449 0.168 5.891 0.148

t0.2 6.635 0.098 7.113 0.097

t0.5 9.068 0.200 9.431 0.204

t0.75 11.86 0.339 12.001 0.347

t0.9 14.433 0.485 14.667 0.495

According to Table 5, referring to the estimated 
parameters and standard errors, when estimating the 
percentiles of the time to failure distribution under the 
application of laser degradation data, the performance 
of the skew normal degradation model based on 
informative prior is generally better than the performance 
of the skew normal degradation model based on weakly 
informative prior. 

As mentioned in the second section, the AIC 
found for fitted skew normal and log-logistic models 
are found close to each other. In order to compare the 
performance of those models, the point estimate (PE) 
and standard error (SE) of the percentiles of the time 
to failure distribution found based on skew normal and 
log-logistic distributions that are indicated in Equations 
(5) and (14), respectively, are computed. Also, deviance

𝐷𝐷𝐷𝐷𝐷𝐷 =  �̅�𝐷(𝜃𝜃) +  𝑃𝑃𝐷𝐷 

information criterion (DIC) is determined for selecting 
the best fitted model to the real data. Spiegelhalter, 
Best and Carlin (2002) define the DIC for the vector of 
parameters interest, say θ, as the following:

where D is the deviance which is defined by – 2log (l);
l is the likelihood function; 𝐷𝐷𝐷𝐷𝐷𝐷 =  �̅�𝐷(𝜃𝜃) + 𝑃𝑃𝐷𝐷 is the posterior deviance
mean which is given based on the values of the estimated
parameters of the posterior distribution; and PD is the
effective number of parameters of the model which
is defined as 𝐷𝐷𝐷𝐷𝐷𝐷 =  �̅�𝐷(𝜃𝜃) + 𝑃𝑃𝐷𝐷(θ) - 𝐷𝐷𝐷𝐷𝐷𝐷 =  �̅�𝐷(𝜃𝜃) + 𝑃𝑃𝐷𝐷(θ̅ ) where 𝐷𝐷𝐷𝐷𝐷𝐷 =  �̅�𝐷(𝜃𝜃) + 𝑃𝑃𝐷𝐷(θ̅ ) is the deviance
which is found by finding the mean of each value of the
estimated parameters in the posterior distribution. Results
of the comparison involving the parameter estimates,
standared error and DIC are provided in Table 6.

TABLE 6. PE and SE of the percentiles and DIC for the skew normal and log-logistic degradation models for laser degradation 
data

parameters Interpolated values 
Skew normal degradation model Log-logistic degradation model

PE SE PE SE

t0.05 7.128 6.650 0.237 5.393 0.234

t0.2 8.125 8.332 0.176 7.478 0.219

t0.5 10.581 10.154 0.153 10.050 0.233

t0.75 11.671 11.678 0.179 12.749 0.350

t0.9 12.212 13.100 0.234 16.226 0.627

DIC 67.550 68.530
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Comparison of the skew normal and the log-
logistic degradation model in Table 6 indicates the 
following results: In most cases, the standard error for 
the estimated percentiles of skew normal degradation 
model is smaller than the standard error for the estimated 
percentiles of log-logistic degradation model. The point 
estimate of the percentiles of skew normal degradation 
model is found closer to the observed value of the 
percentiles reported in the laser degradation dataset 
than those values found for the log-logistic degradation 
model. This finding can be proven by using the linear 
interpolation of the observed values. For example, 
consider the interpolated value of the 75th percentile 
of the time to failure values in Table 1, i.e., 11.671. 
Corresponding to the estimated values in the Table 6, 
we have  for the skew normal degradation model while 
for the log-logistic degradation model , and the standard 
errors are 0.18 and 0.35, respectively. This indicates 
that the estimated value of the parameter for the skew 
normal degradation model is more precise and hence 
it is more appropriate to use this result as compared 
to that found based on log-logistic degradation model. 
The deviance information criterion for skew normal 
degradation model is slightly smaller than the deviance 
information criterion for log-logistic degradation model, 
indicating a better fitting for skew normal degradation 
model.

CONCLUSIONS

In this study, we present the Bayesian approach 
of skew normal linear degradation model based 
on the informative and weakly informative prior. 
From the simulation results, we conclude that the 
Bayesian approach which considers informative prior 
outperformed the Bayesian model found under weakly 
informative prior, especially in the case of small sample 
size while for large sample size both results are found 
to be close. In addition, comparison of the skew normal 
and log-logistic linear degradation models is presented 
in terms of point estimate, standard error, Akaike 
information criterion and deviance information criterion. 
It is found that the linear degradation model with the 
reciprocal of the degradation parameter as the slope in 
the degradation path equation where the degradation 
parameter follows the skew normal distribution presents 
as a better alternative model than the log-logistic linear 
degradation model for describing the degradation data 
and these results are found more apparent in the real data 
application of laser degradation data in terms of point 
estimate, standard error and deviance information criteria.
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