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ABSTRACT

Inhomogeneous cluster point processes have been considered for modeling the distribution of earthquake epicenters
with the spatial trend and clustering patterns. In particular, the spatial trend is assessed by the intensity model
involving geological variables. However, for intensity with a log-linear form, it may be too restrictive and
not appropriate for earthquake distribution. In this study, we consider the Cauchy cluster process with the log-additive
intensity model to analyze the distribution of major earthquake occurrences in Sumatra, Indonesia. The estimation
procedure follows the standard two-step estimation technique, where the first step adapts the method for the
Generalized Additive Models (GAMs) using penalized iteratively reweighted least squares (PIRLS) algorithm, and the
second step employs the second-order composite likelihood. For the earthquake analysis in Sumatra, the log-additive
intensity shows more flexibility to determine the contribution of each geological factor, especially to capture the
effect of the nearest distance to the fault which is far from log-linear. In addition, compared to the log-linear model,
the Cauchy cluster process with a log-additive intensity model performs better with a smaller Akaike Information
Criterion’s (AIC) value and a sharper envelope K-function. The estimated number of mainshocks is around 114 with
aftershocks spread by 14 km around the mainshocks. We detect three hotspots for the major earthquake in Sumatra: the
northern part (Aceh and North Sumatra), the western part (Mentawai, Nias, and Simeulue), and Bengkulu.
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ABSTRAK

Proses titik kelompok tidak homogen telah dipertimbangkan untuk memodelkan taburan pusat gempa bumi dengan
arah aliran ruang dan corak kelompok. Khususnya, trend ruang dinilai oleh model keamatan yang melibatkan
pemboleh ubah geologi. Walau bagaimanapun, untuk keamatan dengan bentuk log-linear, ia mungkin terlalu terkawal
dan tidak sesuai untuk taburan gempa bumi. Dalam kajian ini, kami mempertimbangkan proses kelompok Cauchy
dengan model keamatan log-tambahan untuk menganalisis taburan kejadian gempa bumi besar di Sumatera,
Indonesia. Prosedur anggaran mengikut teknik anggaran dua langkah piawai dengan langkah pertama menyesuaikan
kaedah untuk Model Tambahan Am (GAM) menggunakan algoritma kuasa dua terkecil ditimbang semula secara
berulang (PIRLS) berhukum dan langkah kedua menggunakan kemungkinan komposit tertib kedua. Bagi analisis
gempa bumi di Sumatera, keamatan log-tambahan menunjukkan lebih kefleksibelan untuk menentukan sumbangan
setiap faktor geologi, terutamanya untuk menangkap kesan jarak terdekat dengan sesar yang jauh daripada log-linear. Di
samping itu, berbanding model log-linear, proses kelompok Cauchy dengan model keamatan log-tambahan berprestasi
lebih baik dengan nilai Kriteria Maklumat Akaike (AIC) yang lebih kecil dan fungsi K sampul yang lebih tajam.
Anggaran bilangan gegaran utama adalah sekitar 114 dengan gegaran susulan tersebar sejauh 14 km di sekitar
gegaran utama. Kami mengesan tiga titik panas untuk gempa bumi besar di Sumatera: bahagian utara (Aceh dan
Sumatera Utara), bahagian barat (Mentawai, Nias dan Simeulue) dan Bengkulu.

Kata kunci: Model tambahan am; pemodelan gempa bumi; pengurangan risiko bencana; proses titik ruang; subduksi
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INTRODUCTION

Indonesia is located at the confluence of tectonic plates,
resulting in the territory of Indonesia having more than
295 active faults, making Indonesia an earthquake-prone
area. Sumatra is one of the most active tectonic areas
in the world due to the activity of the Indo-Australian
and Eurasian plates in the subduction zone along the
Sumatran Sea (Figure 1). Sumatra is crossed by faults
in the earth’s crust along the Bukit Barisan and faults in
the earth’s crust at the bottom of the Indian Ocean along
the west coast of Sumatra which makes Sumatra the most
vulnerable area to earthquakes (Sosilawati et al. 2017).
There are three sources of earthquake threat in Sumatra,
namely the subduction area, the Mentawai Fault
System, and the Sumatra Fault System (Triyono 2015).
For an area susceptible to earthquakes like Sumatra, it is
major important to detect the earthquake hotspots due to
seismic activities, so risk calculation and mitigation can
be conducted more accurately. The hotspot detection can
be quantified by studying the earthquake distribution
concerning geological variables.

The government has developed the Probabilistic
Seismic Hazard (PSHA) and the Earthquake Early
Warning System (EEWS). The EEWS includes three
systems i.e., a monitoring system which detects
earthquakes upstream, an automatic processing system
which processes data quickly, and an information
dissemination system (Ibrahim 2019). The PSHA
method is a probabilistic earthquake hazard analysis
method by calculating and combining the uncertainties
of the magnitude, location, and time of the earthquake
(Nasional 2017). Nevertheless, the PSHA method assumes
that earthquakes originate from the Poisson process,
meaning that earthquake events which produce ground
shaking at one point for a certain level are independent
events from other earthquake events. Moreover, the PSHA
method only considers the hazard of the mainshocks,
albeit aftershock occurrences also often cause major
issues. In addition, PSHA only considers the uncertainty
factor of the magnitude, location, and time of the
earthquake, whereas geological factors such as active
faults and subduction zones also may influence the
occurrence of earthquakes.

Spatial point process becomes a standard tool for
earthquake modeling when the focus is to model the
spatial distribution of locations of earthquake occurrences
(Geng, Shi & Hu 2021; Iftimi, Cronie & Montes 2019;
Tirkyilmaz, van Lieshout & Stein 2013). When the
past studies rely mainly on stationary point processes
(Ogata 2006, 1988), recent studies employ non-stationary

point processes by involving geological factors in the
intensity model to enhance interpretability and model
improvement (Anwar, Yaseen & Mahmood 2023;
Choiruddin et al. 2021; D’Angelo et al. 2022; Siino et
al. 2017). In particular, the log-linear intensity model
is employed to improve the prediction of earthquake
distribution (Choiruddin et al. 2021; D’Angelo et al.
2022; Husain & Choiruddin 2021).

Within the point process framework, modeling of
the distribution of earthquake occurrences in Sumatra
has been carried out using a different point process
model (Choiruddin et al. 2023; Pratiwi et al. 2021;
Pratiwi, Rini & Mangku 2018), especially research by
Choiruddin, Susanto and Metrikasari (2021) and Trisnisa
et al. (2019) which considers geological factors.
Sumatra has a unique pattern where spatial trend due
to spatial covariate makes a stronger effect than the
clustering due to seismic activity (Choiruddin, Susanto &
Metrikasari 2021). However, capturing the spatial trend
effect through the log-linear intensity model may not
be appropriate especially when the effect of geological
variables is not log-linear (Figure 3). For example, Figure
3(b) depicts the log-linear model (red dashed line) for
capturing the effect of fault is a very crude estimation for
the intensity model (grey line). Therefore, a more flexible
model should be considered to cover the nonlinearity
relationship and to improve the log-linear model.

This study focuses on comparing the performance
of log-linear and log-additive intensities to model the
distribution of earthquake locations in Sumatra involving
two geological factors: faults and subduction. The
Cauchy cluster process is employed as it performs best
to model earthquake distribution among other cluster
processes (Choiruddin et al. 2021; Choiruddin, Susanto
& Metrikasari 2021). The log-additive intensity model
is considered to relax the log-linear assumption model.
Jalilian (2017) and Youngman and Economou (2017)
demonstrate the good performance of the log-additive
intensity for point process models applied to Ecology and
Environmental Science. We intend to extend the model
in Seismology by mapping the earthquake risk prediction
in Sumatra. Earthquake risk prediction maps can detect
hotspots and can be used as guidelines to be more alert
in dealing with earthquake disasters and to reduce the
impact of earthquakes.

STUDY AREA AND VARIABLE DESCRIPTION

The study area is located in the Sumatra region (Figure
1), which includes the location of the occurrence of
earthquakes, subduction zones, and active faults.



Fault and subduction coordinates are taken from Peta
Sumber dan Bahaya Gempa Indonesia (Nasional
2017). According to USGS (https://earthquake.usgs.
gov/earthquakes/search), from 2004 to 2018 there have
been 10868 earthquakes in Sumatra, with 1195 of them
having a magnitude M> 5 i.e., the Bengkulu earthquake
(2004, M=7.3), the Aceh-Andaman earthquake (2004,
M=9), and the North Sumatra earthquake (2005,
M=8.6) (BMKG 2019). Figure 1 shows that the
earthquake locations are distributed inhomogeneously.
Earthquake occurrences tend to be clustered in certain
areas (Aceh, Simeulue, Nias, Mentawai, West Sumatra,
and Lampung). Earthquake densities are high in areas
close to subduction zones and faults, widespread with a
radius of £300 km (Figure 2). The geological covariates
in this study are shown in Table 1.
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This study explores the effect of geological variables
through the log-additive intensity model as an alternative
to the log-linear model. Figure 3 shows the estimated
earthquake intensity as a function of each covariate with
the gray area being a 95% confidence interval assuming
an inhomogeneous Poisson point process. Nonparametric
estimates do not assume a particular model form for the
relationship between earthquake intensity and specific
spatial covariates. Parametric estimates of the effects of
geological variables on the log-linear intensity model
are represented by red dotted lines. The nonparametric
estimates and envelopes clearly show that the influence
of geological variables is far from log-linear, particularly
on the effect of faults. Therefore, it is of interest to extend
the log-linear intensity model to the log-additive model.

Latitude {100 km})

Indo-Australian Plate

Faujt
Subéjucllun
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Longitude (100 km)

FIGURE 1. Earthquake distribution map in Sumatra 2004-2018 (black dot is the location

of the earthquake, grey line is subduction, and orange line is a fault) with an area of
‘B =[104.52; 121,18]x[-6.86; 7.38] 100 km?
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FIGURE 2. Earthquake density with the contour plot of the distance of the earthquake to
(a) subductions and (b) faults (white dots are earthquake locations)
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FIGURE 3. Nonparametric estimation of earthquake intensity as a function of covariates
distance from earthquake to (a) subductions and (b) faults

TABLE 1. Covariates description

Variable Description

z, (u ) Earthquake distance to nearest fault (100 km)

z, (u) Earthquake distance to nearest subduction (100 km)




SPATIAL POINT PROCESS

Spatial point process X is a random mechanism whose
result is a point pattern. Spatial point pattern X is a
dataset which contains a set of object or event locations
observed in a certain observation window B, B < R’
written X={xl,...,xﬂ}(Baddeley, Rubak & Turner
2015). In this study, x is the occurrence of an earthquake.
Given /1(”) :B— [0700) as the intensity function of the
point process X, then A(u) is the intensity function of
a point process related to the expected number of points
in an area.

u(B)=E[N(B)]= _[/1 du,BcR* . (1)
The second order moment for the point process is
related to calculating the relationship between points.
The second order of a point process in a region B is
4 as shown in Equation (2). A (u v y/) du dv is the
probability of observing a pair of points in two very
small regions with centers u and v, volumes du and
dv, 1is an indicator function which is given a value of 1
if u and v are elements of B (Mgller & Waagepetersen
2004).

“.1 u,v) eBﬂ, "(wvw) dudv  (2)

B

To find out the distribution pattern of the point process,
we can consider the pair correlation function or the
K-function (Baddeley, Rubak & Turner 2015).

CAUCHY CLUSTER PROCESS

Suppose C is a Poisson point process (mainshocks
process) with intensity 0. Conditional on C, X ,c€C is
an independent Poisson process (offspring processes)
with a log-linear intensity function 4, () to detect the
spatial trend due to P spatial covariates (Choiruddin et
al. 2021)

A (u;6)= exp(g’+i€pzp (u)

where 9 is a coefficient of the parametric model;
k( ) is the probability density function of the distance
distribution between the aftershocks and the mainshocks
process which is mutually independent and has a
bivariate Cauchy distribution with a scale parameter @
given by

jk(u—c;a)), 3)

k(wo)=(2m) (1+(ld/0)) " @

In this study, we extend the log-linear model in Equation
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(3) and replace it with the log additive model presented
in Equation (5)

A, (u;0)= eXP(§+ifp (2, (u)

)jk(u—c;a)), (%)
p=1

where fp (Zp (u)) is a smooth function which can
be represented by basis expansions detailed herewith.
Therefore, X =,_. X, is the Cauchy cluster process
with the intensity function, pair correlation function, and

K-function in Equations (6)-(8) (Ghorbani 2013).

A(u;0)= Kexp(§ + ZP;/‘ (2, (”))j

= exp[@o + EPIZK:Q b,,(z,( )j ©

p=lj=1

(1 (Ju ] /40 ))/ (7)

1
=1
g(u,v,y/) +8m(a)

L (- v|| [407) ®

The smooth functions f,(z,(x)) are represented by the
basis functions b  and coefficients of the basis 0, ,
j=1..,K,p=1..,P (Pedersenet al. 2018). 6, =¢ +logx
is an intercept parameter; x is the intensity of the
mainshocks; and @ represents a scaling parameter related
to the deviation of the distance between aftershocks
to the mainshocks. y=(8".x,0) is the parameter to
be estimated. We use cubic regression spline which is
one-dimensional smoothing as the basis function. The
optimum number of knots k (K = k1) is selected based
on the minimum AIC (Akaike Information Criterion).

PARAMETER ESTIMATION

We use a two-step procedure to estimate parameters
y/:(e’,;c,w)f, where the first step is to estimate 8 by
first-order composite likelihood, and the second step
is to estimate kK and @ by second-order composite
likelihood. The first step procedure is linked to
parameter estimation in the Generalized Additive
Models (GAMs) detailed in the next section.

GENERALIZED ADDITIVE MODEL (GAM)

The composite log-likelihood function to estimate 6 is
as follows.

log L(u;0) Zlog(

10))=[A(ws8)au (9)



660

Using a nuryerical quadrature approach
J./i(u;ﬁ) duzz/i(u,;e)wi with n number of data

points, d number of dummy points, y, =—, [, =1for u,

w,
is data points and /, =0 if u, is dummy point, and w, is
quadrature weight, then equation 9 reduces to

n+d

log L (:) = 3w, (3, log (2 (u:6)) = 2(u:6)) (10)

The log-likelihood form in Equation (10) is
equivalent to the log-likelihood of the weighted Poisson
regression. Poisson regression modeling is obtained
from the link function which explains the relationship of
the expected value of Y, with covariates. The log-linear
model assumes a linear relationship between intensity
and covariates, so to be more flexible in modeling, this
study uses the Generalized Additive Model. GAM is
the development of GLM with additive predictors
involving smooth functions and has a structure in
Equation (11),

g(u)= £z )+ £i(z )+ £ (z(w)+- (1)

where f;j(zp(u)) is the smooth functions of
geological covariates z,(#) which are estimated

nonparametrically, g () is the link function, x =E(Y),

and Y has an exponential family distribution (Wood
2017). The log-likelihood function with the intensity
function A(u,;0) using GAM can be seen in Equation (12).

A(u;0)=6, +p§:‘,f;, (2, (u))

nt+d

log L(u;0) ZW( (@ﬁi‘,fp(% (ul.))J—exp (12)

537, w)

Each f, (zp (u)), for p=1,2,..., P, is represented by the
basis function b, , multiplied by the basis coefficient
0, where j 1,2,.. K is the basis size which determines
the maximum complex1ty of f,( ,,(u)), written in
Equation (13).

1,2, ()=220,p,,(,(w) .p=12...

j=1

P (13)

A large basis size causes overfitting, so a smoothing

penalty is used (a penalty matrix S that depends on the
basis function) to prevent excess wiggliness. Penalties
are added to the log-likelihood model and control
smoothness via the smoothing parameter y. The optimum
smoothing parameter is selected by minimum Generalized
__(n+d)ly-af

[(n+d)=er(4)]”

=b(z(u))(bT (z(u))b(z(u))+S) b (z(u)), (n+d)
is total number of quadrature points. Parameter
0, is estimated by maximizing the penalized log-
likelihood function in Equation (14) using penalized
iteratively re-weighted least squares (PIRLS),
given a link function z=g(u)=log(1(u;0))and
an initial value H9=g (y[o])(y y[01)+77[°]
W =diag(l/(var(y,)g’([z}(”)2)), then @ becomes in
Equation (15) (Wood 2017). The penalty measure of
z, (Zp (u)) is shown in Equation (16).

Cross Validation (GCV) v, where

P

l (6’)=logL(u;0)—%ZP:7p0 A (14)
p=1

argmax{"«/—H \/—b 49" +z7p ,)Tspep}(w)

J[72(= )] d(z, ()= fzé’p,bé’/(p
=J.(0prT (Z[ (u

=6S,6,
=[[# (2, (w)p(2, (u))d (2, ()]

For covariates such as distance, a cubic regression
spline can be used which is one-dimensional smoothing.
The cubic regression spllne function can implicitly

be written as f(z(u))= ZQb( (u))= ZHb( (u))-
Basis function b(z( )) with k knots, = (u), 2z (u)
, 0, :b(z’ (u)), and &, =b”( (u )) can be expressed in
Equation (17).

) (=, (w))
)b(z,(4))8,)d (2, ()))

(16)

b(z(u))=a;z(u)l9j+a;z( )49 +c, z( )5j+

C;Z(u)é‘jﬂ 5 z’ (u) < Z(u)g At (u)

z ( ) is the location of the knot point. a; a;,c; and
C are defined in Equation (18).

(17



a; =(2" (u)-2( )/hj;a;:(z(u)—zf(u))/hj
& =((z (w)==(w)) /= (=

h = ’“( ) ' (w)
& =((z(m)==" (w)) /o, = (
The penalty matrix for the cubic spline regression

basis is § = D"B D, D is the upper tridiagonal matrix
and B is the symmetric tridiagonal matrix (Wood 2017).

D, =1/h ;j=l..k=-2
D, ==1h~1/h, ;j=l..k=2
D, =1/h, ;j=l.k=2

(19)

:(h +h )3 1 j=L..k=2

B, ,
B, ,.=B.,,=h,6 ;j=1..,k-3

The cubic spline regression function can be written in matrb;
form, i.e. f—HO with, f =(f(z1 (). f (2,0 (u)))’
0=(0....0,.,) H  =b(z(u), j=1.k-1,i=1,.,
n+d,is the total number of quadrature points.

The estimated parameter @ in f is obtained by
minimizing Equation (20).

(y-HO) (y-HO)+y0"S0 (20)

The condition for Equation (20) to be minimum is that
the first derivative of Equation (20) is equal to zero,
so the estimated value for the  parameter is shown in
Equation (21).

6=(H'H+7S) H'y @1

A

f(z(u))=H(H'H+7S) H'y (22)

In mgev, model terms like s(x,bs="cr”,k=15) use this
basis (k defaults to 10 if not supplied).

SECOND-ORDER COMPOSITE LIKELIHOOD

Second-order composite likelihood is a parameter
estimation method to get a cluster parameter estimator x°
and @. The second-order composite likelihood function is
constructed from all pairs of data points # and v shown
in Equation (23), where # €X, v €Xx, and u #v.
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log CL(y) = zz

UEX VEX

w(u,v)

u#v

(log A9 (u,v;p) - logjj w(u,v) A% (u,v;y) dudvj
B B

w(uv)=1{u -] <R} e
w is a function of weight, R > 0 is the upper limit of the
correlation distance from the model. The result of the
derivation of Equation (23) concerning ¥ is as follows.

B (u,v; y/)
—1 L
o ogC ZZW uv (uvt//)
) (24)
ZZW u,v) (w)
o O e,
Kz(u,v,y/)—wi (u,v;p)

MODEL ASSESSMENT

The best model criteria in this study used the envelope
test and AIC (Akaike Information Criterion). The
envelope is the critical limit of the K-function statistical
test which validates the suitability of the point pattern
data to the point process model. The K-function plot of
the original data points will be compared with the results
of the Cauchy processes model simulation. A model is
said to be good if the original K-function data point plot
is in the K-function envelope interval. In addition, the
best model is selected based on the smallest AIC value
using the AIC formula in Equation (25).

AIC=-2I_ +2q (25)

Lmax is the maximum value of Equation (23) and
g is the sum of the effective degrees of freedom
(EDF) and the number of cluster parameters. The
total effective degrees of freedom of the smooth is
tr(a(br (z(u))Wb(z(u))+S, )7 b’ (z(u))Wb(z(u))}y
where W is the final weights used in IRLS iteration;
b(z(u)) is the model matrix for the smooth term; and

S, is the block diagonal matrix of 7,8,

RESULTS AND DISCUSSION

In this study, we detect spatial trends and clustering
effects of earthquake distribution in Sumatra. Modeling
and parameter estimation are done computationally using
the spatstat and mgev packages on R. Based on
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the results of the chi-square test and the inhomogeneous
K-function plot in (Choiruddin, Susanto & Metrikasari
2021)’s study, the distribution of earthquakes in Sumatra
is inhomogeneous and clustered when the radius is less
than 200 km. Thus, the Cauchy cluster point process
model was chosen to model the earthquake distribution,
because it performed best. Parameter estimation consists
of cluster parameters and geological factor parameters,
which are estimated using a two-step estimation. Research
by Choiruddin, Susanto and Metrikasari (2021) uses a
log-linear intensity model to estimate the parameters of
geological variables.

This study aims to compare the performance of the
Cauchy cluster process model with log-linear intensity
and log-additive intensity. We model earthquake intensity
A(u;0), which is the propensity for earthquakes to occur
at a certain distance from subduction and fault. First,
we use a log-linear intensity model, and the results are
presented in Table 2. The distance of an earthquake to the
nearest subduction and fault has a significant effect on
the intensity of earthquakes in Sumatra with an inverse
effect on the risk of an earthquake. The effect of the
subduction zone on the intensity of the earthquake is
greater than the fault effect. For every additional 100 km
of the distance from a location to the nearest subduction
zone, the risk of an earthquake at that location decreases
exp(-0.95)=0.39 or it can be said that the closer a location
is to the subduction zone, the risk of an earthquake at that
location increases by 1/exp(-0.95)=2.56.

The earthquake intensity model using the log-linear
model is as follows.

,i(u;é) = exp(4.79-0.64(z, ()~ 0.95(z, (u)))

Using the values of & and @ in Table 2, |B|=237.33
(100km)* the estimated number of mainshocks is 126
with a standard deviation of aftershocks around the
mainshocks of 13 km.

Then, we use the log-additive intensity model due
to the non-parametric estimation of earthquake intensity
in Figure 3 being far from the log-linear model. The
log-additive model can analyze complex non-linear
relationships flexibly through smooth functions. We
assume that the log-additive intensity model is as follows,
with £, (z, (u)) is represent the basis function i.c., the

cubic regression spline, for each covariate zp(u)
r=12

A(w0)=exp(6,+ £, (2 (u))+ /(= ()

The optimum number of knots and smoothing
parameters are selected based on the smallest AIC

value. The Cauchy cluster process model with intensity
using GAM which produces the smallest AIC value
(considering the modeling results using the number of
knots by default from the R, which is ten and considering
the location of knots based on peaks in nonparametric
estimates) is a model using three knots for each
geological factor. Using the GCV method (default in
mgcev), the optimum smoothing parameters estimation
is y=0.08677 for subduction and y=0.00118 for
fault. Then, by considering the estimation results of
smoothing parameters using GCV, we try to use another
smoothing parameter valuei.e.,y =0, 0.001, 0.01, 0.1, 1
. We choose the smoothing parameter which produces
the smallest AIC value in the Cauchy cluster process
model. The best model is to use the smoothing parameters,
y =0 for subduction and y = 0.1 for fault.

The locations of the knot points for the distance of the
earthquake to the fault are:

2 (u)=0.00329; 2> (u)=2.68399; = (u)=12.20169.

Details of the location knot points for the subduction
distance covariates are:

2 (u)=0.00031; z*(u)=3.16416; z*(u)=15.13639.

The results of modeling the distribution of
earthquakes in Sumatra using the Cauchy cluster
process with GAM on the intensity function are shown
in Table 3. Based on the values of I%, ®, and the area
of the observation window (237.33 (100 km)? ), the
estimated number of mainshocks is 114 with a standard
deviation of aftershocks around the mainshocks of 14
km. The earthquake intensity function model formed
is as follows,

A(u;8) = exp(-4.47-0.88, (= (u))-28.87h,

(z,(u))-2.21b,,(z, (u))-17.54b,, (2, (u)))

The basis function on the covariate of the earthquake
distance to the nearest fault which refers to Equation
(17) is as follows.

/(2 (u))=-0.88b,, (2, (u))—28.87b,, (=, (u));

for 0.00329 < z, (u) < 2.68399;

(2.68399~z (u))
b, (= (")):W

(z,(u)-0.00329)
2.68071

£(0.00329)+

£(2.68399)+



(2.68399~z, (u))
W—(2.68071)(2.68399—zl (u))

- < £7(0.00329) +

6

3

(= (#)-0.00329)

(2.68071) ~(2.68071)(z, (u)~0.00329)

- 4 £7(2.68399)

£(0.00329)=-0.9911650 ; f(2.68399) =0.080639775 ;
/"(0.00329)=0; £"(2.68399) =—0.1031343.

for 2.68399 < z, (1) <12.20169;

(12.20169 -z, (u))
9.51769

blyz(z1 (u))=

£(2.68399) +

(2, (u)—2.68399)

"(12.20169
9.51769 /( )+

(1220169, (u))’

931769 -(9.51769)(12.20169 -z, (u))}

6

(= (u)-2.68399)
(9.51769)

-(9.51769)(z, (u)—2.68399)}

- 1"(12:20169)

£(2.68399)=-0.1053056 ; f(12.20169)=0.9879381
£7(2.68399) = 0.0274945 ; /"(12.20169) = 0

While the basis function for the subduction covariate is

as follows.

(2, () =—2.21b,, (2, (u)) =17.54b,, (2, (u)));
for 0.00031 < z, (1) <3.16416;

b, (z(u))= Wf@ﬂo%lﬁ

(2 (u)~0.00031)

3.16416
3.16385 f( )+

(3164162, ()’

316385 —(3.16385)(3.16416—22(u))}

6
[ (2, ()-0.00031)
(3.16385)

~(3.16385)(z, (;;)—0.00031)1

; £7(3.16416)

1"(268399) +

£7(0.00031)+
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£(0.00031)=-0.985831 ; f(3.16416)=0.1175359
£"(0.00031)=0 5 /"(3.16416) = —0.07304853.

for 3.16416 < z, (u) <15.13639

(15.13639 -z, (u))
bz (0) =0y

(z,(u)-3.16416)
11.97223

£(3.16416) +

£(15.13639) +

(15.13639~ z, (u))

—(11.97223)(15.13639 -
) omis sen )

S /"(3.16416)+

(2, (u)-3.16416)
(11.97223)

—(11.97223)(z, (u)—3.16416)}

. £7(15.13639)

f(15.13639)=0.9837697 ; f(3.16416)=—0.1196773
f"(15‘13639):0 ; /7(3.16416) =0.01738952.

The goodness of the Cauchy cluster process model
in modeling earthquakes in Sumatra can be seen from
the AIC value and the K-function envelope plot. The AIC
value of the Cauchy cluster model is presented in Table
4. The AIC value in the Cauchy cluster model with the
log-additive intensity model is smaller than the log-linear
model. Based on the K-function envelope (Figure 4), the
Cauchy cluster process with the intensity function using
GAM is the best model because the black line in the GAM
model is smaller that comes out of the grey area (Figure
4(b)) than the log-linear model. The black line exits the
envelope interval around the values of 60 < » < 180 km
and » > 320 km. Thus, the best model for modelling the
distribution of earthquakes in Sumatra is the Cauchy
cluster process with a log-additive intensity model.

The results of the prediction of earthquake intensity
in Sumatra using the Cauchy cluster process with
covariates of subduction and fault are shown in Figure
5, in which the brightest colour is an area with very high
earthquake intensity. Earthquakes in Sumatra tend to be at
high risk in areas which are flanked by subduction zones
and faults, namely in the west of the island of Sumatra
which borders the Indian Ocean and is predicted to be
highest in the northern region of Sumatra. Aceh has the
highest risk of earthquakes compared to other areas in
Sumatra because the upper area of Sumatra is close to
subduction zones and faults such as Weh, Jaboe, Seulawah
Agam, Peuet Sagoe, and Geureudong. Intensity prediction
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using a log-linear model only captures high intensity in GAM more clearly capture the effect of subduction and
the North Sumatra region where subduction and fault fault on earthquake intensity as seen in Figure 5(b) the
confluence, while the intensity in Nias and Mentawai Simeule, Nias, and Mentawai areas are brighter than in
areas is small. The predicted results with intensity using  Figure 5(a).

TABLE 2. Parameter estimation in Cauchy cluster process model with log-linear intensity

Parameter Estimate S.E. Z-value
K 0.53
@ 0.13
Intercept (éﬂ) 4.79 0.48 9.98
Earthquake distance to fault (4, -0.64 0.16 -3.95
Earthquake distance to subduction (éz) -0.95 0.16 -5.87

TABLE 3. Parameter estimation in Cauchy cluster process model (log-additive intensity)

Parameter Estimate S.E. Z-value

x 0.48

) 0.14
Intercept (9‘ ) -4.47 2.82 -1.59
( A“) -0.88 0.82 -1.08

Earthquake distance to nearest fault
(é!.z) -28.87 13.79 -2.09
(éu) -2.21 0.84 -2.63
Earthquake distance to nearest subduction

(é“) -17.54 17.73 -0.99

TABLE 4. Model assessment for Cauchy cluster process

Intensity function model L AIC

max

Log-linear 947756 -1895502

Log-additive 955217.7 -1910420
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FIGURE 4. Envelopes inhomogeneous K-function for Cauchy cluster process with (a) Log-
linear intensity model, (b) log-additive intensity model
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FIGURE 5. Earthquake intensity prediction map in Sumatra using Cauchy cluster model with (a)
log-linear intensity, (b) log-additive intensity (GAMs approach)
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CONCLUSIONS

Visually, nonparametric estimation of earthquake
intensity shows that the effect of the geological variables
is far from log-linear. As an alternative to avoid the
linearity assumption, we use the log-additive model
in modeling the effects of subduction and fault on
earthquake intensity. Cauchy cluster process model with
the log-additive intensity model gives better performance
in terms of AIC value and K-function envelopes. The
estimated number of mainshocks due to the clustering
effect is 114 with aftershocks spreading 14 km around the
mainshocks. Areas in Sumatra which are predicted to have
a high risk of earthquakes are the areas in the upper part
of Sumatra (the provinces of Aceh and North Sumatra),
and the western part of Sumatra which borders the Indian
Ocean (Mentawai, Nias, and Simeulue) and Bengkulu.
Suggestions for further research are to improve the model
that considers parametric or nonparametric terms, the
appropriate basis function, and interactions between
geological variables using tensor product smooths. One
would also consider the extension of Epidemic Type
Aftershock Sequence (ETAS) which takes into account
the effect of geological variables through the intensity
with a log-additive form.
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