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ABSTRACT

This paper devotes to constructing an approximate analytic solution for the hyperchaotic finance model. The model
describes the time variation of the interest rate, the investment demand, the price exponent, and the average profit
margin. The multistage homotopy analysis method (MHAM) and multistage variational iteration method (MVIM) are
utilized to generate the analytical solutions. The solutions are presented in terms of continuous piecewise functions
without interpolation. These procedures prove their applicability for this kind of model due to rapidly convergent series
solutions with easily computable terms, iterates, and efficiently obtained by applying it over multiple time intervals. We
also provide the convergences theorem of the MHAM. Numerical comparisons are displayed with the results obtained by
MHAM, MVIM, and the fourth-order Runge-Kutta method to demonstrate the validity and effectivity of this procedure.

Keywords: Finance system; hyperchaotic system; multistage homotopy analysis method; multistage variational iteration
method

ABSTRAK

Kertas ini membincangkan pembinaan penyelesaian analitik anggaran bagi model kewangan hiperkalut. Model ini
melibatkan variasi masa kadar faedah, permintaan pelaburan, eksponen harga dan margin untung purata. Kaedah
analisis homotopi multitahap (KAHM) dan kaedah lelaran variasi multitahap (KLVM) dibina dan digunakan untuk
mendapatkan penyelesaian yang berbentuk fungsi cebisan selanjar tanpa interpolasi. Kemampuan kedua-dua kaedah
ini terbukti berhasil untuk model seperti ini kerana penyelesaian sirinya didapati cepat menumpu dan sebutan dalam
penyelesaiannya mudah dihitung di dalam lelaran. Ketepatan penyelesaian dapat diperoleh melalui penerapannya dalam
beberapa selang masa berganda. Kertas ini turut memperuntukkan teorem penumpuan KAHM. Perbandingan berangka
bagi keputusan yang diperoleh daripada KAHM, KLVM dan kaedah Runge-Kutta peringkat keempat dipaparkan untuk
menunjukkan kesahihan dan keberkesanan kedua-dua kaedah baharu ini.

Kata kunci: Kaedah analisis homotopi multitahap (KAHM); kaedah lelaran variasi multitahap (KLVM); sistem
berkekalutan hiper; sistem kewangan

INTRODUCTION behavior entails that the financial system in question is

There was economic chaos in 1985, which had a huge inherently indefinite. Another paradigm chaotic finance
permanent impact on the current Western economy leading ~ system (Ma & Qhen 2001) was made' PUI.?HC in 2001.
to disorder in the current economic system (Grandmont ~ The system depicts the dlfferer.lces in time of three
1985). It should be remarked that the chaotic economic ~ State variables: Interest rate, x, investment demand y,
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and price index z. The variables that influence changes
in x is contradiction of the investment market, the
difference between savings and investment, and the price
reorganization. The rate of change y is relative to the
level of investment, and it is proportional to the inversion
with investment costs and rates of interest. Changes in
z, on the one hand, are controlled by a contradiction
between supply and demand on the commercial market
and influenced by inflation rates. As mentioned in Yu
et al. (2012), in 2007, the US subprime mortgage crisis
triggered a global economic downturn, and the financial
system once again showed a butterfly effect and a chaotic
effect. The system is investigated in this backdrop.
Because this global economic crisis has the potential to
trigger severe depression, this chaotic financial system
reflects the economic phenomenon. Hence, the factual
background and source of the chaotic financial system
become hyperchaotic finance system. The hyperchaotic
finance model adopted from a model stated in Rossler
(1979) followed the four-variable oscillator. It contains
but one nonlinear term of quadratic type (xz) on its right-
hand side. Wu and Chen (2010) built a hyperchaotic
financial system that described the time variations of
four state variables: the interest rate x, the investment
demand yp, the price exponent z, and the average profit
margin w. It is well known that these factors affecting
the interest rates are related to investment demand and
price index and the average profit margin and the average
profit margin as well interest rate. In this work, the four-
dimensional hyperchaotic finance system investigating
is expressed as follows (Cao 2018)

x=z+y—a)x+w, (1)
y=1-py—x? 2
Z=-x—yw, (€)

W = —uxy + ow, 4)

where ¥ =dv/dt; a > 0 represents a saving amount;
> 0 denotes investment cost per year, and y > 0 represents
the elasticity of commercial market demand, and the end
L@ are new positive constant parameters (Kocamaz et
al. 2018). We fix a =09, =02, y=1.5, u = 0.2 and
select ¢ as the governing parameter according to the
two criteria in Cao (2018). In the case of a = 0.9, f =
0.2, y =1.5 and ¢ = 0.17, the Lyapunov exponents that
determined by Wolf procedure (Ma & Chen 2001), are
0.034432, 0.018041,0 and -1.1499.

Research on the hyperchaotic finance system
is in the attention of researchers. Jahanshahi et al.
(2019) published a dynamic and entropy analysis of a
hyperchaotic financial system with coexisting attractors.
Xu et al. (2020) analyzed a controlled hyperchaotic
finance system with energy-bounded disturbance
under the delayed feedback controller. Chen et al.
(2021) designed a series of controls to realize global
asymptotic synchronization and controllers to realize
global exponential synchronization to synchronize the
hyperchaotic finance system fully.

Finding an efficient method for hyperchaotic
systems has been undertaking active researchers as
Alcin (2020), Emiroglu et al. (2021), He et al. (2019),
and Rangkuti and Alomari (2021). Since exact solutions
to the Hyperchaotic system are challenging, analytical
and numerical methods must be applied. For example,
RK4 is one of the most used methods for those kinds the
systems (Alcin 2020; Emiroglu et al. 2021; Rangkuti &
Alomari 2021). Numerical-analytical methods with a
multistage approach become an effective way to solve
nonlinear problems such as the multistage optimal
homotopy asymptotic method (MOHAM) (Shah et al.
2020), the multistage differential transformation method
(MDTM) (Aljahdaly et al. 2021), and the multistage
successive approximation method (MSAM) (Prabowo &
Mungkasi 2021).

Now, it is essential to find the powerful and
precise method for solving hyperchaotic systems.
Alomari et al. (2009) suggested homotopy analysis
method with a multistage approach. The technique
has several interesting features that are the auxiliary
convergent parameter # which can enlarge the radius
of convergence of the series and the solution from [7,, 1)
will be derived by subdividing this interval into [¢, ¢)),
[7,1,), ..., [t _,,t] and applying the HAM solution on each
subinterval. The initial approximation in each interval
is taken from the solution in the previous interval. It
is the advantage of using MHAM. This method is very
accurate for long intervals and past in calculation. And
it was proved by researchers investigate the method in
recent years, such as Dinesha et al. (2018) and Rangkuti
and Alomari (2021).

In this work, we present algorithms based on
MHAM and MVIM to find approximate analytic solutions
for hyperchaotic finance system. By selecting proper
auxiliary linear operators and auxiliary convergent
parameters, we can derive accurate solutions using
MHAM. The generated analytic solution is compared with
RK4 solution and demonstrates the solution’s efficiency.



Another way to prove the powerful MHAM, we also
compare the MHAM solution and Multistage variational
iteration method (MVIM). The MVIM constructed
a correction functional with a general Lagrangian
multiplier running with a multistage technique. The
MVIM successfully solved various applications (Goh et
al. 2009). This paper is the first work that generates the
approximate analytic solution for the hyperchaotic finance
system to the best of our knowledge.

MATERIALS AND METHODS

In this section, we introduce the MHAM and MVIM for
the hyperchaotic finance system.

MHAM METHOD

In this part, we construct the MHAM for the hyperchaotic
finance system using the base function {#* | n > 0}. So,
it is convenient to pick out the following initial guesses
of the solution

wo(t) = ¢4 (5)

xo(t) =c1, yo(t) =cz  2Z(t) = c3,

The based function leads to the linear operator

99(t; q) (©6)

LpE ] ==

the initial condition can obtain the constant 4 for the
equation L[A4] = 0. Defining the embedded parameter ¢
€ [0,1], auxiliary parameters /# < 0, and the zeroth-order
deformation problems

A= gL[E(E g) — x(O] = gh N[9(8 9), 2(6; @), w(t; 1, (7)
A - Lt g) — yo(O] = gh Ny [2(t; 0),9(8 @], (8)

(1 = @)L[2(t; q) — 2o(D)] = qh N,[2(t; @), W(t; q)], )

(1= qL[w(t; ) —wo(t)] = g N, [2(t; @), §(t; @), W(t; q)]’(IO)
with the conditions
259 =c¢, YE5q9 =cy 2(t559) =c3, (11

w(t;q) =c,

and the non-linear operators labeled as N, N, N and
N, as ’
N9t ), 2(t; @), w(t; q)]

_0x(t;q)
ot

(12)
—2(t;q) — (F(t; q) — a)x(t; q) — W(t; q),

1907

29(t; 9) . R
o~ LHBIE D) +22(6a)(13)

N, [2(t; @), 9(t; q)] =

02(¢;
N[2(t; ), 2(t; )] = Zf;t 2 +2(69) +yvi(Gq9),  (14)
ow(t;
NA 205 0), 965 0), (2 )] = o D) (15)

+uxk(t; Yt q) + ew(t; @),

For ¢ = 0, the Equations (7)-(10) have the solutions

2(t;0) = xo(t), P(E;0) =yo(t), 2(t;0) = z,(t),
W(t; 0) = wy(0), (16)

and for ¢ = 1 we have

(1) =x(), 31 =y(),

w(t; 1) = w(t).

A1) =20, (o)

When ¢ escalates from 0 to 1, then X(t; q),y(t;q),
2(t; @) and W(t; @) vary from the initial conditions to
the exact solutions. The Taylor expansion of %, ¥, Z and
w with respect to g gives

R0 = %o+ ) xna™, (18)
m=0
9(tq) =yo + Z Ymd™, (19)
m=0
HED =20+ ) 2ma™, (20)
m=0
DR =wo+ ) Wnd™, @)
m=0
. . 1 0™x(t;q) 1 9"m9(t;q)
in which x,,(t) = iy vy () = ek el
1 a™M2(t;q) 1 0™Mw(t;q)
Zm(t):% aqm ’ Wm(t) = ﬁ aqm ‘Hencea
employing equations (18)-(21) we obtain
(O =%+ ) xn(®), (22)
m=1

y(t) = yo + Z Y (D), (23)
m=1
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z(t) = zy + Z Zm (1), o4
m=1

w(t) = we + Z Wi (8.
= (25)

Apply the operator
1 0™[.]

m! dg™

q—0

on to the equations (7)-(10), then we have the m-th order
deformations

L[xm ) — Xm xm—l(t)] =hRy @®), (26)
Lym () = Xm Ym-1 (O] = R, (1), (27)
L[Zm ) — Am Zm—l(t)] =h R, ®), (28)

LWy, () = Xm W1 (O] = ARy (£),  (29)
and

xm(t*) =0, ym(t*) =0,
wn(t) =0

Zn(t*) =0, (30)

are the initial conditions. The R,,, given by

m-1

RL() = Aot — Zm—1 — Z YiXm-1-i T @Xm-1, (31)
i=0

ER%(t‘) =VYm-1— (1 - Xm) + BYm-1-

m-1 (32)
+ XiXm-1-i»
i=0
RZ(t) = 2y + X1 + VZm—1, (33)
m-—1
R () =Wppog + Z Xi¥m-1-i T PWm-1. (34)
i=0

The linear non-homogeneous equations (26)-(29) can
easily solve subject to the conditions (30). And we have

x1(t) = ¢; + 0.9 ¢y it — ¢ c it — c3ht — ¢ hit,

y1(£) = c; — At + ¢;2ht + 0.2 ¢, t,

Zl(t) = C3 + lelt + 1.5C3ht,
Wl(t) = C4_ + 0.2C1C2ht + C4ht(p,

x,(t) = ¢; + 1.8¢c, At — 2¢,c ht — 2¢c3ht — 2¢4ht
+ 0.9¢c,h%t — c;c Rt
— c3h%t — ¢, h%t + 0.405 ¢, A%t? — 0.5¢3h%t?
— 1.1 ¢;c, h%t?
+ 0.5¢;c2h?t? — 1.2¢c3h%t? + 0.5c,c3h%t?
— 0.45c,h?t?

+ 0.5¢c,c,h%t? — 0.5¢,h%t2 ¢,

y.(t) = c; — At + c2ht + 0.2c, At
— h(t — cit — 0.2¢c,t + At — cZht — 0.2c, it + 0.1At?

— c2ht? — 0.02¢,it? + c2cyhit? + cic3hit? + ¢y ht?),

Zz(t) = C3 + chht + 3C3ht + lelzt + 1.5C3h2t +
+ 1.2¢, h?t?
- 0.5C1(:2fl2t2 + 0.625C3h2t2 - O.5€4h2t2,

wy(t) = ¢4 + 0.2¢c,cAt + cu it

+ 0.1A(2c; ¢t + 2c1 Bt — ¢ At? + c3ht? + 1.1c,c,At?
+ 10c,p + 10, Ait?p?).

Now the n-th order of the HAM solution given by
X=3oxi(®),Y =30, Z =Xz (1), W = X w;(t).
The HAM solution can be generated if = 0. If the
range of ¢ is large, then HAM solution is not accurate
enough. For that, we apply the MHAM. To do that, we
select the range of 1€[0,100], then we divide the interval
into the subintervals [0, ¢), ..., [¢,, ¢,), ..., [¢,.,, 100],
where -t = At = h is the step size, and we calculate
the solution at each subinterval. So, " will go from #,= 0
to ¢, = 100-h by step size Az, the new initial conditions
for each step interval can be determined by the continuity
of the solution (i.e. the solution on the interval [z, , 1)
has initial value x(z,,) = c,". Therefore, the error will be
reduced, and the choice of the new initial conditions will
influence the consistency of the solution. Consequently,
it is obtaining a continuous solution for the hyperchaotic
finance system.



MVIM METHOD
In this subsection, we introduce the solution by MVIM.
For that, we build the following correction functional to
the hyperchaotic Finance model:

t
5ia® = 5+ [ WORME - 70) - (F&AE 39)
"
—ax;(s) —w;(s))] ds,
t
Vier(®) = yi + | () [yi(s) — 1+ BF:(s)
t (36)
+ x2(s)] ds,

t
zi1 (D) = 2+ | 23()[2;(s) + X:(s) + yZi(s)] ds (37)

t*

t
Wisr (8) = w + j MO —kEERE)
3

+ pw;(s)] ds,

where 4(¢), i = 1,2,3,4 are the general Lagrange
multipliers, and x,y, z, and w,. The restricted variations
give 0% (0) = dy(0) = 6z (0) = 6w (0) (Inokuti et al. 1978).
Taking the variation with respect to the independent
variables X, Y,z and w, we have

Oxi41(t) = Ox;

+68 | 1()[ri(s) — Z(s)
e (39)

— (7i()2i(s) — ax;(s) — Wi (s))] ds,
t

0yip1(t) =6y + 6 | 2()[yi(s) — 1
v (40)
+ Byi(s) + %7 (s)] ds,
6241(t) = 62, + 6 t/13 ($)[2:(s) + %;(s)
: (@1)
+vZ(s)] ds,

t

w1 (t) = 6w; + 6 t*/Ll-(S)[Wi(S) “2)

— uxi(s)F:i(s) + pw;(s)] ds.
Making each of the above correction functional (39)-

(42) stationary, and ox(¢") = 0, oy (¢") = 0, dz(¢") = 0 and
ow(t") = 0, then, we obtain the four sets of stationary
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conditions for A(¢), i = 1,2,3,4. At this point, the
Lagrange multipliers can be identified as 4,(s) = e“*,
A(8) = &0, A (s) = &) and 1, (s) = e, Thus, the
iteration formulas are

t
Xin @ =i+ | e COLs) - 7() 3)

*

— (5:()2:(s) — ax;i(s) — Wi(s))] ds,

t
Vit (®) = i + f ePGD,(s) — 1

*

(44)
+ BFi(s) + X7 ()] ds,
t
7a® =7+ | O[5 + 1)
' (45)
+vZ;(s)]ds
t
Wit (t) = w; + f eHS=ONW;(s) — ux (s)F:(s)
(46)

+ow;(s)] ds,

For i =0, we have

N (ea(t—t*) _ 1) [ci(cy + @) + ¢35 + ¢4l (47)
a )

x1(0) = ¢

() = 5 — (c?2 + Bc, — 1;(33&—1:*) — 1), (48)

(c1 +¢38) (e8¢0 — 1)

7 (t) =3 — 5 (49)
wi(t) =cy — (e(p(t_t*) — 1)(61629 i C4(p)' (50)
P

In the same way, we can generate the n-th order of the
approximation, which is defined as X =x (#), Y=y (1),
Z=2z (1), W=w, (#). Follow the same strategies in the
above section for dividing the interval and approximate
the initial conditions from the previous interval. Then
we have the multistage VIM.

ERROR ANALYSIS

Since the exact solution of the finance system is unknown
yet, we present the following residual error
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RE,=X—-Z-(Y—-a)X—-W, (51
RE, =Y ¥ BY + X2, (52)

RE, =Z+X+yW, (53)

RE,, = W + uXY + oW, (54)

where X, Y, Z, W and X,Y,Z, W are the MHAM or
MVIM solution and its derivatives with respect to ¢ of
equations (1)--(4). We remarked that the magnitude of
the MHAM and MVIM solution errors depends on the
approximation order and the duration of the subintervals.
Since the solution is analytical at each step, the residual
error can be easily obtained at each time stage. We will
find the residual error of every step of the time by applying
MHAM and MVIM.

CONVERGENCE

In this section, we introduce the following convergence
theorem of the proposed algorithm.

Theorem 1 Let the function w(t)EC"™ where
o(t):[c,d] =R with W = span{1,(t-t, ),(t-t))’, -, (t-1,)"}.
If the convergent series &, (t) = Y=o Ci(t — to)'is the
best approximation of w(t) out of W with a radius of
convergent at least 1, then we have the following mean
error bound

a h2n+3
— @ <
llo(®) wn||z—(n+1)!\]2n+3,

where @ = max |a>(”+1)(r)|, andh=(d—-c) <1
1€(c,d)

(55)

Proof 1 The n-th Taylor polynomial of w(¢) about
t,Elc, d] is

n .
t—ty)t .
a0 = Y 0 o),
i=0 '
and its error bound given by

(t _ to)n+1
(n+1) |

— w(n+1) (T)

w© Y 00,

i=0

for some t € (¢, d).

Since @y (t) = Yj—o w;(t),is the best approximation of

o(f) so we get

d _ 4 yn+1\2
lao(t) — Bu(O)I2 = f (w(”“)(T)%) a

2 d

2

- [(n+ 1)!?2(271 +3) [(d = tg)?™*3 — (c — tp)?™*3),

where ¢ = max |w("+1)(1')|. For ty = ¢, we have
1€(c,d)

a?(d — c)?™+3
[(n+ D!22n + 3)

. a h2n+3
lw(t) — @, (Oll2 < m\[;,

where & =d - c. The above norm depends on the number
of terms #n and the step size & € (0, 1), if n — o we get,

lw(®) — &, I3 <

lim [lo(6) = Gy (®)ll, = 0. (56)
Similarly, this theorem is valued for for x(¢), y(¢), z(¢),
and w(7).

RESULTS AND DISCUSSION

We compute the MHAM and the MVIM solution for the
hyperchaotic finance systems and compared the results
by RK4, which is built-in Mathematica package. For
that, we fix the values of the parameters a = 0.9, f=0.2,
y=1.5,u=0.2and vary ¢ as ¢ =0.17, 0.5, 1.0, 2.0. We
also fixed the initial conditions x(0) = 5, y(0) = 2, z(0)
= -6 and w(0) = 4, which were taken by Cao (2018). In
this work, the range of ¢ is chosen for #€[0,100]. The
calculations are made with the 3-terms MHAM and the
31 jteration MVIM solutions.

MHAM is distinguished from other semi-analytical
approaches by a nonzero auxiliary parameter %, which
allows the development of a family of solutions. As a
result, depending on 7, the convergence region and the
rate of solution series can be adjusted. By graphing the
h -curves, which are horizontally parallel to the ¢ axis,
one can quickly determine the appropriate value of 7%
to use. We decided to use 7-terms in the MHAM series
solutions. The convergent region of 4 is presented by the
h -curves in Figure 1,
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From Figure 1, the curves parallel to ¢ axis in #€(-
1.2,-0.8). For this work, we choose / = -1.
Next, Figure 2 shows the phase portraits of the

FIGURE 1. The A-curves for 7-terms MSHAM for

and ¢ =0.17.

p=0.17

hyperchaotic finance system with different variables and
given parameters. Here,a=0.9,=0.2,y=1.5,u=0.2

FIGURE 2. Phase portraits using 3-term MHAM in 0 <7< 100 for a =
09,=02,y=15,4=0.2and ¢=0.17
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Figure 2 shows the strange attractor trajectory of the
hyperchaotic finance system in (x, y, z)-space, (X, y, w)-
space, (v, z, w)-space, and (x, w, z)-space, respectively.

It is clear that the attractor is chaotic. Next, Figure 3
presents a residual error of the average profit margin
w(t) for various values of ¢ along the period 0 <¢ < 15.

5e-009
w=017 ——
@w=05H------ b
4e-009 - @ =1.0 oo !
=20 -———-- '
3e-009 1 ‘
3 :
53] 2e-009 A '
~ !
1e-009 - .
//\\\ ; ,
01 <~ = ==z St
—18—009 T T T T T T
0 2 4 6 8 10 12 14

FIGURE 3. Residual error of the average profit margin using 3-terms of
MHAM for various values of ¢, i.e., p =0.17,0.5, 1.0 and ¢ =2.0

From Figure 3, by decreasing the value of ¢, the
residual error of average profit margin also reaches zero,
which means MHAM is accurate to solve hyperchaotic
finance system. Furthermore, the accuracy of MHAM
can also be seen in Table 1. Table 1 presents the residual

error of x, y, z and w using 3-terms MHAM and 3 iteration
MVIM. From Table 1, the residual error of MHAM is
smaller than the residual error of MVIM. It means that
only using 3-terms of MHAM,; the good approximate
solutions have been obtained.

TABLE 1. Residual error of 3-terms MHAM and 3rd iteration MVIM

MHAM MVIM

t RE, RE, RE. RE RE, RE, RE. RE

5 -1.514E-12  -5.022E-12  -3.192E-12 -1.821E-12 -1.057E-07 3.056E-08  -3.171E-08 2.908E-07
10 2.798E-12 1.091E-12 9.215E-12 -3.164E-15 -1.278E-07 1.296E-08  -2.521E-08 2.926E-07
15 -7.674E-12 3.025E-12 -1.871E-12  2.603E-12 -1.210E-07 1.614E-08  -3.670E-07  2.787E-07
20 5.820E-11 3.839E-12  -1.628E-11 -2.036E-11 -8.331E-08 5.002E-09  -1.071E-07 2.022E-07
25 1.045E-10  -2.683E-11 -2416E-11  -1.262E-11 -4.317E-07  -3.265E-07 9.333E-07  4.663E-08
30 -5.969E-09 2.908E-10 8.346E-10 1.322E-09 -1.582E-06  -1.025E-06  -3.218E-07  3.113E-07
35  -7.054E-11 4.825E-10 1.611E-10 5.715E-11 -6.281E-07  -8.088E-09  4.371E-07  3.933E-07
40 1.634E-10  -3.371E-10 2.514E-10 -6.569E-12 -8.045E-07  -8.461E-08 8.962E-07  -1.731E-07
45  -1.091E-09 7.401E-10 1.028E-10 2.041E-10 -2.137E-07  -3.549E-07  -5.746E-07 9.3E-08
50  -2.219E-10 1.271E-09 5.444E-10 1.012E-10 -1.380E-06  -4.015E-07 8.446E-07  5.384E-07




The other way to show the accuracy of MHAM,
we compare the approximate solution using MHAM and
MVIM with the numerical solution using the fourth-order
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Runge Kutta (RK4) with a step length of 4= 0.001. Table
2 presents the absolute error between 3-terms MHAM, 3™
iteration MVIM and RK4 for ¢ = 0.17 between MHAM
and RK4 methods.

TABLE 2. The absolute error of 3-terms of MHAM and RK4, and 3 iteration MVIM and RK4 for ¢ =0.17

MHAM MVIM
t Ax Ay Az Aw Ax Ay Az Aw
5 1.099E-09  5.729E-09  3.551E-09  2.077E-09  1270E-07  5.128E-07 2.582E-07 7.373E-08
10 2.482E-09 2732E-09  1440E-11  1.615B-09 6.009E-08  1222E-07  4.004E-08 2.751E-07
15 1.148E-08 1.684E-08  7.672E-08  2.332E-08  1420E-07  5.937E-07  1.0563E-07  5.831E-07
20 3.559E-08 8.708E-08  1.328E-09  1.288E-07 8.670E-07  1432E-06  4.413E-07 3.013E-07
25  1.446E-07 4.328E-07 9.801E-08  1.608E-07 2372E-06  3.588E-07  2.129E-06 1.414E-07
30 1495E-06 7.196E-07  5.776E-07  3.659E-07  1.843E-06  9.935E-07 9.461E-07 1.199E-06
35 1.395E-07 6.768E-08  3.556E-08  2496E-07  2.114E-06  9.458E-07 3.219E-07 8.087E-07
40 5.149E-07 8.084E-07  5.073E-07  1.622E-07  1.086E-06  1.399E-06  3.561E-07 1.6E-06
45 1302E-06 2.960E-07  5.597E-07  2.508E-07 1299E-06  1.065E-06 1.216E-07 1.317E-06
50  6.544E-08 2478E-07  1.888E-07  3.757E-07  1.435E-06  5.058E-06  8.951E-07 1.333E-06

From Table 2, the absolute errors of MHAM are less
than 10”7 while the absolute errors of MVIM are less then
10 in interval ¢t€[5,50]. It means that MHAM is more
accurate than MVIM for solving hyperchaotic finance
system. To study the effect of the numbers of terms in
MHAM, we compare the infinite norm of the residual
error in the interval [1.10], using different number of
terms in Table 3. It is clear that when the number of terms

increases, the magnitude of error decreases. Moreover,
the effect of the / on the solution can appear when we
calculate the {||RE_ || RE, ||, RE. ||, [[RE, ||}, using
3 terms of MHAM and # = 0.01 which gives 1.10E-03,
2.11E-03, 1.720E-04, 5.15E-04, respectively. Finally, we
noted that the standard HAM is convergent for a small
interval, then we can start MHAM by choosing 4 from
this interval.

TABLE 3. Infinite norm of the residual function for MHAM solution using different number of terms in the interval [0,10] with
»=0.17and 2= 0.001

Number of terms IRE ||, IRE_ |, IRE_|I,, IRE ||,
2 2.166E-04 2.1280E-04 1.8978E-05 8.8570E-06
3 1.0978E-06 2.1295E-06 1.7211E-07 5.1596E-07
4 8.6578E-09 1.0367E-08 6.4061E-10 1.1447E-09
CONCLUSIONS

MHAM obtains a continuous solution in this function for
the hyperchaotic finance system. The updated approach

has the benefit of having an analytical model of the
solution within each time interval that is not feasible in
other numerical techniques such as MVIM. The residual
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error and absolute error are defined and calculated for the
solution of subintervals. We should also mention that the
MHAM solutions were computed using a straightforward
algorithm that did not require any perturbation or
special transformations, ¢, i.e. ¢ = 0.17, 0.5, 1.0, and
@ = 2.0. The MHAM is more accurate than MVIM and
also Interpretation via Mathematica package for solving
hyperchaotic finance system. The MHAM can be an
alternative method for other complex systems.
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