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ABSTRACT

This paper discusses several outlier detection methods for bioavailability trials, particularly based on residuals. By 
considering a simplified model of standard crossover model, which is commonly used in bioavailability trials, we 
propose an outlier detection procedure based on the generalized studentized residuals (SR3) and compare its ability 
of detecting the possible outlying subjects with two existing procedures, which are carried out based on the classical 
studentized residual (SR1) and studentized residual using median absolute deviation (SR2). The performances of 
these procedures in detecting outlying subject are presented via an extensive simulation study. The results show that 
the proposed procedure SR3 performs more powerful than that using SR1, and as well as the procedure using SR2 for 
outlier detection. As an illustration, these procedures are implemented on a real dataset from bioavailability study, 
namely, the area under the curve (AUC) dataset for two erythromycin formulations.
Keywords: Bioavailability; crossover design; generalized studentized residuals; outlier; residual 

ABSTRAK

Kertas ini membincangkan beberapa kaedah pengesanan titik terpencil untuk ujian bioketersediaan, terutamanya 
berdasarkan residu. Dengan mempertimbangkan satu model silang piawai yang biasa digunakan dalam ujian 
bioketersediaan, kami mencadangkan satu prosedur pengesanan titik terpencil berdasarkan residu terstuden teritlak 
(SR3) dan membandingkan keupayaannya untuk mengesan kemungkinan subjek terpencil dengan dua prosedur sedia 
ada, iaitu dijalankan berdasarkan residu terstuden klasik (SR1) dan residu terstuden yang menggunakan sisihan 
mutlak median (SR2). Prestasi prosedur berkenaan dalam mengesan subjek terpencil dibentangkan melalui kajian 
simulasi yang ekstensif. Keputusan menunjukkan bahawa prosedur yang dicadangkan SR3 berprestasi lebih baik 
daripada prosedur yang menggunakan SR1, dan juga prosedur menggunakan SR2 bagi pengesanan titik terpencil. 
Sebagai ilustrasi, prosedur tersebut dilaksanakan pada satu set data sebenar daripada kajian bioketersediaan, iaitu, 
luas di bawah lengkungan (AUC) set data untuk dua formulasi eritromisin.
Kata kunci: Bioketersediaan; pencilan; reka bentuk silang; residu terstuden teritlak; residu

INTRODUCTION

A comparative bioavailability trial is usually carried out 
for testing the bioequivalence of different formulations 
of a drug in terms of the rate and extent absorption, 
which is mostly measured by the area under the blood or 

plasma concentration-time curve (AUC) and the maximum 
concentration (Cmax), respectively. Two formulations of 
the same drug or two drugs are claimed as bioequivalent 
when they provide the therapeutic effect or that they are 
therapeutically equivalent (Chow 2014). It is essential to 
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understand the performance of dosage forms of a drug in 
appraising the efficacy and quality of a new drug as the 
bioavailability trial demonstrates the comparable safety 
of the new drug. 

However,  the  presence  of  ex t raord inary 
observations, which most frequently known as outliers, 
may influence the conclusion in assessment of 
equivalence between different formulations with regard 
to the rate and extent of absorption of the drug (Chow 
& Tse 1990; Liu & Weng 1991; Metzler & Huang 1983; 
Rodda 1986). As stated by Chow and Liu (2009), we 
can distinguish two types of outliers in bioavailability 
trials: The between-subject outlier and the within-
subject outlier. The between-subject outliers are the 
unusual subjects who had extreme bioavailability to both 
formulations. Occurrence of the between-subject outliers 
may indicate that the underlying genetic mechanism for 
metabolism may be different from subjects to subjects. On 
the other hand, the within-subject outliers are the unusual 
subjects who exhibit extremely high or low bioavailability 
relative to the reference or test formulation. In other 
words, the within-subject outliers show unusual reaction 
to one of the formulations. Consequently, Sandulovici 
et al. (2020) analyzes the potential outliers in the 
bioanalytical and clinical part of a bioequivalence study, 
and investigates the effect on bioequivalence decisions 
whether it is appropriate to eliminate them from the 
statistical evaluation of bioequivalence. In summary, it is 
crucial to solve the problem of outliers in bioavailability 
trials to ensure the accuracy of analyses.

In literature, Chow and Tse (1990) proposed both 
procedures based on Cook’s likelihood distance and the 
estimated distance to solve the problem of outlier in 
bioequivalence studies, wherein the crossover design 
is widely used in their statistical analyses. For the same 
purpose, Liu and Weng (1991) introduced Hotelling  T2 

statistics and residuals, while Wang and Chow (2003) 
suggested a general test procedure based on a mean-
shift model. Using simulation study, Ki et al. (1995) 
highlighted that it may had a masking effect in the 
intra-subject variability when doing outlier detection. 
Moreover, Ramsay and Elkum (2005) evaluated 
different outlier detection methods presented by Chow 
and Tse (1990), Liu and Weng (1991) and Wang and 
Chow (2003) through simulation studies. They pointed 
out that the superiority of the estimated distance test 
compared to other tests. Furthermore, Karasoy and 
Daghan (2012) had investigated these existing outlier 
detection methods by using a real dataset. On the other 

hand, Enachescu and Enachescu (2009) carried out the 
principal components analysis and projection pursuit for 
identifying possible outliers in bioequivalence studies. 
The details of a studentized residual test and the Lund 
test also are provided by Singh, Namdev and Chilkoti 
(2014) for determining the outlying subjects. Recently, 
Lim (2016) had considered the studentized residual 
based on median absolute deviation as a robust outlier 
detection method for standard crossover design. Lim 
et al. (2019) also suggested the solutions for the same 
problem in Bayesian framework. Besides, El-Kelany 
and Ahmed (2020) also compare the performance of both 
principal component analysis and Cook’s Distance for 
detecting possible outliers in the real data which obtained 
from Central Administration for Pharmaceutical Affairs 
(CAPA), in Egypt. 

This paper considers the procedure using 
generalized studentized residual (SR3) in standard 
crossover design as an alternative to deal with outliers 
in bioequivalence studies. As we all know, Imon 
(2005) proposes this group-deletion-based method for 
handling the outliers in the fixed dimensional problems. 
This procedure has been widely used in identifying 
multiple influential points (Baba et al. 2021; Silalahi et 
al. 2020; Zhao et al. 2019). Hence, it is worth to further 
investigate the implement of this procedure in standard 
crossover design. The rest of this article is organized as 
follows: Next section presents the details about the SR3 
and another two existing procedures, which are carried 
out based on the classical studentized residual (SR1) and 
studentized residual using median absolute deviation 
(SR2). Subsequent section discusses the main settings 
and results of investigating the power of performance 
through simulation study. Finally, last section illustrates 
the implementation of the SR3 on a real dataset from 
bioavailability study.

CROSSOVER MODEL

In standard crossover design, the responses of the kth 
subject in the period j under treatment i is denoted as  
Ykij where i, j = 1, 2 and k = 1, 2, ..., ni. ni is the size of 
the group with treatment i. Consider the model presented 
by Chow and Tse (1990), we have the general crossover 
design model is as follow:
                          

(1)

where μ is the overall mean; Sk is the random effect of 

    𝑌𝑌𝑘𝑘𝑘𝑘𝑘𝑘 = 𝜇𝜇 + 𝑆𝑆𝑘𝑘 + 𝐹𝐹𝑘𝑘 + 𝑃𝑃𝑘𝑘 + 𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘     
    
 
           𝑌𝑌𝑘𝑘𝑘𝑘 = 𝜇𝜇 + 𝑆𝑆𝑘𝑘 + 𝐹𝐹𝑘𝑘 + 𝑒𝑒𝑘𝑘𝑘𝑘                      
 
 
          𝑟𝑟𝑘𝑘𝑘𝑘 = (1 − 1

𝑁𝑁)𝑌𝑌𝑘𝑘𝑘𝑘 − (1𝑁𝑁) [(∑ 𝑌𝑌𝑡𝑡𝑘𝑘𝑛𝑛𝑖𝑖
𝑡𝑡=1 ) − 𝑌𝑌𝑘𝑘𝑘𝑘]                              

 
 
 𝑉𝑉(𝑟𝑟𝑘𝑘𝑘𝑘) = (1 − 1

𝑁𝑁)𝜎𝜎𝑒𝑒
2         

 
    𝑆𝑆𝑆𝑆1 = 𝑟𝑟𝑘𝑘𝑖𝑖

√�̂�𝑉(𝑟𝑟𝑘𝑘𝑖𝑖)
.                                                                                                                    
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kth subject; Fi is the fixed effect of the ith treatment 
with ∑i Fi = 0, Pj is the fixed effect of the jth period 
with ∑i Pj = 0, and ekij is the random error. Besides, the 
variance components {Sk } and {ekij } are assumed to be 
independent and normally distributed with zero mean 
and variance 𝜎𝜎𝑠𝑠2  and 𝜎𝜎𝑒𝑒2  respectively.

As stated by Chow and Tse (1990), the response 
variables of primary interest in bioavailability trials are 
often the extent of absorption and the rate of absorption. 
The former can be obtained by considering the area 
under the plasma concentration-time curve (AUC), while 
the latter is interpreted in term of peak concentration 
(Cmax) and time to peak concentration (tmax). Since the 
distribution of the response variable, that is AUC, is 
usually skewed, hence a log transformation is applied 
on AUC to adjust the skewness and further analyses then 
can be performed on the transformed AUC under the 
model (1).

In the following sections, we present three outlier 
detection procedures with use of a simplified model (1), 
which is suggested by Liu and Weng (1991). In order to 
extend the ideas to more general model, it is assumed that 
there is no period effect, which is Pj = 0, then the model 
(1) can be reduced to the following model:

                           (2)

where k = 1,2,…, ni  for i = 1,2.
 The following sections briefly discusses the 
concept of three types of studentized residual: classical 
studentized residual (SR1), studentized residual using 
median absolute deviation (SR2), and generalized 
studentized residual (SR3).

CLASSICAL STUDENTIZED RESIDUAL (SR1)

Consider the model (2), assume that the repeated 
measurements on each subject are assumed to be 
independent and normally distributed random variables 
with equal variances, the residual can be obtained such as 
           

 (3)

for each i, respectively, and N is the total summation 
of two treatments; N = ∑ni , as mentioned by Lim et al. 
(2016). The rki are the estimators of the random error eki 
and are normally distributed with zero mean and variance 
as below,
    

  (4)

where 𝜎𝜎𝑒𝑒2   is the mean square value of the within-subject 
residual. Thus, the SR1 becomes

 (5)

The response value corresponding to extraordinary 
large SR1 is known as outlier (Jones & Kenward 1989). 
Lund (1975) also suggests that a response value is 
considered as an outlier when the corresponding |SR1| g 
greater than value 3.

STUDENTIZED RESIDUAL USING MEDIAN ABSOLUTE 
DEVIATION (SR2)

As rki is not a good estimator of eki when the residuals 
are far from the normal distribution, Lim et al. (2016) 
proposed a robust estimate of scale, which is median 
absolute deviation (MAD) instead of the classical 
studentized residual. If the samples come from normal 
distribution,

can be used to estimate Z0.75 eki rather than eki, where Z0.75 
is the 0.75 quantile of the standard normal distribution. 
The scaled MAD (MADN) then is defined as 

Refer to Lim (2010), Maarof, Peng and Ibrahim (2010), 
and Wilcox (2011) for the details of MAD. Hence, the 
SR2 is
                  

 (6)

If the largest |SR2| is greater than the critical value, D 
in Table 1, then, the corresponding response can be 
considered as an outlier. It is noted that the parametric 
bootstrap technique is used for constructing the Table 
1 under model (2). SR2 is calculated for each size 
of group 20, 60 and 100 and then largest SR2 can be 
obtained. See Lim et al. (2016) for the details of the 
simulation procedures for constructing the Table 1.

GENERALIZED STUDENTIZED RESIDUAL (SR3)

In this study, we adapt the generalized studentized 
residual, which can identify the single influential 
observation in the linear regression, into a standard 
crossover trial. Let us consider a linear regression model
                

     (7)
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𝑁𝑁)𝑌𝑌𝑘𝑘𝑘𝑘 − (1𝑁𝑁) [(∑ 𝑌𝑌𝑡𝑡𝑘𝑘𝑛𝑛𝑖𝑖
𝑡𝑡=1 ) − 𝑌𝑌𝑘𝑘𝑘𝑘]                              

 
 
 𝑉𝑉(𝑟𝑟𝑘𝑘𝑘𝑘) = (1 − 1

𝑁𝑁)𝜎𝜎𝑒𝑒
2         

 
    𝑆𝑆𝑆𝑆1 = 𝑟𝑟𝑘𝑘𝑖𝑖

√�̂�𝑉(𝑟𝑟𝑘𝑘𝑖𝑖)
.                                                                                                                        𝑌𝑌𝑘𝑘𝑘𝑘𝑘𝑘 = 𝜇𝜇 + 𝑆𝑆𝑘𝑘 + 𝐹𝐹𝑘𝑘 + 𝑃𝑃𝑘𝑘 + 𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘     
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𝑁𝑁)𝜎𝜎𝑒𝑒
2         
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𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒{|𝑟𝑟𝑘𝑘𝑘𝑘 − 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟𝑘𝑘𝑘𝑘)|}. 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀
𝑍𝑍0.75

≈ 𝑀𝑀𝑀𝑀𝑀𝑀
0.6745 . 

 
  

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒{|𝑟𝑟𝑘𝑘𝑘𝑘 − 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟𝑘𝑘𝑘𝑘)|}. 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀
𝑍𝑍0.75

≈ 𝑀𝑀𝑀𝑀𝑀𝑀
0.6745 . 

 
  

        𝑆𝑆𝑆𝑆2 = 𝑟𝑟𝑘𝑘𝑘𝑘−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟𝑘𝑘𝑘𝑘)
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  .  

 
 

𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝜀𝜀     
 
 

𝑦𝑦𝑡𝑡 = 𝑥𝑥𝑡𝑡𝑋𝑋 + 𝜀𝜀𝑡𝑡,    𝑡𝑡 = 1,2, … , 𝑁𝑁 

 

        𝑆𝑆𝑆𝑆2 = 𝑟𝑟𝑘𝑘𝑘𝑘−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟𝑘𝑘𝑘𝑘)
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𝑦𝑦𝑡𝑡 = 𝑥𝑥𝑡𝑡𝑋𝑋 + 𝜀𝜀𝑡𝑡,    𝑡𝑡 = 1,2, … , 𝑁𝑁 
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TABLE 1. Critical values of the largest at 5% significance level

N μ2

γ

0.5 5 10 15 30 40

20 60 0.705058 0.980175 1.285861 1.654673 1.709177 1.706658

80 0.735627 1.285861 1.793335 1.709177 1.654034 1.593723

90 0.796764 1.793335 1.706658 1.654034 1.542514 1.512168

100 1.411959 1.411959 1.411959 1.411959 1.411959 1.411959

110 0.796764 1.793335 1.706658 1.654034 1.542514 1.512168

125 0.723400 1.163587 1.718965 1.738969 1.686018 1.634269

  

60 60 0.718478 1.114369 1.606454 1.994404 2.145909 2.154915

80 0.762466 1.606454 2.117405 2.145909 2.091540 2.058979

90 0.850442 2.117405 2.154915 2.091540 2.025157 1.988339

100 1.906702 1.906702 1.906702 1.906702 1.906702 1.906702

110 0.850442 2.117405 2.154915 2.091540 2.025157 1.988339

125 0.744871 1.382749 2.010072 2.126348 2.128574 2.089173

  

100 60 0.723172 1.161311 1.696741 2.100141 2.317864 2.333515

80 0.771854 1.696741 2.265473 2.317864 2.291519 2.245437

90 0.869218 2.265473 2.333515 2.291519 2.212292 2.197347

100 2.122826 2.122826 2.122826 2.122826 2.122826 2.122826

110 0.869218 2.265473 2.333515 2.291519 2.212292 2.197347

125 0.752381 1.479371 2.153228 2.307614 2.318592 2.282197

where Y is a N × 1 matrix vector of responses variable; 
X is a N × m (N > m) matrix of predictor including the 
constant predictor; β is a m × 1 vector of parameters to 
be estimated and ε is a N × 1 vector of random error. In 
accordance with the model (2), we may recognise the 
X1 and X2 as subject effect, Sk  and treatment effect, Fi, 
respectively. Model (7) then can be re-written as

where yt is the tth responses and xt is the 1 × m vector of 
predictor.

To estimate the regression parameters, the ordinary 
least square (OLS) technique is used. Let 
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where W = X(X' X)-1) X'. As the high leverage point is 
caused by a set of influential X-values, hence the diagonal 
element of W is known as leverage value and denoted by
  
                      

An observation is considered as high leverage point 
when wtt is greater than the twice-the-mean-rule, 2m⁄N 
(Hoaglin & Welsch 1978).

As an extension, Hadi (1992) presented a single case 
deleted measure of leverage, which is commonly known 
as potentials, ptt, such as 

where X(t) is the matrix X with tth row is deleted. 
Alternatively, these ptt can also be obtained as follows,

                               ptt = wtt / (1-wtt).  
 
A cut-off point for ptt then can be calculated using median 
and median absolute deviation (MAD), that is

ptt > median(ptt ) + 3 MAD (ptt)

where MAD (ptt ) = median{|ptt-median(ptt)|}/0.6745.
Similar with the calculation of σ2 in Crossover 

model section, we can define the estimator of variance,  
�̂�𝜎2 based on the data set with tth observation deleted as
               

  (8)

Consequently, the external studentized residual for a 
single case influence, SR3* becomes 

The SR3* follows Student’s t distribution with N-m-1 
degree of freedom and the |SR3*| is considered as an outlier 
when greater than 2.5 (Ellenberg 1976).

Nevertheless, Imon (2005) found that the outlier 
detection approach of single case deleted proposed by 
Hadi (1992), ineffectively detects multiple influential 
observations due to the masking and swamping problems. 
The former means that the second outlier in the data 
set can be considered as an outlier by itself with the 
absence of the first outlier, while the latter occurs when 

the observation in the data set only can be considered as 
an outlier with the presence of the first outlier. Hence, 
a generalized version of studentized residual had been 
proposed to overcome these problems.

As suggested by Imon (2005), let a data set consist 
of two groups of observations, namely ‘remaining’ 
set (R) and ‘deleted’ set (D), respectively. Consider R 
contains (N - d) cases after the d < (N - m) cases of D are 
deleted and all observations are assumed to be the last d 
rows of X and Y without loss of generality. Define wtt(R) 
as the tth diagonal element of the X(XR' XR)-1 X' when a 
group of observations D is deleted. The wtt(R) then can be 
calculated as

and the generalized potentials is

where D is any arbitrary deleted set of points (Imon 
1996). The 

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡

′  . 

and the generalized potentials is 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ = {

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

     𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝑅𝑅

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)             𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝐷𝐷
 

where 𝐷𝐷 is any arbitrary deleted set of points (Imon 1996). The 𝑝𝑝𝑡𝑡𝑡𝑡
∗  is considered large if 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡

∗ ) + 3 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) 

where 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{|𝑝𝑝𝑡𝑡𝑡𝑡

∗ − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡
∗ )|}/0.6745. 

After deleting a group of 𝑚𝑚 size observations, the estimated parameters, �̂�𝛽(𝑅𝑅) is 

�̂�𝛽(𝑅𝑅) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

′ 𝑌𝑌𝑅𝑅  , 

and the 𝑡𝑡𝑡𝑡ℎ deletion residual is 

𝜀𝜀�̂�𝑡(𝑅𝑅) = 𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)  . 

Thus, the generalized externally studentized residual for 𝑡𝑡 ∈ 𝑅𝑅 becomes 

𝑆𝑆𝑅𝑅3 =
𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

=
𝜀𝜀�̂�𝑡(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

   . 

where �̂�𝜎𝑅𝑅−𝑡𝑡 can be derived by replacing the 𝑡𝑡 in equation (8) with (𝑅𝑅 − 𝑡𝑡). Similarly, for case 

with 𝑡𝑡 ∉ 𝑅𝑅, we implement  

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅+𝑡𝑡) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1𝑥𝑥𝑡𝑡
′ =

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

 

and 

�̂�𝛽(𝑅𝑅+𝑡𝑡) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1(𝑋𝑋𝑅𝑅
′ 𝑌𝑌𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑦𝑦𝑡𝑡) = �̂�𝛽𝑅𝑅 +
(𝑋𝑋𝑅𝑅

′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡
′

1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
𝜀𝜀�̂�𝑡(𝑅𝑅) 
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𝑆𝑆𝑅𝑅3 =
𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

=
𝜀𝜀�̂�𝑡(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

   . 

where �̂�𝜎𝑅𝑅−𝑡𝑡 can be derived by replacing the 𝑡𝑡 in equation (8) with (𝑅𝑅 − 𝑡𝑡). Similarly, for case 

with 𝑡𝑡 ∉ 𝑅𝑅, we implement  

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅+𝑡𝑡) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1𝑥𝑥𝑡𝑡
′ =

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

 

and 

�̂�𝛽(𝑅𝑅+𝑡𝑡) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1(𝑋𝑋𝑅𝑅
′ 𝑌𝑌𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑦𝑦𝑡𝑡) = �̂�𝛽𝑅𝑅 +
(𝑋𝑋𝑅𝑅

′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡
′

1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
𝜀𝜀�̂�𝑡(𝑅𝑅) 

  

 - median(

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡

′  . 

and the generalized potentials is 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ = {

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

     𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝑅𝑅

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)             𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝐷𝐷
 

where 𝐷𝐷 is any arbitrary deleted set of points (Imon 1996). The 𝑝𝑝𝑡𝑡𝑡𝑡
∗  is considered large if 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡

∗ ) + 3 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) 

where 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{|𝑝𝑝𝑡𝑡𝑡𝑡

∗ − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡
∗ )|}/0.6745. 

After deleting a group of 𝑚𝑚 size observations, the estimated parameters, �̂�𝛽(𝑅𝑅) is 

�̂�𝛽(𝑅𝑅) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

′ 𝑌𝑌𝑅𝑅  , 

and the 𝑡𝑡𝑡𝑡ℎ deletion residual is 

𝜀𝜀�̂�𝑡(𝑅𝑅) = 𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)  . 

Thus, the generalized externally studentized residual for 𝑡𝑡 ∈ 𝑅𝑅 becomes 

𝑆𝑆𝑅𝑅3 =
𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

=
𝜀𝜀�̂�𝑡(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

   . 

where �̂�𝜎𝑅𝑅−𝑡𝑡 can be derived by replacing the 𝑡𝑡 in equation (8) with (𝑅𝑅 − 𝑡𝑡). Similarly, for case 

with 𝑡𝑡 ∉ 𝑅𝑅, we implement  

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅+𝑡𝑡) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1𝑥𝑥𝑡𝑡
′ =

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

 

and 

�̂�𝛽(𝑅𝑅+𝑡𝑡) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1(𝑋𝑋𝑅𝑅
′ 𝑌𝑌𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑦𝑦𝑡𝑡) = �̂�𝛽𝑅𝑅 +
(𝑋𝑋𝑅𝑅

′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡
′

1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
𝜀𝜀�̂�𝑡(𝑅𝑅) 

  

)|}/0.6745.
After deleting a group of  size observations, the 

estimated parameters, 

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡

′  . 

and the generalized potentials is 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ = {

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

     𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝑅𝑅

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)             𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝐷𝐷
 

where 𝐷𝐷 is any arbitrary deleted set of points (Imon 1996). The 𝑝𝑝𝑡𝑡𝑡𝑡
∗  is considered large if 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡

∗ ) + 3 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) 

where 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{|𝑝𝑝𝑡𝑡𝑡𝑡

∗ − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡
∗ )|}/0.6745. 

After deleting a group of 𝑚𝑚 size observations, the estimated parameters, �̂�𝛽(𝑅𝑅) is 

�̂�𝛽(𝑅𝑅) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

′ 𝑌𝑌𝑅𝑅  , 

and the 𝑡𝑡𝑡𝑡ℎ deletion residual is 

𝜀𝜀�̂�𝑡(𝑅𝑅) = 𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)  . 

Thus, the generalized externally studentized residual for 𝑡𝑡 ∈ 𝑅𝑅 becomes 

𝑆𝑆𝑅𝑅3 =
𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

=
𝜀𝜀�̂�𝑡(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

   . 

where �̂�𝜎𝑅𝑅−𝑡𝑡 can be derived by replacing the 𝑡𝑡 in equation (8) with (𝑅𝑅 − 𝑡𝑡). Similarly, for case 

with 𝑡𝑡 ∉ 𝑅𝑅, we implement  

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅+𝑡𝑡) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1𝑥𝑥𝑡𝑡
′ =

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

 

and 

�̂�𝛽(𝑅𝑅+𝑡𝑡) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1(𝑋𝑋𝑅𝑅
′ 𝑌𝑌𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑦𝑦𝑡𝑡) = �̂�𝛽𝑅𝑅 +
(𝑋𝑋𝑅𝑅

′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡
′

1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
𝜀𝜀�̂�𝑡(𝑅𝑅) 

  

is

and the tth deletion residual is

Thus, the generalized externally studentized residual for 
t ∈ R becomes

where 

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡

′  . 

and the generalized potentials is 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ = {

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

     𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝑅𝑅

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)             𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝐷𝐷
 

where 𝐷𝐷 is any arbitrary deleted set of points (Imon 1996). The 𝑝𝑝𝑡𝑡𝑡𝑡
∗  is considered large if 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡

∗ ) + 3 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) 

where 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{|𝑝𝑝𝑡𝑡𝑡𝑡

∗ − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡
∗ )|}/0.6745. 

After deleting a group of 𝑚𝑚 size observations, the estimated parameters, �̂�𝛽(𝑅𝑅) is 

�̂�𝛽(𝑅𝑅) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

′ 𝑌𝑌𝑅𝑅  , 

and the 𝑡𝑡𝑡𝑡ℎ deletion residual is 

𝜀𝜀�̂�𝑡(𝑅𝑅) = 𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)  . 

Thus, the generalized externally studentized residual for 𝑡𝑡 ∈ 𝑅𝑅 becomes 

𝑆𝑆𝑅𝑅3 =
𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

=
𝜀𝜀�̂�𝑡(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

   . 

where �̂�𝜎𝑅𝑅−𝑡𝑡 can be derived by replacing the 𝑡𝑡 in equation (8) with (𝑅𝑅 − 𝑡𝑡). Similarly, for case 

with 𝑡𝑡 ∉ 𝑅𝑅, we implement  

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅+𝑡𝑡) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1𝑥𝑥𝑡𝑡
′ =

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

 

and 

�̂�𝛽(𝑅𝑅+𝑡𝑡) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1(𝑋𝑋𝑅𝑅
′ 𝑌𝑌𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑦𝑦𝑡𝑡) = �̂�𝛽𝑅𝑅 +
(𝑋𝑋𝑅𝑅

′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡
′

1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
𝜀𝜀�̂�𝑡(𝑅𝑅) 

  

 can be derived by replacing the t in equation 
(8) with (R - t). Similarly, for case with

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡

′  . 

and the generalized potentials is 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ = {

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

     𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝑅𝑅

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)             𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝐷𝐷
 

where 𝐷𝐷 is any arbitrary deleted set of points (Imon 1996). The 𝑝𝑝𝑡𝑡𝑡𝑡
∗  is considered large if 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡

∗ ) + 3 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) 

where 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{|𝑝𝑝𝑡𝑡𝑡𝑡

∗ − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡
∗ )|}/0.6745. 

After deleting a group of 𝑚𝑚 size observations, the estimated parameters, �̂�𝛽(𝑅𝑅) is 

�̂�𝛽(𝑅𝑅) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

′ 𝑌𝑌𝑅𝑅  , 

and the 𝑡𝑡𝑡𝑡ℎ deletion residual is 

𝜀𝜀�̂�𝑡(𝑅𝑅) = 𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)  . 

Thus, the generalized externally studentized residual for 𝑡𝑡 ∈ 𝑅𝑅 becomes 

𝑆𝑆𝑅𝑅3 =
𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

=
𝜀𝜀�̂�𝑡(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

   . 

where �̂�𝜎𝑅𝑅−𝑡𝑡 can be derived by replacing the 𝑡𝑡 in equation (8) with (𝑅𝑅 − 𝑡𝑡). Similarly, for case 

with 𝑡𝑡 ∉ 𝑅𝑅, we implement  

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅+𝑡𝑡) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1𝑥𝑥𝑡𝑡
′ =

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

 

and 

�̂�𝛽(𝑅𝑅+𝑡𝑡) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1(𝑋𝑋𝑅𝑅
′ 𝑌𝑌𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑦𝑦𝑡𝑡) = �̂�𝛽𝑅𝑅 +
(𝑋𝑋𝑅𝑅

′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡
′

1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
𝜀𝜀�̂�𝑡(𝑅𝑅) 

  

, we 
implement 

To estimate the regression parameters, the ordinary least square (OLS) technique is 

used. Let �̂�𝛽 = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑌𝑌, then 𝑡𝑡𝑡𝑡ℎ residual is 

𝜀𝜀̂ = 𝑌𝑌 − 𝑋𝑋�̂�𝛽 . 

We fix these residuals into a weight matrix 𝑊𝑊, namely as leverage matrix, then 

𝜀𝜀̂ = (𝐼𝐼 − 𝑊𝑊)𝑌𝑌 

where 𝑊𝑊 = 𝑋𝑋(𝑋𝑋′𝑋𝑋)−1𝑋𝑋′. As the high leverage point is caused by a set of influential 𝑋𝑋-values, 

hence the diagonal element of 𝑊𝑊 is known as leverage value and denoted by 

𝑤𝑤𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑡𝑡(𝑋𝑋′𝑋𝑋)−1𝑥𝑥𝑡𝑡
′ . 

An observation is considered as high leverage point when 𝑤𝑤𝑡𝑡𝑡𝑡 is greater than the twice-the-

mean-rule, 2𝑚𝑚 𝑁𝑁⁄  (Hoaglin & Welsch 1978). 

As an extension, Hadi (1992) presented a single case deleted measure of leverage, 

which is commonly known as potentials, 𝑝𝑝𝑡𝑡𝑡𝑡, such as  

𝑝𝑝𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑡𝑡(𝑋𝑋(𝑡𝑡)
𝑡𝑡 𝑋𝑋(𝑡𝑡))−1𝑥𝑥𝑡𝑡

′ 

 

To estimate the regression parameters, the ordinary least square (OLS) technique is 

used. Let �̂�𝛽 = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑌𝑌, then 𝑡𝑡𝑡𝑡ℎ residual is 

𝜀𝜀̂ = 𝑌𝑌 − 𝑋𝑋�̂�𝛽 . 

We fix these residuals into a weight matrix 𝑊𝑊, namely as leverage matrix, then 

𝜀𝜀̂ = (𝐼𝐼 − 𝑊𝑊)𝑌𝑌 

where 𝑊𝑊 = 𝑋𝑋(𝑋𝑋′𝑋𝑋)−1𝑋𝑋′. As the high leverage point is caused by a set of influential 𝑋𝑋-values, 

hence the diagonal element of 𝑊𝑊 is known as leverage value and denoted by 

𝑤𝑤𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑡𝑡(𝑋𝑋′𝑋𝑋)−1𝑥𝑥𝑡𝑡
′ . 

An observation is considered as high leverage point when 𝑤𝑤𝑡𝑡𝑡𝑡 is greater than the twice-the-

mean-rule, 2𝑚𝑚 𝑁𝑁⁄  (Hoaglin & Welsch 1978). 

As an extension, Hadi (1992) presented a single case deleted measure of leverage, 

which is commonly known as potentials, 𝑝𝑝𝑡𝑡𝑡𝑡, such as  

𝑝𝑝𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑡𝑡(𝑋𝑋(𝑡𝑡)
𝑡𝑡 𝑋𝑋(𝑡𝑡))−1𝑥𝑥𝑡𝑡

′ 

 

𝑝𝑝𝑡𝑡𝑡𝑡 = 𝑤𝑤𝑡𝑡𝑡𝑡/(1 − 𝑤𝑤𝑡𝑡𝑡𝑡).   

A cut-off point for 𝑝𝑝𝑡𝑡𝑡𝑡 then can be calculated using median and median absolute deviation 

(MAD), that is 

𝑝𝑝𝑡𝑡𝑡𝑡 > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡) + 3 𝑀𝑀𝑀𝑀𝑀𝑀 (𝑝𝑝𝑡𝑡𝑡𝑡) 

where 𝑀𝑀𝑀𝑀𝑀𝑀 (𝑝𝑝𝑡𝑡𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{|𝑝𝑝𝑡𝑡𝑡𝑡 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡)|}/0.6745. 

Similar with the calculation of 𝜎𝜎2 in Crossover model section, we can define the 

estimator of variance, �̂�𝜎2 based on the data set with 𝑡𝑡𝑡𝑡ℎ observation deleted as 

 �̂�𝜎(𝑡𝑡)
2 = 1

(𝑁𝑁−𝑚𝑚−1) ∑ (𝑦𝑦𝑗𝑗 − 𝑥𝑥𝑗𝑗�̂�𝛽(−𝑡𝑡))2
𝑗𝑗  .                  (8) 

Consequently, the external studentized residual for a single case influence, SR3* becomes 

𝑆𝑆𝑆𝑆3∗ =
𝑦𝑦𝑗𝑗 − 𝑥𝑥𝑗𝑗�̂�𝛽(−𝑡𝑡)

�̂�𝜎(𝑡𝑡)
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡

   

𝑝𝑝𝑡𝑡𝑡𝑡 = 𝑤𝑤𝑡𝑡𝑡𝑡/(1 − 𝑤𝑤𝑡𝑡𝑡𝑡).   

A cut-off point for 𝑝𝑝𝑡𝑡𝑡𝑡 then can be calculated using median and median absolute deviation 

(MAD), that is 

𝑝𝑝𝑡𝑡𝑡𝑡 > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡) + 3 𝑀𝑀𝑀𝑀𝑀𝑀 (𝑝𝑝𝑡𝑡𝑡𝑡) 

where 𝑀𝑀𝑀𝑀𝑀𝑀 (𝑝𝑝𝑡𝑡𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{|𝑝𝑝𝑡𝑡𝑡𝑡 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡)|}/0.6745. 

Similar with the calculation of 𝜎𝜎2 in Crossover model section, we can define the 

estimator of variance, �̂�𝜎2 based on the data set with 𝑡𝑡𝑡𝑡ℎ observation deleted as 

 �̂�𝜎(𝑡𝑡)
2 = 1

(𝑁𝑁−𝑚𝑚−1) ∑ (𝑦𝑦𝑗𝑗 − 𝑥𝑥𝑗𝑗�̂�𝛽(−𝑡𝑡))2
𝑗𝑗  .                  (8) 

Consequently, the external studentized residual for a single case influence, SR3* becomes 

𝑆𝑆𝑆𝑆3∗ =
𝑦𝑦𝑗𝑗 − 𝑥𝑥𝑗𝑗�̂�𝛽(−𝑡𝑡)

�̂�𝜎(𝑡𝑡)
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡

   

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡

′  . 

and the generalized potentials is 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ = {

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

     𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝑅𝑅

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)             𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝐷𝐷
 

where 𝐷𝐷 is any arbitrary deleted set of points (Imon 1996). The 𝑝𝑝𝑡𝑡𝑡𝑡
∗  is considered large if 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡

∗ ) + 3 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) 

where 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{|𝑝𝑝𝑡𝑡𝑡𝑡

∗ − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡
∗ )|}/0.6745. 

After deleting a group of 𝑚𝑚 size observations, the estimated parameters, �̂�𝛽(𝑅𝑅) is 

�̂�𝛽(𝑅𝑅) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

′ 𝑌𝑌𝑅𝑅  , 

and the 𝑡𝑡𝑡𝑡ℎ deletion residual is 

𝜀𝜀�̂�𝑡(𝑅𝑅) = 𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)  . 

Thus, the generalized externally studentized residual for 𝑡𝑡 ∈ 𝑅𝑅 becomes 

𝑆𝑆𝑅𝑅3 =
𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

=
𝜀𝜀�̂�𝑡(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

   . 

where �̂�𝜎𝑅𝑅−𝑡𝑡 can be derived by replacing the 𝑡𝑡 in equation (8) with (𝑅𝑅 − 𝑡𝑡). Similarly, for case 

with 𝑡𝑡 ∉ 𝑅𝑅, we implement  

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅+𝑡𝑡) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1𝑥𝑥𝑡𝑡
′ =

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

 

and 

�̂�𝛽(𝑅𝑅+𝑡𝑡) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1(𝑋𝑋𝑅𝑅
′ 𝑌𝑌𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑦𝑦𝑡𝑡) = �̂�𝛽𝑅𝑅 +
(𝑋𝑋𝑅𝑅

′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡
′

1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
𝜀𝜀�̂�𝑡(𝑅𝑅) 

  

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡

′  . 

and the generalized potentials is 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ = {

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

     𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝑅𝑅

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)             𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝐷𝐷
 

where 𝐷𝐷 is any arbitrary deleted set of points (Imon 1996). The 𝑝𝑝𝑡𝑡𝑡𝑡
∗  is considered large if 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡

∗ ) + 3 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) 

where 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{|𝑝𝑝𝑡𝑡𝑡𝑡

∗ − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡
∗ )|}/0.6745. 

After deleting a group of 𝑚𝑚 size observations, the estimated parameters, �̂�𝛽(𝑅𝑅) is 

�̂�𝛽(𝑅𝑅) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

′ 𝑌𝑌𝑅𝑅  , 

and the 𝑡𝑡𝑡𝑡ℎ deletion residual is 

𝜀𝜀�̂�𝑡(𝑅𝑅) = 𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)  . 

Thus, the generalized externally studentized residual for 𝑡𝑡 ∈ 𝑅𝑅 becomes 

𝑆𝑆𝑅𝑅3 =
𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

=
𝜀𝜀�̂�𝑡(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

   . 

where �̂�𝜎𝑅𝑅−𝑡𝑡 can be derived by replacing the 𝑡𝑡 in equation (8) with (𝑅𝑅 − 𝑡𝑡). Similarly, for case 

with 𝑡𝑡 ∉ 𝑅𝑅, we implement  

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅+𝑡𝑡) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1𝑥𝑥𝑡𝑡
′ =

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

 

and 

�̂�𝛽(𝑅𝑅+𝑡𝑡) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1(𝑋𝑋𝑅𝑅
′ 𝑌𝑌𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑦𝑦𝑡𝑡) = �̂�𝛽𝑅𝑅 +
(𝑋𝑋𝑅𝑅

′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡
′

1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
𝜀𝜀�̂�𝑡(𝑅𝑅) 

  

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡

′  . 

and the generalized potentials is 
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𝑝𝑝𝑡𝑡𝑡𝑡
∗ = {

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

     𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝑅𝑅

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)             𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝐷𝐷
 

where 𝐷𝐷 is any arbitrary deleted set of points (Imon 1996). The 𝑝𝑝𝑡𝑡𝑡𝑡
∗  is considered large if 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡

∗ ) + 3 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) 

where 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{|𝑝𝑝𝑡𝑡𝑡𝑡

∗ − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡
∗ )|}/0.6745. 

After deleting a group of 𝑚𝑚 size observations, the estimated parameters, �̂�𝛽(𝑅𝑅) is 

�̂�𝛽(𝑅𝑅) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

′ 𝑌𝑌𝑅𝑅  , 

and the 𝑡𝑡𝑡𝑡ℎ deletion residual is 

𝜀𝜀�̂�𝑡(𝑅𝑅) = 𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)  . 

Thus, the generalized externally studentized residual for 𝑡𝑡 ∈ 𝑅𝑅 becomes 

𝑆𝑆𝑅𝑅3 =
𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

=
𝜀𝜀�̂�𝑡(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

   . 

where �̂�𝜎𝑅𝑅−𝑡𝑡 can be derived by replacing the 𝑡𝑡 in equation (8) with (𝑅𝑅 − 𝑡𝑡). Similarly, for case 

with 𝑡𝑡 ∉ 𝑅𝑅, we implement  

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅+𝑡𝑡) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1𝑥𝑥𝑡𝑡
′ =

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

 

and 

�̂�𝛽(𝑅𝑅+𝑡𝑡) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1(𝑋𝑋𝑅𝑅
′ 𝑌𝑌𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑦𝑦𝑡𝑡) = �̂�𝛽𝑅𝑅 +
(𝑋𝑋𝑅𝑅

′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡
′

1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
𝜀𝜀�̂�𝑡(𝑅𝑅) 

  

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡

′  . 

and the generalized potentials is 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ = {

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

     𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝑅𝑅

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)             𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝐷𝐷
 

where 𝐷𝐷 is any arbitrary deleted set of points (Imon 1996). The 𝑝𝑝𝑡𝑡𝑡𝑡
∗  is considered large if 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡

∗ ) + 3 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) 

where 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{|𝑝𝑝𝑡𝑡𝑡𝑡

∗ − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡
∗ )|}/0.6745. 

After deleting a group of 𝑚𝑚 size observations, the estimated parameters, �̂�𝛽(𝑅𝑅) is 

�̂�𝛽(𝑅𝑅) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

′ 𝑌𝑌𝑅𝑅  , 

and the 𝑡𝑡𝑡𝑡ℎ deletion residual is 

𝜀𝜀�̂�𝑡(𝑅𝑅) = 𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)  . 

Thus, the generalized externally studentized residual for 𝑡𝑡 ∈ 𝑅𝑅 becomes 

𝑆𝑆𝑅𝑅3 =
𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

=
𝜀𝜀�̂�𝑡(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

   . 

where �̂�𝜎𝑅𝑅−𝑡𝑡 can be derived by replacing the 𝑡𝑡 in equation (8) with (𝑅𝑅 − 𝑡𝑡). Similarly, for case 

with 𝑡𝑡 ∉ 𝑅𝑅, we implement  

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅+𝑡𝑡) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1𝑥𝑥𝑡𝑡
′ =

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

 

and 

�̂�𝛽(𝑅𝑅+𝑡𝑡) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1(𝑋𝑋𝑅𝑅
′ 𝑌𝑌𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑦𝑦𝑡𝑡) = �̂�𝛽𝑅𝑅 +
(𝑋𝑋𝑅𝑅

′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡
′

1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
𝜀𝜀�̂�𝑡(𝑅𝑅) 

  



1586 

and

to compute the generalized external studentized residual 
for 

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡

′  . 

and the generalized potentials is 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ = {

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

     𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝑅𝑅

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)             𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝐷𝐷
 

where 𝐷𝐷 is any arbitrary deleted set of points (Imon 1996). The 𝑝𝑝𝑡𝑡𝑡𝑡
∗  is considered large if 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡

∗ ) + 3 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) 

where 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{|𝑝𝑝𝑡𝑡𝑡𝑡

∗ − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡
∗ )|}/0.6745. 

After deleting a group of 𝑚𝑚 size observations, the estimated parameters, �̂�𝛽(𝑅𝑅) is 

�̂�𝛽(𝑅𝑅) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

′ 𝑌𝑌𝑅𝑅  , 

and the 𝑡𝑡𝑡𝑡ℎ deletion residual is 

𝜀𝜀�̂�𝑡(𝑅𝑅) = 𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)  . 

Thus, the generalized externally studentized residual for 𝑡𝑡 ∈ 𝑅𝑅 becomes 

𝑆𝑆𝑅𝑅3 =
𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

=
𝜀𝜀�̂�𝑡(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

   . 

where �̂�𝜎𝑅𝑅−𝑡𝑡 can be derived by replacing the 𝑡𝑡 in equation (8) with (𝑅𝑅 − 𝑡𝑡). Similarly, for case 

with 𝑡𝑡 ∉ 𝑅𝑅, we implement  

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅+𝑡𝑡) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1𝑥𝑥𝑡𝑡
′ =

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

 

and 

�̂�𝛽(𝑅𝑅+𝑡𝑡) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1(𝑋𝑋𝑅𝑅
′ 𝑌𝑌𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑦𝑦𝑡𝑡) = �̂�𝛽𝑅𝑅 +
(𝑋𝑋𝑅𝑅

′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡
′

1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
𝜀𝜀�̂�𝑡(𝑅𝑅) 

  

 such as

In summary, the generalized studentized residuals for a 
data set are as below:
                                  

   (9)

The rule for deciding an observation as outlier is similar 
to the rule used for cases using SR3*.

POWER OF PERFORMANCE

An extensive simulation study is conducted to 
investigate the performance of three outlier detection 
methods for bioavailability trials: procedures using 
SR1, SR2 and SR3, respectively. As stated by Lim et al. 
(2016), random samples are generated based on the 
model suggested by Luzar-Stiffler and Stiffler (2005) 
such as

where the between-subject, zk0, and within-subject, 
zki, variations are the independent and identically 
standard normal where i = 1, 2 and k = 1, 2, …, ni. For 
simplicity, we assume the values of ni are equal and 
the total sample size, N = ∑ni. Consider the ni values of 
10, 30 and 50 in this simulation, the corresponding 
values N then become 20, 60 and 100, respectively. 
Without the loss of generality, the treatment 1 mean, μ1 
is set as 100 while the treatment 2 mean, μ2 takes the 
values of 60, 80, 90, 100, 110, and 125, respectively. 
Changes in the difference between two treatment means 
may exam the capability of outlier detection methods. 
Furthermore, the constant value, γ is assigned to be 0.5, 
5, 10, 15, 30, and 40, which represents the coefficient 
of the intra-subject variation of 0.5%, 5%, 10%, 15%, 

30%, and 40% for the treatment 1, respectively. The 
first subject is assigned as outlier by multiplying the 
responses Y11 and Y12 with a constant p which varies 
from 10% to 200%. 

With the contaminated samples presented, we 
proceed to the power studies for procedure using SR1. 
We calculate the residual in equation (3) and its variance 
in equation (4) using the contaminated samples of Yki, 
so that studentized residuals SR1 in equation (5) can 
be computed. The similar calculations are repeated 
200 times and the frequency of correctly identifying 
the assigned outlier are recorded. Thus, the power 
of performance (Q), also known as the percentage 
of correctly identifying the assigned outlier, can be 
computed as follows,

where g is the frequency of correctly identifying the 
assigned the assigned outlier. For the power studies 
for both procedures using SR2 and SR3, we use the 
same contaminated samples of Yki in the power studies 
above to count the studentized residual using median 
absolute deviation, SR2 in equation (6) and the 
generalized studentized residuals in equation (9). We 
then repeat these calculations (200) times and record 
the corresponding frequency of correctly identifying 
the assigned outlier. With the same combination 
of mean treatment 2 (μ2), same sizes of group with 
treatment (ni), constant γ and constant p, finally the 
power of performance for procedures SR2 and SR3 can 
be calculated accordingly. 

Tables 2-4 present the percentage of correctly 
identifying the assigned outlier for all procedures 
considered with sample sizes of 20, 60, and 100, 
respectively. For all sample sizes we consider, the results 
show that percentages of detection for all procedures 
using SR1, SR2 and SR3 are almost 100% when γ = 0.5 
and 5. There is a decreasing in percentages of detection 
when γ increases from 10 to 40, especially for procedure 
using SR1. The dramatically drop in percentages of 
detection indicates that the procedure using SR1 is not 
a significant outlier detection method for bioavailability 
trials. On the other hand, the procedure using SR2 remains 
as the most powerful than others as the decreasing in 
percentages of detection is much slightly. However, the 
procedure using SR3 can be considered as an alternative 
outlier detection method for bioavailability trials due to 
its high percentages of detection when sample size is 
large.

𝑆𝑆𝑆𝑆3 =
𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅+𝑡𝑡)

�̂�𝜎𝑅𝑅
2√1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅+𝑡𝑡)

=
𝜀𝜀�̂�𝑡(𝑅𝑅)

�̂�𝜎𝑅𝑅
2√1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

   . 

 

𝑆𝑆𝑆𝑆3 =
𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅+𝑡𝑡)

�̂�𝜎𝑅𝑅
2√1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅+𝑡𝑡)

=
𝜀𝜀�̂�𝑡(𝑅𝑅)

�̂�𝜎𝑅𝑅
2√1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

   . 

In summary, the generalized studentized residuals for a data set are as below: 

          𝑆𝑆𝑆𝑆3 = {
�̂�𝜀𝑡𝑡(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1−𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

    𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝑆𝑆
�̂�𝜀𝑡𝑡(𝑅𝑅)

�̂�𝜎𝑅𝑅
2√1+𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

      𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∉ 𝑆𝑆
                              (9) 

 
 
 

𝑌𝑌𝑘𝑘𝑘𝑘 = 𝛾𝛾(𝑧𝑧𝑘𝑘0 + 𝑧𝑧𝑘𝑘𝑘𝑘) + 𝜇𝜇𝑘𝑘 

  

𝑆𝑆𝑆𝑆3 =
𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅+𝑡𝑡)

�̂�𝜎𝑅𝑅
2√1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅+𝑡𝑡)

=
𝜀𝜀�̂�𝑡(𝑅𝑅)

�̂�𝜎𝑅𝑅
2√1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

   . 

In summary, the generalized studentized residuals for a data set are as below: 

          𝑆𝑆𝑆𝑆3 = {
�̂�𝜀𝑡𝑡(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1−𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

    𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝑆𝑆
�̂�𝜀𝑡𝑡(𝑅𝑅)

�̂�𝜎𝑅𝑅
2√1+𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

      𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∉ 𝑆𝑆
                              (9) 

 
 
 

𝑌𝑌𝑘𝑘𝑘𝑘 = 𝛾𝛾(𝑧𝑧𝑘𝑘0 + 𝑧𝑧𝑘𝑘𝑘𝑘) + 𝜇𝜇𝑘𝑘 

  

𝑄𝑄 = 𝑔𝑔 
200 × 100%  , 

  

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡

′  . 

and the generalized potentials is 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ = {

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

     𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝑅𝑅

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)             𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝐷𝐷
 

where 𝐷𝐷 is any arbitrary deleted set of points (Imon 1996). The 𝑝𝑝𝑡𝑡𝑡𝑡
∗  is considered large if 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡

∗ ) + 3 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) 

where 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{|𝑝𝑝𝑡𝑡𝑡𝑡

∗ − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡
∗ )|}/0.6745. 

After deleting a group of 𝑚𝑚 size observations, the estimated parameters, �̂�𝛽(𝑅𝑅) is 

�̂�𝛽(𝑅𝑅) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

′ 𝑌𝑌𝑅𝑅  , 

and the 𝑡𝑡𝑡𝑡ℎ deletion residual is 

𝜀𝜀�̂�𝑡(𝑅𝑅) = 𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)  . 

Thus, the generalized externally studentized residual for 𝑡𝑡 ∈ 𝑅𝑅 becomes 

𝑆𝑆𝑅𝑅3 =
𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

=
𝜀𝜀�̂�𝑡(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

   . 

where �̂�𝜎𝑅𝑅−𝑡𝑡 can be derived by replacing the 𝑡𝑡 in equation (8) with (𝑅𝑅 − 𝑡𝑡). Similarly, for case 

with 𝑡𝑡 ∉ 𝑅𝑅, we implement  

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅+𝑡𝑡) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1𝑥𝑥𝑡𝑡
′ =

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

 

and 

�̂�𝛽(𝑅𝑅+𝑡𝑡) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1(𝑋𝑋𝑅𝑅
′ 𝑌𝑌𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑦𝑦𝑡𝑡) = �̂�𝛽𝑅𝑅 +
(𝑋𝑋𝑅𝑅

′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡
′

1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
𝜀𝜀�̂�𝑡(𝑅𝑅) 

  

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡

′  . 

and the generalized potentials is 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ = {

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

     𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝑅𝑅

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)             𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝐷𝐷
 

where 𝐷𝐷 is any arbitrary deleted set of points (Imon 1996). The 𝑝𝑝𝑡𝑡𝑡𝑡
∗  is considered large if 

𝑝𝑝𝑡𝑡𝑡𝑡
∗ > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡

∗ ) + 3 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) 

where 𝑀𝑀𝑀𝑀𝐷𝐷 (𝑝𝑝𝑡𝑡𝑡𝑡
∗ ) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{|𝑝𝑝𝑡𝑡𝑡𝑡

∗ − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑡𝑡𝑡𝑡
∗ )|}/0.6745. 

After deleting a group of 𝑚𝑚 size observations, the estimated parameters, �̂�𝛽(𝑅𝑅) is 

�̂�𝛽(𝑅𝑅) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅)−1𝑋𝑋𝑅𝑅

′ 𝑌𝑌𝑅𝑅  , 

and the 𝑡𝑡𝑡𝑡ℎ deletion residual is 

𝜀𝜀�̂�𝑡(𝑅𝑅) = 𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)  . 

Thus, the generalized externally studentized residual for 𝑡𝑡 ∈ 𝑅𝑅 becomes 

𝑆𝑆𝑅𝑅3 =
𝑦𝑦𝑡𝑡 − 𝑥𝑥𝑡𝑡�̂�𝛽(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

=
𝜀𝜀�̂�𝑡(𝑅𝑅)

�̂�𝜎𝑅𝑅−𝑡𝑡
2 √1 − 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

   . 

where �̂�𝜎𝑅𝑅−𝑡𝑡 can be derived by replacing the 𝑡𝑡 in equation (8) with (𝑅𝑅 − 𝑡𝑡). Similarly, for case 

with 𝑡𝑡 ∉ 𝑅𝑅, we implement  

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅+𝑡𝑡) = 𝑥𝑥𝑡𝑡(𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1𝑥𝑥𝑡𝑡
′ =

𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)

 

and 

�̂�𝛽(𝑅𝑅+𝑡𝑡) = (𝑋𝑋𝑅𝑅
′ 𝑋𝑋𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑥𝑥𝑡𝑡)−1(𝑋𝑋𝑅𝑅
′ 𝑌𝑌𝑅𝑅 + 𝑥𝑥𝑡𝑡

′𝑦𝑦𝑡𝑡) = �̂�𝛽𝑅𝑅 +
(𝑋𝑋𝑅𝑅

′ 𝑋𝑋𝑅𝑅)−1𝑥𝑥𝑡𝑡
′

1 + 𝑤𝑤𝑡𝑡𝑡𝑡(𝑅𝑅)
𝜀𝜀�̂�𝑡(𝑅𝑅) 
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TABLE 2. Percentage of correctly identifying the assigned outlier for sample size of 20

p
(%)

SR1 SR2 SR3
γ γ γ

0.5 5 10 15 30 40 0.5 5 10 15 30 40 0.5 5 10 15 30 40
60 10 100 100 100 89 15 6 100 100 100 99.5 88 89.5 100 100 100 100 71.5 55

30 100 100 95.5 62 13 6 100 100 100 92 90 95 100 100 100 99 58.5 52

50 100 100 85 54 13 6 100 100 98.5 92 95.5 96 100 100 99.5 88 55 51.5

130 100 100 94.5 74.5 33 21.5 100 100 97 93.5 97.5 97 100 83 67.5 65.5 61.5 62

150 100 100 99 87 46 31.5 100 100 100 98 97.5 97.5 100 99.5 89.5 78 69 66.5

200 100 100 100 99 76.5 61.5 100 100 100 100 98.5 99 100 100 99.5 98 83.5 79

80 10 100 100 100 99.5 10.5 3.5 100 100 100 100 94.5 93.5 100 100 100 100 66.5 53.5

30 100 100 99.5 65 5 2.5 100 100 100 99.5 91.5 95 100 100 100 99 56.5 51

50 100 100 76 21.5 3.5 2.5 100 100 97.5 90.5 94.5 96.5 100 100 99.5 83.5 52 50.5

130 100 99.5 77.5 49.5 20 13.5 100 100 95.5 98 96 98 100 94.5 76 70.5 64 62

150 100 100 97.5 78 35 26.5 100 100 99 99 96 98.5 100 100 93.5 82.5 71.5 67.5

200 100 100 100 99 74 55 100 100 100 100 99.5 100 100 100 100 98.5 85.5 80.5

90 10 100 100 100 100 13.5 3.5 100 100 100 100 98.5 97 100 100 100 100 64 53.5

30 100 100 80.5 100 4.5 2 100 100 100 99.5 95 96 100 100 100 98.5 55.5 50

50 100 100 29.5 85.5 3 2 100 100 99.5 97.5 95 96 100 100 99.5 82 50.5 49

130 100 99.5 38 65 16.5 11 100 100 99.5 96.5 98 99 100 98.5 80 71.5 62.5 62.5

150 100 100 70.5 94.5 32 25 100 100 100 99.5 98 97.5 100 100 96 85 71 65.5

200 100 100 98.5 100 72 52 100 100 100 100 100 99.5 100 100 100 99.5 87.5 81.5

100 10 100 100 100 100 16 2.5 100 100 100 100 98.5 96.5 100 100 100 100 64 53

30 100 100 100 88 4 1 100 100 100 100 97.5 96 100 100 100 97.5 54 50

50 100 100 94.5 41 1 0.5 100 100 100 99.5 96 96 100 100 98.5 78.5 50 48.5

130 100 98.5 51 27 11 8.5 100 100 99.5 99 98 97.5 100 99 82.5 75 62 62

150 100 100 89.5 60.5 27.5 21.5 100 100 100 99.5 98.5 98.5 100 100 97.5 87.5 74 66

200 100 100 100 98.5 65.5 51 100 100 100 100 100 99 100 100 100 99.5 89 81

110 10 100 100 100 100 24.5 4.5 100 100 100 100 99.5 98 100 100 100 100 62 54

30 100 100 100 94.5 7.5 2.5 100 100 100 100 96.5 95.5 100 100 100 96 53 51

50 100 100 98 55 2.5 1.5 100 100 100 98.5 96 96 100 100 98 77 52 49.5

130 100 93.5 42 23.5 10.5 9 100 99.5 99 97.5 97.5 97 100 99.5 87 76 62.5 61.5

150 100 100 83 55 27 21.5 100 100 99.5 100 98 98.5 100 100 99 91 73.5 67.5

200 100 100 100 97 64.5 51 100 100 100 100 100 99.5 100 100 100 99.5 89 82

125 10 100 100 100 100 33 9.5 100 100 100 100 99 95 100 100 100 100 59.5 53.5

30 100 100 100 98 13.5 4.5 100 100 100 100 95.5 93 100 100 100 98 52 52.5

50 100 100 99 77.5 7 3.5 100 100 100 98.5 93.5 93.5 100 100 94.5 71.5 53.5 52.5

130 100 97.5 54.5 29.5 11 9.5 100 100 94 95.5 97.5 97.5 100 100 87.5 75.5 63 61.5

150 100 100 82 54.5 25.5 21 100 100 99.5 97.5 97.5 98 100 100 98.5 90.5 73.5 67.5

200 100 100 100 96.5 60 49 100 100 100 99.5 99 98.5 100 100 100 100 91.5 83

μ2
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TABLE 3. Percentage of correctly identifying the assigned outlier for sample size of 60

p
(%)

SR1 SR2 SR3
γ γ γ

0.5 5 10 15 30 40 0.5 5 10 15 30 40 0.5 5 10 15 30 40
60 10 100 100 100 99 47 32 100 100 100 100 92 93.5 100 100 100 100 80 70.5

30 100 100 100 89 47 32 100 100 95 90.5 93 93.5 100 100 100 100 75.5 72

50 100 100 99.5 88.5 47 32 100 100 89 91 93.5 94.5 100 100 100 94.5 75 72

130 100 100 99.5 93 57.5 40.5 100 100 97.5 95 95 93.5 100 87.5 84.5 78.5 76 76.5

150 100 100 100 97 70 50 100 100 99.5 97 96.5 95.5 100 100 92 87.5 80 79.5

200 100 100 100 100 83.5 72 100 100 100 100 97 97 100 100 100 99 92 88

      

80 10 100 100 100 100 19.5 16.5 100 100 100 100 93.5 93.5 100 100 100 100 73.5 68.5

30 100 100 100 76 19.5 16.5 100 100 100 99 93.5 95 100 100 100 100 70 69

50 100 100 88 49 19.5 16.5 100 100 98.5 94.5 95 95 100 100 100 92.5 69.5 69.5

130 100 100 88.5 70 31.5 24.5 100 100 97 96.5 95.5 95 100 98 86 81.5 78.5 75.5

150 100 100 98 83 44 37 100 100 99.5 97 97 95 100 100 97 89 82.5 79

200 100 100 100 99 72.5 65.5 100 100 100 100 98.5 97.5 100 100 100 99 90.5 88

      

90 10 100 100 100 100 14 11.5 100 100 100 100 93 92.5 100 100 100 100 69.5 68

30 100 100 100 80.5 14 11.5 100 100 100 99.5 91.5 93 100 100 100 100 69.5 69

50 100 100 87 30.5 14 11.5 100 100 99.5 97.5 92 93.5 100 100 100 89 70 69.5

130 100 99.5 72.5 46.5 24 19.5 100 100 97.5 97 94.5 94 100 99.5 87 83.5 77 75.5

150 100 100 95 70.5 38.5 29 100 100 100 98.5 95.5 95.5 100 100 98 90 84 80

200 100 100 100 96.5 70.5 61 100 100 100 100 98 97.5 100 100 100 99.5 91 89

      

100 10 100 100 100 100 9.5 8 100 100 100 100 96.5 92 100 100 100 100 69.5 67

30 100 100 100 91 8 8 100 100 100 100 94 92 100 100 100 100 68 69.5

50 100 100 96 33.5 9 8 100 100 100 98 92.5 92 100 100 100 84.5 70.5 70

130 100 97.5 54 32 17 16 100 100 98 97 94.5 93.5 100 100 88.5 83 77 75.5

150 100 100 89 63.5 32.5 25 100 100 100 98 96.5 95.5 100 100 99.5 91.5 83 79.5

200 100 100 100 96.5 66.5 55 100 100 100 100 98 97 100 100 100 100 91.5 89

      

110 10 100 100 100 100 16.5 12.5 100 100 100 100 97 92.5 100 100 100 100 68 67.5

30 100 100 100 98 14.5 12.5 100 100 100 100 93.5 92.5 100 100 100 99.5 69.5 69.5

50 100 100 99 56.5 14.5 12.5 100 100 100 99.5 92 93 100 100 99.5 84 71 70

130 100 98 59.5 35.5 22.5 19.5 100 99.5 95 96 94 94 100 100 90 84.5 77 76

150 100 100 86 64 35.5 28 100 100 98.5 97.5 95.5 95.5 100 100 99.5 92 83 80

200 100 100 100 95 68.5 58 100 100 100 100 98 97.5 100 100 100 100 91.5 89

      

125 10 100 100 100 100 30 18.5 100 100 100 100 97 94 100 100 100 100 68 68.5

30 100 100 100 99 26.5 18.5 100 100 100 100 95.5 94 100 100 100 99 69 69.5

50 100 100 100 86.5 25 18.5 100 100 100 99.5 94.5 95 100 100 98.5 79 70 71.5

130 100 99.5 89.5 63.5 30.5 21.5 100 99 96 95.5 94.5 94.5 100 100 92.5 87 80.5 77.5

150 100 100 94.5 79 39.5 31.5 100 100 98 98 95.5 95.5 100 100 98.5 92.5 85.5 81.5

200 100 100 100 98 70 58 100 100 100 99.5 97.5 98 100 100 100 100 92 89

μ2
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TABLE 4. Percentage of correctly identifying the assigned outlier for sample size of 100

p
(%)

SR1 SR2 SR3
γ γ γ

0.5 5 10 15 30 40 0.5 5 10 15 30 40 0.5 5 10 15 30 40
60 10 100 100 100 99.5 69.5 53 100 100 100 99 92 90 100 100 100 100 87 82.5

30 100 100 100 97 69.5 53 100 100 98.5 91 92.5 90 100 100 100 100 85 83

50 100 100 100 97 69.5 53 100 100 93.5 91.5 93 91 100 100 100 96.5 85 84

130 100 100 100 97.5 73 56 100 100 96 94 93 92 100 96.5 90.5 89 84.5 85.5

150 100 100 100 99 78 61 100 100 99.5 97 94 93 100 100 96.5 94 86.5 85

200 100 100 100 99.5 92 81 100 100 100 99.5 97 96 100 100 100 99.5 94 91

      

80 10 100 100 100 100 39 32 100 100 100 100 90.5 92.5 100 100 100 100 84 82.5

30 100 100 100 82.5 39 32 100 100 100 99 90.5 92.5 100 100 100 100 83 83

50 100 100 94 70 39 32 100 100 97 93 91.5 93.5 100 100 100 95.5 83 83.5

130 100 100 96 79 44 34.5 100 100 96 94 93.5 94.5 100 99.5 91.5 86 85.5 84.5

150 100 100 99.5 91 53.5 43 100 100 99.5 97 94.5 96 100 100 98 93.5 86.5 86

200 100 100 100 98.5 82.5 69 100 100 100 99.5 97.5 98 100 100 100 99 95 93

      

90 10 100 100 100 100 28.5 27.5 100 100 100 100 92.5 92 100 100 100 100 84.5 81.5

30 100 100 100 88.5 28.5 27.5 100 100 100 100 92.5 92 100 100 100 100 81.5 82.5

50 100 100 93 48 28.5 27.5 100 100 99.5 93 93 93.5 100 100 100 94 82 82.5

130 100 100 80 53.5 33.5 30 100 100 96 95.5 93.5 94 100 99 91.5 87 85 83

150 100 100 95.5 81.5 43.5 39.5 100 100 99.5 97.5 94.5 94.5 100 100 98 94 87.5 85

200 100 100 100 98 77.5 66 100 100 100 99.5 97.5 97 100 100 100 99 94.5 93

      

100 10 100 100 100 100 21 20.5 100 100 100 100 94.5 93 100 100 100 100 81 81

30 100 100 100 97 20.5 20.5 100 100 100 100 93 92.5 100 100 100 100 81.5 82

50 100 100 98 39 20.5 20.5 100 100 100 99 93 92.5 100 100 100 92 82 82.5

130 100 97.5 56 34 24.5 23.5 100 99.5 96.5 95 94.5 94.5 100 99.5 93 87.5 84 83.5

150 100 100 91.5 67 34.5 32.5 100 100 99 98 94.5 95 100 100 99.5 94.5 87 85.5

200 100 100 100 97.5 74 61.5 100 100 100 99 98 97.5 100 100 100 99 94 92.5

      

110 10 100 100 100 100 30 28 100 100 100 100 95.5 92 100 100 100 100 80.5 79

30 100 100 100 98.5 29.5 28 100 100 100 100 93 92 100 100 100 100 79 81

50 100 100 100 63 29.5 28 100 100 100 98 93 93 100 100 100 90 79.5 81

130 100 98 64 45 32 31 100 99 93.5 94 93.5 93.5 100 100 94.5 88 84 84

150 100 100 90 68 41.5 37.5 100 100 98.5 97.5 94.5 94.5 100 100 99.5 95 86.5 85

200 100 100 100 98 75 62 100 100 100 99.5 98 96.5 100 100 100 99.5 94 93

      

125 10 100 100 100 100 44.5 36.5 100 100 100 100 93 93 100 100 100 100 78.5 79.5

30 100 100 100 100 44 36.5 100 100 100 100 92 93 100 100 100 99.5 79.5 80

50 100 100 100 92.5 43.5 36.5 100 100 100 98 91.5 93.5 100 100 99.5 86 80 81

130 100 100 96 79 46 39 100 96 93.5 92 92 94 100 100 96 89 84.5 83.5

150 100 100 98.5 85 51.5 43 100 100 96 94 92.5 94 100 100 99.5 96 88 85.5

200 100 100 100 97 77.5 64.5 100 100 100 100 96.5 96 100 100 100 99.5 94.5 93

μ2
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APPLICATION ON BIOAVAILABILITY DATA

In this section, a real dataset from bioavailability 
study is used for illustration purpose. We consider the 
plasma concentration-time curve (AUC) dataset from 
two erythromycin formulations, which was published 
by Clayton and Leslie in 1981 (Table 5). With the 
participation of 18 subjects, a crossover trial was 
carried out and it aimed to evaluate a new erythromycin 
formulation (i.e., erythromycin stearate) with a 
reference formulation (i.e., erythromycin base). Since 
there is no sequence identification of each subject is 
provided by Clayton and Leslie (1981), thus, we adapt 
the order of periods given in Weiner (1989) and assign 
subjects 1 through 9 as sequence 1 while the remaining 
subjects as sequence 2. 

Initially, the existence of outlying subjects in the 
dataset can be illustrated through a scatter plot as Figure 
1, wherein the subject 7 in group 1 is obviously far from 
most observations. As per Table 6, we may conclude that 
there are three outliers are detected in this AUC data by 
the procedure using SR1 as the mean of both periods is 
quite high. Besides, the procedure using SR2 detects five 
outliers detected in this AUC data as presented in Table 
7, while the procedure using SR3 able to identify four 
outliers as shown in Table 8. In summary, the results prove 
that the subject 7 in group 1 is significantly recognized 
as outlying subject by using all procedures considered 
in this study. These results are in accordance with the 
results presented by Chow and Liu (2009), whereas the 
used methods are two-sample Hotelling T2 and likelihood 
distance. 

TABLE 5. Plasma concentration-time curve (AUC) for two erythromycin formulations

Subject Sequence
AUC (mcg ∙ h ∙ mL-1)

Treatment 1 (Base) Treatment 2 (Stearate)

1 BS 5.47 2.52

2 BS 4.84 8.87

3 BS 2.25 0.79

4 BS 1.82 1.68

5 BS 7.87 6.95

6 BS 3.25 1.05

7 BS 12.39 0.99

8 BS 4.77 5.60

9 BS 1.88 3.16

10 SB 4.98 3.19

11 SB 7.14 9.83

12 SB 1.81 2.91

13 SB 7.34 4.58

14 SB 4.25 7.05

15 SB 6.66 3.41

16 SB 4.76 2.49

17 SB 7.16 6.18

18 SB 5.52 2.85
Table adapted from Clayton and Leslie (1981)
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TABLE 6. Outlier detected by the procedure using SR1

Number of outliers detected Subject detected as outlier
AUC (mcg ∙ h ∙ mL-1)

Period 1 Period 2

1 Subject 7 12.39 0.99

2 Subject 11 9.83 7.14

3 Subject 2 4.84 8.87

Mean 9.02 5.67

TABLE 7. Outlier detected by the procedure using SR2

Number of outliers detected Subject detected as outlier
AUC (mcg ∙ h ∙ mL-1)

Period 1 Period 2

1 Subject 7 12.39 0.99

2 Subject 11 9.83 7.14

3 Subject 2 4.84 8.87

4 Subject 5 7.87 6.95

5 Subject 14 7.05 4.25

Mean 8.40 5.64

TABLE 8. Outlier detected by the procedure using SR3

Number of outliers detected Subject detected as outlier
AUC (mcg ∙ h ∙ mL-1)

Period 1 Period 2

1 Subject 7 12.39 0.99

2 Subject 2 4.84 8.87

3 Subject 11 9.83 7.14

4 Subject 5 7.87 6.95

Mean 8.73 5.99
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CONCLUSION

In this paper, we have considered the problem of 
detecting outlier in bioavailability trial based on 
residual. We propose the procedure using generalized 
studentized residual  (SR3)  and invest igate i ts 
performance with two existing procedures that using 
classical studentized residual (SR1) and studentized 
residual based on median absolute deviation (SR2). 
Their performance in detecting the outlying subject is 
compared via a simulation study. It is observed that the 
percentage of correctly identifying the assigned outlier 
(Q) for the procedure using SR3 always higher than 
that using SR1, and it tends to provide the similar results 
as the procedure using SR2 (Tables 2 - 4). Hence, we 
may conclude that the procedure using SR3 performs 
more powerful than that using SR1, and comparable 
with the procedure SR2. As an illustration, all procedures 
are applied to the AUC dataset and the capability of our 
proposed procedure in identifying the possible outlying 
subjects in bioavailability trial is confirmed.
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