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ABSTRACT

Mortality studies are essential in determining the health status and demographic composition of a population. The 
Lee–Carter (LC) modelling framework is extended to incorporate the macroeconomic variables that affect mortality, 
especially in forecasting. This paper makes several major contributions. First, a new model (LC-WT-ANFIS) employing 
the adaptive network-based fuzzy inference system (ANFIS) was proposed in conjunction with a nonlinear 
spectral model of maximum overlapping discrete wavelet transform (MODWT) that includes five mathematical 
functions, namely, Haar, Daubechies (d4), least square (la8), best localization (bl14), and Coiflet (c6) to enhance the 
forecasting accuracy of the LC model. Annual mortality data was collected from five countries (Australia, England, 
France, Japan, and the USA) from 1950 to 2016. Second, we selected gross domestic product (GDP), unemployment rate 
(UR), and inflation rate (IF) as input values according to correlation and multiple regressions. The input variables in this 
study were obtained from the World Bank and Datastream. The output variable was collected from the mortality rates 
in Human Mortality Database. Finally, the LC model’s projected log of death rates was compared with wavelet filters 
and the traditional LC model. The performance of the proposed model (LC-WT-ANFIS) was evaluated based on mean 
absolute percentage error (MAPE) and mean error (ME). Results showed that the LC-WT-ANFIS model performed 
better than the traditional model. Therefore, the proposed forecasting model is capable of projecting mortality rates.
Keywords: ANFIS; forecast; macroeconomic; mortality; Lee–Carter model; wavelet

ABSTRAK

Kajian kematian adalah penting dalam menentukan status kesihatan dan komposisi demografi populasi. Rangka kerja 
pemodelan Lee–Carter (LC) diperluaskan untuk menggabungkan pemboleh ubah makroekonomi yang mempengaruhi 
kematian, terutamanya dalam peramalan. Sumbangan utama kertas ini adalah seperti berikut. Pertama, model baharu 
(LC-WT-ANFIS) yang menggunakan sistem inferens kabur berasaskan rangkaian adaptif (ANFIS) telah dicadangkan 
bersama dengan model spektrum tak linear bagi transformasi gelombang kecil diskret bertindih maksimum (MODWT) 
yang merangkumi lima fungsi matematik, iaitu, Haar, Daubechies (d4), least square (la8), best localization (bl14) dan 
Coiflet (c6) untuk meningkatkan ketepatan ramalan model LC. Data kematian tahunan telah dikumpulkan dari lima 
negara (Australia, England, Perancis, Jepun dan Amerika Syarikat) dari tahun 1950 hingga 2016. Kedua, keluaran dalam 
negara kasar (GDP), kadar pengangguran (UR) dan kadar inflasi (IF) dipilih sebagai nilai input mengikut korelasi dan 
regresi berganda. Pemboleh ubah input bagi kajian ini diperoleh dari World Bank dan Datastream, manakala pemboleh 
ubah output dikumpulkan daripada kadar kematian dalam Human Mortality Database. Akhir sekali, unjuran log kadar 
kematian model LC dibandingkan dengan penapis gelombang kecil dan model tradisional LC. Prestasi model yang 
dicadangkan (LC-WT-ANFIS) dinilai dari segi ralat peratusan mutlak min (MAPE) dan ralat min (ME). Keputusan 
kajian menunjukkan bahawa prestasi LC-WT-ANFIS adalah lebih baik daripada model tradisi. Oleh itu, model ramalan 
yang dicadangkan mampu mengunjurkan kadar kematian. 
Kata kunci: ANFIS; gelombang kecil; kematian; makroekonomi; model Lee–Carter; ramalan
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INTRODUCTION

Longevity risk and greater correlation amongst closely 
related populations such as gender, race, states, and 
countries are the key difficulties that industrialised 
countries face (Nor, Yusof & Norrulashikin 2021). 
The risk of death, particularly the longevity risk, has 
recently piqued the scientific community’s interest, as 
the insurance industry struggles with product pricing. 
The risk of death is calculated using a future mortality 
rate (Brouhns, Denuit & Vermunt 2002). Insurance 
premiums are calculated using demographic and financial 
data. Forecasting future mortality trends is strongly 
determined by forecasting assumptions (Atsalakis et 
al. 2007). Actuaries have been developing enhanced 
methodologies for forecasting future mortality to 
manage longevity risk and obtain a more precise life 
expectancy projection (Nigri et al. 2019).

The extrapolative stochastic model developed by 
Lee and Carter (1992), known as the LC model, has 
been widely used due to its simplicity and robustness. 
The LC model was developed to model mortality 
data in the USA from 1933 to 1987, and it has since 
been used as a benchmark for analysing all-cause and 
cause-specific mortality data from a wide variety of 
countries and periods (Girosi & King 2007). There are 
a few deficiencies in the LC model, which prompted 
numerous modifications and extensions. Some well-
known extensions to the LC model, include Booth–
Maindonald–Smith (2002), Li–Lee (2005), Renshaw–
Haberman (2006) and Hyndman–Ullah (2007) models. 
It is necessary to forecast the time-dependent mortality 
index in the LC model, and this is achieved by using the 
autoregressive integrated moving average (ARIMA). 
Lee and Carter (1992) proposed a random walk with 
drift in a univariate ARIMA (p,d,q) time series model. 
However, the LC model may produce unreliable estimates 
for certain age groups (Winiowski et al. 2015). Nigri et 
al. (2019) asserted that the standard ARIMA has a limited 
capacity for detecting unknown and unrecognised patterns 
in future mortality trends over time. 

Hainaut and Denuit (2020) suggested using 
wavelets to address the LC model’s limitations. The 
wavelet transform (WT) is an effective tool for describing 
death rate trends over time, and it is frequently used in 
time series analysis since it can capture period dynamics 
and decompose time series into a linear combination of 
different frequencies. WT is also capable of decomposing 
signals into wavelets. Daubechies (1992) and Mallat 
(1989) were the first to apply the discrete WT (DWT) 
to statistically analyse nonstationary and nonlinear 

time series. The maximal overlap DWT (MODWT) is 
capable of processing a wide variety of wavelet filters, 
including Haar, Daubechies, Coiflets, least asymmetric 
and best-localised wavelets filters. The MODWT is 
a DWT modification that omits the subsampling step, 
resulting in more information in the resulting wavelet 
and scaling coefficients. The MODWT was chosen 
for this study because it allows for the retention of 
downsampled values at each level of decomposition and 
is well defined for all sample sizes (Cornish, Bretherton 
& Percival 2006). Yaacob et al. (2021) used a variety of 
MODWT filters to model and forecast the LC model’s 
time-dependent mortality index, including least squares 
(la8), best localised (bl14) and Coiflet (c6).

According to Zhang et al. (1998), a network’s 
forecasting ability is affected by network structure, 
t raining method,  and sample data.  Therefore, 
incorporating wavelet, fuzzy and artificial neural network 
(ANN) techniques will aid in forecast accuracy. The 
neural network model has recently gained enormous 
popularity in time series and forecasting problems. When 
used for time series forecasting, the neural networks 
become nonlinear, data-driven, nonparametric and 
flexible (Yan 2012). Many studies have been conducted 
on the effect of ANN on mortality prediction. Atsalakis 
et al. (2007), for example, used the ANFIS model to 
forecast mortality rates. Hong et al. (2021) used the LC 
model and two machine learning approaches, random 
forest and ANN, to forecast death rates in Malaysia. 
Nigri et al. (2019) enhanced the predictive capacity of 
the LC model by incorporating it into a recurrent neural 
network architecture with long short-term memory. The 
MODWT nonlinear spectrum model was proven to be 
effective in modelling and improving the forecasting 
accuracy of data patterns from the Saudi stock market by 
combining it with ANFIS (Alenezy et al. 2021). 

According to the literature study, no research has 
been conducted to date on the usefulness of MODWT 
wavelet filters and ANFIS when mortality-related 
parameters are included in the LC model incorporating 
macroeconomics variables with the goal of modelling 
and improving forecast accuracy of mortality trends. 
Further research is required into the comparative 
applications of MODWT functions such as Haar, db, la8, 
bl14, and c6 in conjunction with the fitting of the ANFIS 
model in modelling and forecasting mortality rates with 
macroeconomic variables affecting mortality rates. 
Hanewald, Post and Gründl (2011) developed a dynamic 
asset-liability model by connecting macroeconomic 
fluctuations to the LC model’s mortality index and 
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Hanewald (2011) examined the LC model’s response 
to macroeconomic volatility. According to French 
(2014), mortality rates among populations may be 
related, citing economic literature on technology and 
knowledge diffusion. Prior research has shown that 
accounting for real-world variations in variables such 
as gross domestic product (GDP), health expenditure and 
lifestyle helps explain mortality declines and improves 
mortality rate forecasting (French & O’hare 2014). 
Boonen and Li (2017) improved the Li and Lee (2005) 
model’s mortality forecast by incorporating the principal 
components of real GDP per capita.

The purpose of this study was to improve 
the forecasting accuracy of the LC model using 
macroeconomic data on mortality and forecasting future 
changes in the time-dependent mortality index. The 
hybrid model LC-WT-ANFIS is proposed to project log 
death rates. It was then compared to the accuracy of 
the original LC model using root mean error (ME) and 
mean absolute percentage error (MAPE). This paper is 
structured as follows: The next section discusses the 

methods, the subsequent section summarises the findings 
and the last section concludes the study.

MATERIALS AND METHODS

THE DATA SET

In this study, the mortality data for Australia, England, 
France, Japan and the USA were obtained from 
the Human Mortality Database (HMD 2020). The 
data includes central mortality rates and mid-year 
populations by individual years up to 110 years of age, 
which spans the years 1950 to 2016. Individuals over the 
age of 85 were grouped as 95+ to avoid erratic rates for 
this age group (Booth et al. 2006). The factors that affect 
the mortality of each country, such as GDP, inflation rate 
and unemployment rate, were obtained from the World 
Bank (2021) and Datastream (2020). The choice of 
factors that affect a country’s mortality rate in this study 
is also based on the availability of such data. Table 1 
shows the periods and factors used to study mortality for 
different countries.

TABLE 1. Data on total period mortality in each country and macroeconomic variables affecting mortality rates

Country Year Macroeconomic variables

Australia 1950–2016
•	 GDP
•	 Inflation rate

England 1950–2016
•	 GDP
•	 Inflation rate

France 1950–2016
•	 GDP
•	 Inflation rate

Japan 1950–2016
•	 GDP
•	 Unemployment rate

USA 1950–2016
•	 GDP
•	 Unemployment rate
•	 Inflation rate

Each data set is divided into two periods: A 
training set and a testing set. To ensure a fair comparison, 
the data set is divided into two periods using the 80/20 
train-test ratio (Alenezy et al. 2021).

THE LEE–CARTER MODEL

The LC model (1992) is as follows:
(1)

where m(x,t) is the age-specific death rate for the x interval 
and the year t, k(t) is the mortality index in the year t, a(x) 
is the average age-specific mortality, b(x) is a deviation 
in the mortality due to changes in the k(t) index, and ε(x,t) 
is the residual at age x and time t which is independent and 
identically distributed following a normal distribution 
N(0, σ2) with mean 0 and variance 𝜎𝜎𝜀𝜀2 . Lee and Carter 
(1992) estimated a(x) as the average of ln(m(x,t)) over 
time, and the b(x) and k(t) are estimated by singular 
value decomposition (SVD). Since the solution cannot 
be unique, the following constraints were imposed (Lee 
& Carter 1992):

ln(𝑚𝑚(𝑥𝑥, 𝑡𝑡)) = 𝑎𝑎(𝑥𝑥) + 𝑏𝑏(𝑥𝑥)𝑘𝑘(𝑡𝑡) + 𝜀𝜀(𝑥𝑥, 𝑡𝑡),     𝑥𝑥 = 0, … , 𝑥𝑥𝑚𝑚     𝑡𝑡 = 1, … , 𝑡𝑡𝑛𝑛 (1) 

 
∑ 𝑏𝑏(𝑥𝑥)𝑥𝑥𝑚𝑚

𝑥𝑥0 = 1 and  ∑ 𝑘𝑘(𝑡𝑡)𝑡𝑡𝑛𝑛
𝑡𝑡1 = 0. (2) 

 
𝑃𝑃 = ∑ (ln(𝑚𝑚(𝑥𝑥, 𝑡𝑡)) − �̂�𝑎(𝑥𝑥))𝑛𝑛

𝑡𝑡=1 . (3) 

 

ln(𝑚𝑚(𝑥𝑥, 𝑡𝑡)) = 𝑎𝑎(𝑥𝑥) + 𝑏𝑏(𝑥𝑥)𝑘𝑘(𝑡𝑡) + 𝜀𝜀(𝑥𝑥, 𝑡𝑡),     𝑥𝑥 = 0, … , 𝑥𝑥𝑚𝑚     𝑡𝑡 = 1, … , 𝑡𝑡𝑛𝑛 (1) 

 
∑ 𝑏𝑏(𝑥𝑥)𝑥𝑥𝑚𝑚

𝑥𝑥0 = 1 and  ∑ 𝑘𝑘(𝑡𝑡)𝑡𝑡𝑛𝑛
𝑡𝑡1 = 0. (2) 

 
𝑃𝑃 = ∑ (ln(𝑚𝑚(𝑥𝑥, 𝑡𝑡)) − �̂�𝑎(𝑥𝑥))𝑛𝑛

𝑡𝑡=1 . (3) 
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(2)

SVD is applied to the following matrix Z(x,t) (Wang 
2007):

Z(x,t) = ln(m(x,t))-

where 𝑈𝑈 represents the age component, 𝐿𝐿 is the singular value and 𝑉𝑉 represents the time 

component. The first step in forecasting mortality via LC model is estimating 𝑎𝑎(𝑥𝑥), 𝑏𝑏(𝑥𝑥) and 

𝑘𝑘(𝑡𝑡) using historical age specific mortality rates. The estimates of �̂�𝑎(𝑥𝑥) can be obtained by 

finding the average over time of 𝑙𝑙𝑙𝑙(𝑚𝑚(𝑥𝑥, 𝑡𝑡)). The estimates of �̂�𝑏(𝑥𝑥) = 𝑈𝑈(𝑥𝑥, 1) and �̂�𝑘(𝑡𝑡) =

𝐿𝐿(1)𝑉𝑉(𝑡𝑡, 1) can be obtained by approximating the first term.  

 

(x)                     (3)

produced, 

ULV' = SVD(Z(x,t)) = L(1)U(x,1)V(t,1) + ⋯ + L(X)U(x,X)

V(t,X)                                                                         (4)

where U represents the age component, L is the singular 
value and V represents the time component. The first 
step in forecasting mortality via LC model is estimating 
a(x), b(x) and k(t) using historical age specific mortality 
rates. The estimates of 

where 𝑈𝑈 represents the age component, 𝐿𝐿 is the singular value and 𝑉𝑉 represents the time 

component. The first step in forecasting mortality via LC model is estimating 𝑎𝑎(𝑥𝑥), 𝑏𝑏(𝑥𝑥) and 

𝑘𝑘(𝑡𝑡) using historical age specific mortality rates. The estimates of �̂�𝑎(𝑥𝑥) can be obtained by 

finding the average over time of 𝑙𝑙𝑙𝑙(𝑚𝑚(𝑥𝑥, 𝑡𝑡)). The estimates of �̂�𝑏(𝑥𝑥) = 𝑈𝑈(𝑥𝑥, 1) and �̂�𝑘(𝑡𝑡) =

𝐿𝐿(1)𝑉𝑉(𝑡𝑡, 1) can be obtained by approximating the first term.  

 

(x) can be obtained by finding 
the average over time of ln(m(x,t)). The estimates of 

where 𝑈𝑈 represents the age component, 𝐿𝐿 is the singular value and 𝑉𝑉 represents the time 

component. The first step in forecasting mortality via LC model is estimating 𝑎𝑎(𝑥𝑥), 𝑏𝑏(𝑥𝑥) and 

𝑘𝑘(𝑡𝑡) using historical age specific mortality rates. The estimates of �̂�𝑎(𝑥𝑥) can be obtained by 

finding the average over time of 𝑙𝑙𝑙𝑙(𝑚𝑚(𝑥𝑥, 𝑡𝑡)). The estimates of �̂�𝑏(𝑥𝑥) = 𝑈𝑈(𝑥𝑥, 1) and �̂�𝑘(𝑡𝑡) =

𝐿𝐿(1)𝑉𝑉(𝑡𝑡, 1) can be obtained by approximating the first term.  

 

(x) = U(x,1) and 

where 𝑈𝑈 represents the age component, 𝐿𝐿 is the singular value and 𝑉𝑉 represents the time 

component. The first step in forecasting mortality via LC model is estimating 𝑎𝑎(𝑥𝑥), 𝑏𝑏(𝑥𝑥) and 

𝑘𝑘(𝑡𝑡) using historical age specific mortality rates. The estimates of �̂�𝑎(𝑥𝑥) can be obtained by 

finding the average over time of 𝑙𝑙𝑙𝑙(𝑚𝑚(𝑥𝑥, 𝑡𝑡)). The estimates of �̂�𝑏(𝑥𝑥) = 𝑈𝑈(𝑥𝑥, 1) and �̂�𝑘(𝑡𝑡) =

𝐿𝐿(1)𝑉𝑉(𝑡𝑡, 1) can be obtained by approximating the first term.  

 

(t) = L(1)V(t,1) can be obtained by 
approximating the first term. 

ARIMA MODEL FOR k(t)

A random walk with drift, ARIMA (0,1,0) model, which 
was first used by Lee and Carter (1992), is widely used 
to forecast the time-varying index, k(t). 

(5)

where θ is the drift parameter and ε(t) are the normally 
distributed error terms with mean 0 and variance 𝜎𝜎𝑘𝑘2 . The 
forecasted values of the adjusted k(t) and the estimated 
a(x) and b(x) are substituted into equation (1) to get the 
forecasted values of m(x,t).

(6)

where n is the last year from which data are available; 
h is the forecast horizon; and x represents the age group 
(Andreozzi, Blaconá & Arnesi 2011).

WAVELET TRANSFORM FORMULA

WT is built on the Fourier transform, which depicts any 
function as the sum of sine and cosine functions. WT is 
a function of time t that obeys a basic rule known as the 
admissibility condition (Mehra 2018):

(7)

where φ(f) is the Fourier transform and a function of the 
frequency f of a father wavelet ϕ(t). The smooth and low-
frequency components of a signal are generated by the 
father wavelet, while the detailed and high-frequency 
components are generated by the mother wavelet. The 
following equations represent the father and mother 
wavelets, respectively, where j = 1, 2, 3,…, J in a J-level 
wavelet decomposition:

(8)

where J denotes the maximum scale sustainable by the 
number of data points. The father and mother wavelets 
satisfy:

(9)

A function that is an input represented by wavelet 
transform can be built in any time-series data as a 
sequence of projections onto father and mother wavelets 
indexed by {k} = 2j where k = {0, 1,2 ,…}, and {S} = 2j 
where {j = 1, 2, 3,... J}. The analysis of real discretely 
sampled data necessitates the construction of a lattice 
to perform calculations. Mathematically, it is convenient 
to use a dyadic expansion, as shown in equation (9). The 
expansion coefficients are given by the projections:

(10)

The wavelet approximation coefficients to f(t) that lead 
to k(t) in the wavelet framework of Lee and Carter 
(1992) is defined by:

(11)

ln(𝑚𝑚(𝑥𝑥, 𝑡𝑡)) = 𝑎𝑎(𝑥𝑥) + 𝑏𝑏(𝑥𝑥)𝑘𝑘(𝑡𝑡) + 𝜀𝜀(𝑥𝑥, 𝑡𝑡),     𝑥𝑥 = 0, … , 𝑥𝑥𝑚𝑚     𝑡𝑡 = 1, … , 𝑡𝑡𝑛𝑛 (1) 

 
∑ 𝑏𝑏(𝑥𝑥)𝑥𝑥𝑚𝑚

𝑥𝑥0 = 1 and  ∑ 𝑘𝑘(𝑡𝑡)𝑡𝑡𝑛𝑛
𝑡𝑡1 = 0. (2) 

 
𝑃𝑃 = ∑ (ln(𝑚𝑚(𝑥𝑥, 𝑡𝑡)) − �̂�𝑎(𝑥𝑥))𝑛𝑛

𝑡𝑡=1 . (3) 

 

𝑃𝑃 =

[
 
 
 
 
 
 ∑(𝑙𝑙𝑙𝑙(𝑚𝑚(𝑥𝑥0, 𝑡𝑡1) − �̂�𝑎(𝑥𝑥0))

𝑛𝑛

𝑡𝑡=1
⋯ ∑(𝑙𝑙𝑙𝑙(𝑚𝑚(𝑥𝑥0, 𝑡𝑡𝑛𝑛) − �̂�𝑎(𝑥𝑥0))

𝑛𝑛

𝑡𝑡=1
⋮ ⋱ ⋮

∑(𝑙𝑙𝑙𝑙(𝑚𝑚(𝑥𝑥95, 𝑡𝑡1) − �̂�𝑎(𝑥𝑥95))
𝑛𝑛

𝑡𝑡=1
⋯ ∑(𝑙𝑙𝑙𝑙(𝑚𝑚(𝑥𝑥95, 𝑡𝑡𝑛𝑛) − �̂�𝑎(𝑥𝑥95))

𝑛𝑛

𝑡𝑡=1 ]
 
 
 
 
 
 

. (4) 

 
 

�̂�𝑘(𝑡𝑡) = �̂�𝑘(𝑡𝑡 − 1) + 𝜃𝜃 + 𝜀𝜀(𝑡𝑡) (5) 

 
 

ln(𝑚𝑚(𝑥𝑥, 𝑙𝑙 + ℎ)) = 𝑎𝑎(𝑥𝑥) + 𝑏𝑏(𝑥𝑥)(𝑘𝑘(𝑙𝑙 + ℎ) − 𝑘𝑘(𝑙𝑙),    

  𝑥𝑥 = 0,… , 𝑥𝑥𝑚𝑚     𝑡𝑡 = 1,… , 𝑡𝑡𝑛𝑛 
(6) 

 

𝐶𝐶𝜑𝜑 = ∫
|𝜑𝜑(𝑓𝑓)|2

𝑓𝑓 𝑑𝑑𝑓𝑓 < ∞
∞

−∞
, (7) 

 
 

𝜙𝜙𝑗𝑗,𝑘𝑘 = 2(
−𝑗𝑗
2 )𝜙𝜙 (𝑡𝑡 − 2𝑗𝑗𝑘𝑘

2𝑗𝑗 ), 

𝜑𝜑𝑗𝑗,𝑘𝑘 = 2(
−𝑗𝑗
2 )𝜑𝜑 (𝑡𝑡 − 2𝑗𝑗𝑘𝑘

2𝑗𝑗 ), 

(8) 

 
 

∫𝜙𝜙(𝑡𝑡)𝑑𝑑𝑡𝑡 = 1 ,

∫𝜑𝜑(𝑡𝑡)𝑑𝑑𝑡𝑡 = 0 .
 (9) 

 

𝐶𝐶𝜑𝜑 = ∫
|𝜑𝜑(𝑓𝑓)|2

𝑓𝑓 𝑑𝑑𝑓𝑓 < ∞
∞

−∞
, (7) 

 
 

𝜙𝜙𝑗𝑗,𝑘𝑘 = 2(
−𝑗𝑗
2 )𝜙𝜙 (𝑡𝑡 − 2𝑗𝑗𝑘𝑘

2𝑗𝑗 ), 

𝜑𝜑𝑗𝑗,𝑘𝑘 = 2(
−𝑗𝑗
2 )𝜑𝜑 (𝑡𝑡 − 2𝑗𝑗𝑘𝑘

2𝑗𝑗 ), 

(8) 

 
 

∫𝜙𝜙(𝑡𝑡)𝑑𝑑𝑡𝑡 = 1 ,

∫𝜑𝜑(𝑡𝑡)𝑑𝑑𝑡𝑡 = 0 .
 (9) 

 

�̂�𝑚(𝑥𝑥, 𝑛𝑛 + ℎ) = �̂�𝑚(𝑥𝑥, 𝑛𝑛)𝑒𝑒𝑥𝑥𝑒𝑒 {�̂�𝑏(𝑥𝑥) (�̂�𝑘(𝑛𝑛 + ℎ) − �̂�𝑘(𝑛𝑛))}, 

 ℎ = 1,2, …   𝑥𝑥 = 1,2, … , 𝑛𝑛 

∫ 𝜙𝜙(𝑡𝑡)𝑑𝑑𝑡𝑡 = 1
∞

−∞
,

∫ 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑡𝑡 = 0
∞

−∞
.
 

𝑆𝑆𝑗𝑗,𝑘𝑘 = ∫ 𝜙𝜙𝑗𝑗,𝑘𝑘𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡
∞

−∞
,

𝑑𝑑𝑗𝑗,𝑘𝑘 = ∫ 𝜑𝜑𝑗𝑗,𝑘𝑘𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡
∞

−∞
. 

𝑘𝑘(𝑡𝑡) = 𝑆𝑆𝑗𝑗(𝑡𝑡)  + 𝐷𝐷𝑗𝑗(𝑡𝑡)  

                                        = ∑ 𝑆𝑆𝑗𝑗,𝑘𝑘𝜙𝜙𝑗𝑗,𝑘𝑘(𝑡𝑡)
∞

−∞
+ ∑ 𝑑𝑑𝑗𝑗,𝑘𝑘𝜙𝜙𝑗𝑗,𝑘𝑘(𝑡𝑡)

∞

−∞
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WT is used to calculate the wavelet approximation 
coefficient in (Mehra 2018) for a discrete signal, where 
Sj (t) and Dj (t) introduce the smooth and detailed 
coefficients, respectively. The smooth coefficients 
emphasise the most critical features of the data, while 
the detailed coefficients detect the main features in the 
dataset (Mehra 2018; Percival & Walden 2000). 

ANFIS MODEL

The ANFIS util ises both fuzzy logic and ANN 
(Harandizadeh & Armaghani 2021). For training, the 

ANFIS employs the ANN learning algorithm. ANN’s 
operations consist of forward and backward steps from 
the ANFIS learning algorithm. The forward step consists 
of five layers.

Figure 1 depicts the ANFIS architecture, which 
has two inputs and one output. Based on Figure 1, 
the fuzzy inference system under consideration has 
two inputs  (y1, y2) and one output (z) for explanation 
simplification. Note that the input y1 and y2 represent 
the macroeconomic data, and the output z represents 
the log mortality rates. A standard rule base of fuzzy if-
then rules for the first order of Sugeno fuzzy model can 

FIGURE 1. ANFIS architecture of two inputs and one output with four rules

be expressed as follows: If y1 is A1 and y2 is B1, then f1 = 
p1y1 + q1 y2 + r1, where p,r and q are denoted as linear 
output parameters. 
Layer-1 In this layer, each node  is a square node with a 
node function.

           O1,i = μAi (y1), for i = 1,2,3 and O1,i = μBi-3 (y2)  

                                  for i = 4,5,6                             (12)

       
where y1 and y2 are denoted as inputs to node i, and Ai 
and Bi are defined as linguistic labels for inputs. In other 
words, O(1,i) is defined as the membership function of 
Ai and Bi. Typically, μAi (y1) and μBi (y2) are chosen to be 
bell-shaped with a maximum value of 1 and minimum 
value of 0, such as μAi (y1) and 

𝑂𝑂1,𝑖𝑖 = 𝜇𝜇𝐴𝐴𝑖𝑖(𝑦𝑦1), for 𝑖𝑖 = 1,2,3   and 𝑂𝑂1,𝑖𝑖 = 𝜇𝜇𝐵𝐵𝑖𝑖−3(𝑦𝑦2)  for 𝑖𝑖 = 4,5,6 (13) 

 
 

𝜇𝜇𝐵𝐵𝑖𝑖−3(𝑦𝑦2) = 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑦𝑦𝑖𝑖−𝑐𝑐𝑖𝑖)𝑎𝑎𝑖𝑖
)2), 

 
𝑂𝑂2,𝑖𝑖 = 𝑤𝑤𝑖𝑖 = 𝜇𝜇𝐴𝐴𝑖𝑖(𝑦𝑦1). 𝜇𝜇𝐵𝐵𝑖𝑖−3(𝑦𝑦2), 𝑖𝑖 = 1,2,3,… ,9 (14) 

 
 

𝑂𝑂3,𝑖𝑖 = �̅�𝑤𝑖𝑖 =
𝑤𝑤𝑖𝑖

(𝑤𝑤1 + 𝑤𝑤2 +⋯+𝑤𝑤9)
, 𝑖𝑖 = 1,2,3, … ,9 (15) 

 
 
 

where the set of parameters ai, ci. These parameters 

are referred to as premise parameters in this layer. The 
fuzzification process converts crisp values into linguistic 
values by using the Gaussian function as the shape of the 
membership function.
Layer-2 Each node in this layer is a labelled Π that 
multiplies the incoming signals and outputs the product. 
For instance,

   O2,i = wi = μAi (y_1 ).      μBi-3 (y2),i = 1,2,3,…,9   (13)

Each node output describes the firing strength of a rule. 
In this layer, the t-norm operator (the AND operator) is 
used by the inference stage.
Layer-3 Each node in this layer is a circle node called N. 
The ith node measures the ratio of the ith rule firing strength 
to the sum of all rules firing strengths:
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(14)

In short, the ratio of the strengths of the rules is calculated 
in this layer. 
Layer-4 In this layer, each node i is a square node with 
the following node function:

(15)

where 𝑂𝑂4,𝑖𝑖 = �̅�𝑤𝑖𝑖. 𝑓𝑓𝑖𝑖 = 𝑤𝑤𝑖𝑖. (𝑝𝑝𝑖𝑖𝑦𝑦1 + 𝑞𝑞𝑖𝑖𝑦𝑦2 + 𝑟𝑟𝑖𝑖)
∑ 𝑤𝑤𝑖𝑖𝑖𝑖

, 𝑖𝑖 = 1,2,3, … ,9 (16) 

 
 

𝑂𝑂5,𝑖𝑖 = overall output = ∑ �̅�𝑤𝑖𝑖, 𝑓𝑓𝑖𝑖
𝑖𝑖

=
∑ 𝑤𝑤𝑖𝑖, 𝑓𝑓𝑖𝑖𝑖𝑖

∑ 𝑤𝑤𝑖𝑖𝑖𝑖
. (17) 

 

 is the output of layer 3 and {pi, qi, ri} is the 
parameter set. Parameters in this layer are referred 

to as consequent parameters. This layer measures the 
parameters for the subsequent parts.
Layer-5 A circle node named  Σ calculates the overall 
output of this layer as the summation of all incoming 
signals.

(16)

The backward step is a database estimation technique 
composed of two parts: the antecedent part contains the 
membership function parameters and the subsequent 
part contains the linear equation coefficients. Since the 
Gaussian function is used as the membership function in 

𝑂𝑂4,𝑖𝑖 = �̅�𝑤𝑖𝑖. 𝑓𝑓𝑖𝑖 = 𝑤𝑤𝑖𝑖. (𝑝𝑝𝑖𝑖𝑦𝑦1 + 𝑞𝑞𝑖𝑖𝑦𝑦2 + 𝑟𝑟𝑖𝑖)
∑ 𝑤𝑤𝑖𝑖𝑖𝑖

, 𝑖𝑖 = 1,2,3, … ,9 (16) 

 
 

𝑂𝑂5,𝑖𝑖 = overall output = ∑ �̅�𝑤𝑖𝑖, 𝑓𝑓𝑖𝑖
𝑖𝑖

=
∑ 𝑤𝑤𝑖𝑖, 𝑓𝑓𝑖𝑖𝑖𝑖

∑ 𝑤𝑤𝑖𝑖𝑖𝑖
. (17) 

 

𝑂𝑂4,𝑖𝑖 = �̅�𝑤𝑖𝑖. 𝑓𝑓𝑖𝑖 = 𝑤𝑤𝑖𝑖. (𝑝𝑝𝑖𝑖𝑦𝑦1 + 𝑞𝑞𝑖𝑖𝑦𝑦2 + 𝑟𝑟𝑖𝑖)
∑ 𝑤𝑤𝑖𝑖𝑖𝑖

, 𝑖𝑖 = 1,2,3, … ,9 (16) 

 
 

𝑂𝑂5,𝑖𝑖 = overall output = ∑ �̅�𝑤𝑖𝑖, 𝑓𝑓𝑖𝑖
𝑖𝑖

=
∑ 𝑤𝑤𝑖𝑖, 𝑓𝑓𝑖𝑖𝑖𝑖

∑ 𝑤𝑤𝑖𝑖𝑖𝑖
. (17) 

 

𝑂𝑂4,𝑖𝑖 = �̅�𝑤𝑖𝑖. 𝑓𝑓𝑖𝑖 = 𝑤𝑤𝑖𝑖. (𝑝𝑝𝑖𝑖𝑦𝑦1 + 𝑞𝑞𝑖𝑖𝑦𝑦2 + 𝑟𝑟𝑖𝑖)
∑ 𝑤𝑤𝑖𝑖𝑖𝑖

, 𝑖𝑖 = 1,2,3, … ,9 (16) 

 
 

𝑂𝑂5,𝑖𝑖 = overall output = ∑ �̅�𝑤𝑖𝑖, 𝑓𝑓𝑖𝑖
𝑖𝑖

=
∑ 𝑤𝑤𝑖𝑖, 𝑓𝑓𝑖𝑖𝑖𝑖

∑ 𝑤𝑤𝑖𝑖𝑖𝑖
. (17) 

 

FIGURE 2. The flowchart of the MODWT with ANFIS

this process, two parameters of this function, namely the 
mean and variance, are optimised. In this step, parameter 
learning is carried out using the least square technique 
(Figure 2).

PERFORMANCE MEASURES

Several accuracy criteria, including MAPE, mean absolute 
error (MAE) and ME, were used as follows:

(17)

(18)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑ |𝑀𝑀𝑡𝑡 − 𝐹𝐹𝑡𝑡

𝑀𝑀𝑡𝑡
|

𝑛𝑛

𝑡𝑡=1
 (18) 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑛𝑛 ∑|𝑀𝑀𝑡𝑡 − 𝐹𝐹𝑡𝑡|

𝑛𝑛

𝑡𝑡=1
 (19) 

𝑀𝑀𝑀𝑀 =  1
𝑛𝑛 ∑(𝑀𝑀𝑡𝑡 − 𝐹𝐹𝑡𝑡)

𝑛𝑛

𝑡𝑡=1
 (20) 

 

(19)

The MAPE criterion, also known as the mean 
absolute percentage deviation (MAPD), is a statistical 
criterion for forecasting accuracy (Alenezy et al. 2021). 
It is always expressed in percentage and calculated 
using equation (17), where At is the actual value, Ft 
denotes the forecasted value and n denotes the sample 
size. The absolute value of each forecasted point in 
time is summed and divided by the number of fitted 
points in this equation. Also, equation (18) defines the 
MAE, while equation (19) defines the ME. As depicted 
on Figure 2, the following steps are taken based on the 

𝑂𝑂1,𝑖𝑖 = 𝜇𝜇𝐴𝐴𝑖𝑖(𝑦𝑦1), for 𝑖𝑖 = 1,2,3   and 𝑂𝑂1,𝑖𝑖 = 𝜇𝜇𝐵𝐵𝑖𝑖−3(𝑦𝑦2)  for 𝑖𝑖 = 4,5,6 (13) 

 
 

𝜇𝜇𝐵𝐵𝑖𝑖−3(𝑦𝑦2) = 𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑦𝑦𝑖𝑖−𝑐𝑐𝑖𝑖)𝑎𝑎𝑖𝑖
)2), 

 
𝑂𝑂2,𝑖𝑖 = 𝑤𝑤𝑖𝑖 = 𝜇𝜇𝐴𝐴𝑖𝑖(𝑦𝑦1). 𝜇𝜇𝐵𝐵𝑖𝑖−3(𝑦𝑦2), 𝑖𝑖 = 1,2,3,… ,9 (14) 

 
 

𝑂𝑂3,𝑖𝑖 = �̅�𝑤𝑖𝑖 =
𝑤𝑤𝑖𝑖

(𝑤𝑤1 + 𝑤𝑤2 +⋯+𝑤𝑤9)
, 𝑖𝑖 = 1,2,3, … ,9 (15) 

 
 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑ |𝑀𝑀𝑡𝑡 − 𝐹𝐹𝑡𝑡

𝑀𝑀𝑡𝑡
|

𝑛𝑛

𝑡𝑡=1
 (18) 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑛𝑛 ∑|𝑀𝑀𝑡𝑡 − 𝐹𝐹𝑡𝑡|

𝑛𝑛

𝑡𝑡=1
 (19) 

𝑀𝑀𝑀𝑀 =  1
𝑛𝑛 ∑(𝑀𝑀𝑡𝑡 − 𝐹𝐹𝑡𝑡)

𝑛𝑛

𝑡𝑡=1
 (20) 
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research framework from the study: First, estimate a(x) 
as the average ln(m(x,t)) of overtime and decompose  
the mortality data using SVD to determine b(x) and 
k(t). Second, decompose the parameter of k(t) using 
MODWT’s functions to obtain approximation and 
detailed coefficients. The approximation coefficients are 
used in the forecasting process since they have the main 
components of the data. Third, the ANFIS mechanism 
requires the dependent variable (the approximation 
coefficients k(t)) and  independent variable (GDP, UR 
and IF). Fourth, the best model is selected based on the 
ME and MAPE.

RESULTS AND DISCUSSION

CORRELATION AND REGRESSIONS RESULTS

The input variables must be carefully chosen to avoid 

variable multicollinearity. Table 2 illustrates the 
correlation between the macroeconomic data (input 
variables) and mortality rate (output variable) k(t). There 
are weak correlation (< 50%) between input variables 
for all countries. The absence of perfect multicollinearity 
is referred to as ‘no multicollinearity’, which is defined 
as an exact (non-stochastic) linear relationship between 
two or more input macroeconomic variables. The LC 
model is appropriate for testing all macroeconomic 
factors. Table 3 summarise the multiple regression 
between macroeconomic variables affecting mortality 
in each country studied and mortality index. According 
to Table 3, the macroeconomics variables explain 
more than 90% of the k(t) variance that analysed for all 
populations except for the Japanese population, which 
accounted for 75.9% of the variance. In an attempt to 
optimise forecasting of future mortality rates, the LC 
model is then modified to include GDP, inflation and UR.

TABLE 2. The correlations between the input and the output variables

Countries k(t) GDP IF UR

k(t) 1 -0.9850 0.1390 -0.3780
USA GDP 1 -0.0870 0.2480

IF 1 0.1820
UR 1

Australia k(t) 1 -0.9682 0.3855 -
GDP  1 -0.2909 -

IF   1 -
England k(t) 1 -0.9680 0.3550  -

GDP  1 -0.2392  -
IF   1  -

France k(t) 1 -0.9412 0.4779  -
GDP  1 -0.0279  -

IF   1 - 
Japan k(t) 1 -0.9770 - -0.1266

GDP  1 - 0.1775

UR   - 1

FORECASTING RESULTS

Table 4 shows that the wavelet filters with Haar, d4, la8, 
bl14, and c6 wavelet coefficients were used to evaluate 
the accuracy of two ARIMA models representing k(t). The 
number of autoregressive terms and the number of non-
seasonal differences required for stationarity were varied 
to find an ARIMA  (p,d,q) model that best represents 

k(t). A good fit for the countries under consideration 
was found with p = 5 and d = 1. The bl14 filter has the 
smallest MAE and MAPE for all populations. This finding 
is consistent with Yaacob et al. (2021), who report that 
the bl14 filter best fits the log of mortality rates for males 
and females, and the total population of Australia, British, 
French, Japan and the USA.  
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TABLE 3. The multiple r squared between macroeconomic factors and mortality index

Countries Variables Estimate Std.Error t-statistic Sign. Performance 
test Estimate

R-squared 0.9804

Intercept 141.5541 2.7478 51.5160 <2e-16*** R-square-
Adjusted 0.9795

USA GDP -17.6340 0.3484 -50.6090 <2e-16*** F-statistics 1050.0

IF 87.2424 15.5233 5.6200 4.65E-07** Sign. <2.2e-16

UR -66.5314 28.9685 -2.2970 0.025*

Australia Intercept 0.0000 1.0340 0.0000 1 R-squared 0.9493

GDP -34.6000 1.0890 -31.7760 <2e-16*** R-square-
Adjusted 0.9477

IF 4.1970 1.0890 3.8540 0.000272*** F-statistics 598.60

Sign. <2.2e-16
England Intercept 0.0000 0.7988 0.0000 1 R-squared 0.9527

GDP -27.7200 0.8289 -33.4400 <2e-16*** R-square-
Adjusted 0.9512

IF 3.8790 0.8289 4.6800 <1.53e-05*** F-statistics 644.50

Sign. <2.2e-16

France Intercept 0.0000 1.0980 0.0000 1 R-squared 0.9361

GDP -30.6700 1.1520 -26.6210 <2e-16*** R-square-
Adjusted 0.9341

IF 8.1780 1.1520 7.0980 1.25E-09*** F-statistics 468.70

Sign. <2.2e-16

Japan Intercept 23.6503 8.8061 2.6860 0.00921** R-squared 0.7599

GDP -23.8246 9.4538 -2.5200 0.01424* R-square-
Adjusted 0.7524

UR -0.7397 0.0883 -8.3730 7.09E-12*** F-statistcs 101.30
Sign. <2.2e-16

Note: ‘***’ 0.001,’**’0.01, and ‘** 0.05

TABLE 4. Accuracy measures based on MAE and MAPE for total population by country (smallest values are bolded)

Country
MAE MAPE

Haar d4 la8 bl14 c6 ARIMA Haar d4 la8 bl14 c6 ARIMA

Australia 2.801 2.759 1.984 1.782 2.485 2.347 25.816 29.280 8.931 8.998 12.423 19.459

England 3.193 2.336 1.570 1.488 2.221 1.953 28.693 19.231 22.129 14.878 15.495 21.473

France 2.857 2.621 1.897 1.833 2.582 2.206 19.090 17.507 46.790 13.623 19.316 17.793

Japan 5.560 4.032 2.855 2.619 3.769 3.280 27.027 19.814 21.307 7.239 14.005 18.671

USA 1.838 1.606 1.203 1.143 1.652 1.468 43.721 9.985 7.807 6.026 12.935 18.099
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The bl14 filter was chosen for the LC-WT-ANFIS 
model after an evaluation of the results in Table 4. 
As shown in Table 5, the LC-WT-ANFIS consistently 
outperforms its contenders in four countries (England, 
France, Japan and the USA). However, the LC model 
appeared to be the most effective for the Australian 
population. In general, the LC-WT-ANFIS model 

outperforms the original LC model in terms of phase 
properties. As an example, Figure 3 depicts the observed 
and forecasted log death rates for the USA population in 
2011. In comparison to the original LC, Figure 3 shows 
that the estimation of log death rate values using wavelet 
and ANFIS provides a good fit for the USA in 2011. The 
log death rates for the LC-WT-ANFIS model closely 
follow the observed values across all age groups.

TABLE 5. Accuracy measures based on ME and MAPE for LC-WT-ANFIS vs. LC and LC-ANFIS by country

Country
ME MAPE

LC LC-ANFIS LC-WT-ANFIS LC LC-ANFIS LC-WT-ANFIS

Australia 0.073 0.849 0.096 1.931 18.294 2.247

England 0.094 0.156 0.046 2.424 3.584 1.667

France 0.133 0.301 0.014 2.606 6.622 2.763

Japan 0.139 0.127 0.093 2.644 2.459 1.893

USA 0.087 0.093 0.006 2.105 2.199 1.263

Average 0.105 0.305 0.051 2.342 6.631 1.966

FIGURE 3. Observed and predicted log death rates for the USA total population (the 
year 2011) using the wavelet and ANFIS integration with the LC model
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CONCLUSION

In this study, we have proposed a new model (LC-WT-
ANFIS) successfully to enhance the forecasting accuracy 
of the LC model. The LC model is extrapolative in 
nature, and it makes no attempt to account for medical, 
behavioural or societal factors that affect mortality 
change (Lee & Carter 1992). Prior research has shown 
that accounting for real-world variations in variables 
such as income (GDP), health expenditure and lifestyle 
helps explain mortality decline and improves mortality 
rate forecasting (French & O’hare 2014). In this paper, 
the LC model was fitted to the mortality data for five 
countries, namely Australia, England, France, Japan and 
the USA. Macroeconomic variables were incorporated 
into the forecasting process using a wavelet and an ANFIS 
model k(t). The forecast performance of LC-WT-ANFIS 
model was then compared to that of a conventional LC 
model using ME and MAPE. Although these variables 
reflected general trends and were not age-specific, this 
model produced the best forecast results in four of the 
five countries studied. In addition, when the values of ME 
and MAPE of all countries are considered, it is shown 
that incorporating wavelet and ANFIS into the LC model 
outperforms the conventional LC model in forecasting 
future index mortality. Wavelet and fuzzy methods can 
be used to enhance the LC model to improve forecast 
accuracy as these approaches can handle a large number 
of design parameters and a long training period. The 
applicability of this strategy is still constrained by data 
availability and the stability of covariate projections.
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