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ABSTRACT

Outliers are some observation points outside the usual pattern of the other observations. It is essential to detect 
outliers as anomalous observations can affect the inference made in the analysis. In this study, we propose an efficient 
clustering procedure to identify multiple outliers in the linear functional relationship model using the single linkage 
algorithm with the Euclidean distance as the similarity measure. A new robust cut-off point using the median and median 
absolute deviation for the tree heights to classify the potential outliers are proposed in this study. Experimental 
results from the simulation study suggest our proposed method is able to identify the presence of multiple outliers 
with very small probability of swamping and masking. Application in real data also shows that the proposed clustering 
method for this linear functional relationship model successfully detects the outliers, thus suggesting the method’s 
practicality in real-world problems.
Keywords: Clustering; linear; measurement error; multiple outliers

ABSTRAK

Data terpencil merupakan pemerhatian data yang berada di luar corak pemerhatian data yang lain. Menentukan 
data terpencil adalah penting kerana pemerhatian yang luar biasa boleh mempengaruhi inferens yang dibuat ke atas 
analisis tersebut. Dalam kajian ini, kami mencadangkan kaedah berkelompok yang lebih kukuh untuk menentukan 
data terpencil berganda bagi model linear hubungan fungsian (LFRM) menggunakan satu hubungan algoritma dengan 
jarak Euclidean sebagai ukuran bersama. Satu nilai potongan yang kukuh dicadangkan untuk mengumpulkan data 
terpencil berganda dengan menggunakan median dan median sisihan mutlak bagi menentukan ketinggian pokok 
tersebut. Keputusan uji kaji berdasarkan simulasi menunjukkan kaedah yang dicadangkan berjaya mengesan data 
terpencil berganda di dalam sesebuah set data dan menunjukkan prestasi yang bagus dengan nilai ‘masking’ dan 
‘swamping’ yang rendah. Aplikasi pada data sebenar juga menunjukkan kaedah berkelompok yang dicadangkan bagi 
model linear hubungan fungsian (LFRM) ini berjaya menentukan data terpencil, justeru, dicadangkan penggunaan 
kaedah ini dalam aplikasi pada data dunia yang sebenar.
Kata kunci: Berkelompok; kesilapan pengukuran; linear; terpencil berganda
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INTRODUCTION

Presence of outliers is unavoidable in many fields 
of r esea rch ,  fo r  example  in  the  b iomedica l , 
environmental, material science, and medical field, 
which also includes the recent COVID-19 pandemic 
(Atkinson 1985; Brzezińska & Horyń 2021; Li et al. 
2016; Oh & Gao 2009; O’Leary et al. 2016). Outlier in 
a data set can be classified as a single outlier or multiple 
outliers. Identifying a single outlier is quite simple from 
the analytical and computational side, but when there is 
more than one outlier, it becomes challenging as there 
may be masking and swamping effects. Masking happens 
when an outlier is unable to be detected as a true outlier, 
while swamping happens when ‘clean’ observations or 
inliers are falsely detected as outliers. Masking seems to 
be a more serious issue than swamping, but both these 
problems should be addressed so that appropriate analysis 
can be done on the data set (Sebert, Montgomery & 
Rollier 1998). 

Many research works have been done in identifying 
outliers with normality assumptions, in regression 
modelling, where the normality assumption is used 
(Adnan, Mohamad & Setan 2003; Rousseeuw & Leroy 
1987; Serbert et al. 1998; Toutenburg, Chatterjee & Hadi 
1990). However, in real life situation, the variables cannot 
be exactly recorded, where in this situation, presence of 
errors may happen, and this is known as the Errors-in-
variable-model (EIVM). There are two types of EIVM, 
namely the functional and the structural relationship 
model (Kendall 1952, 1951). Comparing the EIVM 
with the ordinary regression model, this EIVM is noted 
when the response and explanatory variables are both 
measured with errors, and recent work have been done 
on detecting outliers in EIVM as well as estimating the 
parameters in EIVM (Arif, Zubairi & Hussin 2022, 2020; 
Mokhtar et. al, 2021). Ordinary regression model on the 
other hand, only considers when the response variable is 
measured without error. 

An outlier is a point or some points of observation 
that is outside the usual standard pattern of the 
observations. Outlier occurs when the data is mistakenly 
observed, recorded, and input into the computer system 
(Cateni et al. 2008). In this case, for situation when 
multiple outliers exist, we need to identify ways to 
counter this issue. Clustering technique is considered 
as one of the methods that is widely used to identify 
multiple outliers in a linear regression model (Adnan, 
Mohamad & Setan 2003; Loureiro et al. 2004; Serbert 
et al. 1998). In this paper, we will focus on the algorithm 
that will be able to cater for data that can be modelled 

by the Linear Functional Relationship Model (LFRM), 
where in this model, both the measurements are subjected 
to errors. This LFRM is important because if we ignore 
possible measurement error on the variables, it may lead 
to inconsistent estimators of the model parameters.

Earlier studies have also used clustering procedure 
for detecting outliers and these include clustering 
algorithm using the ordinary least square fit to 
standardize the predicted and residual values where 
single linkage algorithm has been used for grouping 
and the Euclidean distance as the similarity measure 
(Sebert, Montgomery & Rollier 1998). Another study 
proposed the least trimmed of square fit to standardize 
the predicted and residual values (Adnan, Mohamad 
& Setan 2003). However, both these techniques can 
only be applied in studies that are detecting outliers in 
only the regression model and not in the EIVM where 
both variables are subjected to errors. In this article, 
we consider the abovementioned method to detect 
outliers for a type of model called the linear functional 
relationship model (LFRM). To explain the LFRM, 
consider the following equation,	

 		
iii eXY ++= βα ,

where the variables iX  and iY  are linearly related. 
Parameter α  is the intercept, and β  is the slope 
parameter. For an ordinary linear regression model, the 

iX variable can be observed directly. However, in reality, 
these two variables, iX  and iY  cannot be observed 
directly as their measurements are subjected to errors.  
For instance, for any fixed iX  and iY  we observe ix  and 

iy  from continuous linear variable subject to errors iδ  
and iε  respectively, i.e., iii Xx δ+=   and iii Yy ε+=   
where the error terms iδ and iε  are assumed to be 
mutually independent and normally distributed random 
variables,   
   
               i.e.,  ( )2,0~ δσδ Ni  and ( )2,0~ εσε Ni .		
		

In this paper, we will propose a robust method 
in identifying multiple outliers mainly from a Linear 
Functional Relationship Model, from this EIVM category. 
We will propose a robust clustering procedure to 
identify multiple outliers in the LFRM where the single 
linkage algorithm and the Euclidean distance will be 
used as the similarity measure. A new robust cut tree 
will be proposed using the median and the median 
absolute deviation (MAD) of the tree heights to classify 
the potential outliers.

,
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The following section is organised as follows: First 
section elaborates on the materials and methods used in 
the clustering algorithm, while the simulation study to 
assess the behaviour of each level of contamination and 
the performance of the proposed technique is presented 
in the following part. The results obtained and relevant 
discussions are presented in the third part and the 
conclusions are summarized at the end.

SIMILARITY MEASURE FOR CLUSTERING ALGORITHM 
IN LFRM

To cluster the variables or items into their own groups, 
it is necessary to have a certain measurement of 
similarity or a measure of dissimilarity between the items. 
Therefore, finding the similarity measure is the first rule 
to cluster the items. A number of similarity measures 
can be found in the literature and each of them have their 
own strengths and drawbacks, so it is necessary to choose 
the best measurement that fits our model (Aldenderfer & 
Blashfield 1987). 

The most commonly used similarity measure by 
using the distance measure type is the Euclidean distance, 
defined as 
			 

where dij is the distance between i and j, and xik is the 
value of the kth variable for the ith observation (Wang, 
Zhang & Feng 2005). Euclidean distance has been 
applied by many researchers until today such as in the 
biomedical data, in clustering symptoms of COVID-19 
cases, and monitoring COVID-19 infection (Ilbeigipour, 
Albadvi & Akhondzadeh Noughabi 2022; Kumar 2020; 
Ultsch & Lötsch 2022).

For this LFRM model, the Euclidean distance is 
used as the similarity measure. This measure is easily 
applied, whereby similar observations are identified by 
relatively small distance, while a dissimilar observation 
is identified by a relatively large distance.

SINGLE LINKAGE CLUSTERING ALGORITHM FOR LFRM

Next, a suitable clustering method needs to be 
determined. There are a few clustering techniques that 
can be found in the literature, and for this study, we 
consider the single linkage method as the calculation is 
mathematically straightforward and has been widely 

used. Single linkage algorithm uses the smallest 
dissimilarity between a point in the first cluster and a 
point in the second cluster, and also defined as using the 
nearest neighbour (Kaufman & Rousseeuw 1990).

The general steps for single linkage clustering 
algorithm in LFRM is summarised in Figure 1. We first 
find the smallest distance in D - {dik} as in Step 2, and 
merge the corresponding objects, say U and V, to get 
(UV). To calculate the distances between (UV) and other 
clusters, W as described in Step 3 from Figure 1, we 
compute;

			       	            
where duw and dvw are the distances between the nearest 
neighbours of clusters U and W, and clusters V and W, 
respectively. In doing so, we obtain a distance matrix 
of size nn× . Using the rule as in Step 4, we delete 
the rows and columns corresponding to the merged 
cluster(s). For each merged cluster, we add a single row 
and column. In cases when there is still more than one 
cluster remains, we will repeat the similar step until only 
one cluster is left. 

A ROBUST STOPPING RULE FOR OUTLIER DETECTION IN 
LFRM

After the cluster is obtained from the data, the number 
of groups, if any, in the data set needs to be decided. The 
cluster tree needs to be portioned or ‘cut’ at a certain 
height. As a rule of thumb, the number of cluster groups 
depends upon where the tree is cut. Studies on stopping 
rule suggest that the difficulty is in a two clusters scenario 
where it is difficult to apply any feasible stopping rules 
(Milligan et al. 1985). Mojena’s stopping rule on the 
other hand is widely used for linear variables (Mojena 
1977). Mojena’s stopping rule, or known as ‘cut height’ 
is ,hsh α+ where h  is the mean of heights for all 1−  
clusters, and hs  is the unbiased standard deviation of 
the heights which is denoted in a specified constant. The 
stopping rule that is based on the mean and standard 
deviation of the heights, however, can be easily affected 
in the presence of outliers, thus making the method 
deemed unsuitable (Hampel et al. 2011). In this paper, 
we will propose a new stopping rule that will be robust 
in the presence of outliers by using central measure of 
the median and the measure of spread, median absolute 
deviation (MAD) for the tree heights. These measures 
were used earlier to identify high leverage points in 
logistic regression model (Midi 2010).

iii eXY ++=  , 
 
 
           i.e.,  ( )2,0~  Ni  and ( )2,0~  Ni .   
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Thus, for this LFRM, we propose the stopping rule, 
				  

(1)

where h are the cluster heights; h~ is the median of the 
heights for all 1−N clusters, and )(hMAD is the median 
absolute deviation of the heights, defined by
	  	

Consider 3=c  as suggested in the logistic regression 
model (Midi 2010). We may say that with 95% 
confidence level that the cluster groups that exceed this 
stopping rule will be classified as the potential outliers. 

AN EFFICIENT PROCEDURE TO DETECT MULTIPLE 
OUTLIERS IN LFRM

Residuals are often used to measure the efficiency of 
a model; for instance, residuals are plotted against 
the corresponding predicted values to assess model 
adequacy. Additionally, it is also a valuable tool to 
identify multiple outliers where if there are no outliers 
present in the data, the plot of the predicted and 
residual values will exhibit a linear relationship (Sebert, 
Montgomery & Rollier 1998).

In this paper, the clustering algorithm based on 
the single linkage method is used to cluster the points 
based on the predicted values and the residual values 
for the LFRM. To summarize, the proposed algorithm is 

described in Figure 2. As described earlier, we use the 
Euclidean distance and single linkage method to group 
the observation via clustering. The cluster that exceeds 
the proposed robust stopping rule will be identified 
as the potential outliers. Generally, the cluster groups 
with the largest observations are considered the clean 
observations, and all the other observation in the small 
cluster are considered as outliers (He, Xu & Deng 
2003).	

Next, we will investigate the power of performance 
of the proposed clustering technique in LFRM via 
simulation study, and details are explained in the 
following section.

POWER OF PERFORMANCE FOR CLUSTERING 
ALGORITHM IN LINEAR FUNCTIONAL RELATIONSHIP 

MODEL

The power of performance of the proposed procedure 
is measured using the ‘success’ probability (pop), 
probability of masking (pmask), and probability of 
swamping (pswamp), respectively. Let s be the total 
number of simulations and out is the number of 
planted outliers in the data set. Thus, the probability 
of planted outliers which are correctly detected (pop) is 
   		  	           

where ‘success’ is the number of data set that the 
method successfully identified all of the planted outlying 
observations. 

FIGURE 1. The general sequence in single linkage clustering algorithm
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As mentioned earlier, there are two main issues 
that needs to be highlighted in identifying the multiple 
outliers, namely the masking and swamping affects. The 
presence of masking and swamping phenomena has 
adverse effect in any procedure in identifying outliers. 
Swamping is the event of labelling normal events as 
anomalies or in other words, detecting clean observations 
as outliers. Masking on the other hand, as defined by 
Barnett and Lewis (1984) is ‘the tendency for the presence 
of extreme observations not declared as outliers to mask 
the discordancy of more extreme observations under 
investigation as outliers’. This means, masking happens 
when outliers present in the data set are not detected, 
and as a result, clustering of outlying observations skews 
the mean and the covariance estimates, resulting in the 
distance measure and the outlying point from the mean 
is small.

The probability of masking (pmask) is measured 
by,
	

where ‘failure’ is the number of outliers in the data set 
that is detected as inliers.  The probability of swamping 
(pswamp) is measured by, 
	           	                  

      

where ‘false’ is the number of inliers in the data set that 
are detected as outliers. 

SIMULATION STUDY

We perform a simulation study to assess how the level 
of contamination behaves and to obtain the power of 
performance for our proposed clustering technique in 
LFRM. We generate random sample of sizes, n = 50, 
70 and 100, respectively, where the parameters are set 
to ,1=α 1=β , ,1.02 =δσ  and 1=λ , respectively. The 
following equations for the LFRM becomes,
 
		  ,,1 iiiii XxXY δ+=+=  and iii Yy ε+= ,
		
where  

n
iXi 10=  and )1.0,0(~, Nii  ,    and 
n
iXi 10=  and )1.0,0(~, Nii  ,   , 		

	            
where i = 1,2,…n. From the generated sample, we 
calculate the predicted value, iX̂ , and the residual value, 

iV̂  from the following equations;
 

FIGURE 2. Flow chart of the steps in the proposed efficient procedure for 
clustering algorithm in the LFRM
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where, 

The errors  iδ  and iε  are  generated by using 
)1.0,0(~, Nii εδ . In order to make some observation as 

outliers, we randomly contaminate the observation by 
replacing the mean of the contamination, =ε 1, 2, …, 
10, respectively. 

For example, at point [d] of the response variable y, 
the observation y[d] is contaminated as 

	                ,
			              
where [ ]dy *  is the contaminated observation at 
position [ ]d  and ε  is the degree of contamination in 
the range of 1 < ε <10. With this, it allows the outlying 
observation to be placed away from the inliers. In this 
study, for each data set, we randomly insert five outliers 
at certain points [ ]54321 ,,,, ddddd . Then we use the 
clustering algorithm to identify these planted outliers 
for data set n = 50, 70 and 100, respectively. This 
simulation process is repeated 1000 times.

RESULTS AND DISCUSSION

The simulation results of the power of performance for 
the clustering technique in LFRM with n = 50 are shown 
in Table 1. For n = 50,  the probability of ‘success’ 
increases as the mean of contamination, ε  increases. 
As the contamination level reaches 5, the ‘success’ 
probability shows the highest value of probability of 
success, that is equals to 1, thus suggesting a good 
performance. Looking at the value of pmask, as the level 
of contamination increases, the value of pmask decreases 
to a value of 0 at .5=ε  As for the pswamp, the value 
is almost zero. A small value of pmask and pswamp is 
indicative that the clustering technique is reliable and 
is not affected by the fundamental problem usually seen 
in the clustering algorithm.

As for n = 70 and n = 100, we display the results 
using a graphical form as given in Figures 3 and 4. Again, 
for both n = 70 and n = 100, the results are consistent 
where the ‘success’ probability increases as the mean 
of contamination, ε  increases, and the value of pmask 
and pswamp are consistently very small as the mean of 
contamination, ε  increases.

[ ] [ ] ε+= dydy *

TABLE 1. The power of performance of the clustering method in LFRM using ‘success’ probability (pop), 
probability of masking (pmask) and probability of swamping (pswamp) for n = 50

Mean of contamination,ε Pop Pswamp pmask

1 0.0570 0.0000 0.7366

2 0.5250 0.0000 0.2834

3 0.9510 0.0000 0.0162

4 0.9990 0.0000 0.0002

5 1.0000 0.0000 0.0000

6 1.0000 0.0000 0.0000

7 1.0000 0.0000 0.0000

8 1.0000 0.0000 0.0000

9 1.0000 0.0000 0.0000

10 1.0000 0.0000 0.0000
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FIGURE 3. The plot of the ‘success’ probability (pop), the probability of masking 
(pmask) and also the probability of swamping (pswamp) for n = 70

FIGURE 4. The plot of the ‘success’ probability (pop), the probability of masking 
(pmask) and also the probability of swamping (pswamp) for n = 100
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From the simulation study, based on the measures 
of ‘success’ probability, probability of masking and 
probability of swamping, we can conclude that the 
proposed clustering method to identify multiple outliers 
in LFRM performs very well. In other words, the proposed 
clustering method performs the most efficient way if the 
outlying observation is located far from the remaining 
inlying observations. 

APPLICATION TO REAL DATA

As an illustration, we consider two data sets to 
demonstrate the applicability of the proposed clustering 
algorithm in a LFRM, namely the Hertzsprung-Russell 
Stars Data and Telephone Data (Rousseeuw & Leroy 
1987). The obtained data sets are often used in many 
multiple outlier problems in linear regression model. 
These data sets are usually referred to as ‘classical’ 
multiple outlier data sets. Table 2 describes the two data 
sets where it has been established that both have outlying 
observations and swamped observations.

First, we use the Hertzsprung-Russell Stars Data, 
where we assume measurement errors can occur at 
both variables and we apply the proposed clustering 
algorithm in LFRM. We plot the x  and y  variables 
in a scatterplot as shown in Figure 5, where x  is the 
effective temperature at the surface of the star and y is 
the light intensity. From the scatterplot, there are four 
observations that seems to be lying away from the other 
observations, namely observation 11, 20, 30, and 34, 
respectively. In addition, observation 7 and 14 are the 
possible outliers. To correctly identify whether they are 

the outlying observations, we proceed with applying the 
clustering process in the LFRM and the proposed robust 
stopping rule to cut the tree. 

Based on the proposed robust stopping rule 
defined in (1), the cut tree is 4903.0)(3~

=+ hMADh
From the cluster dendrogram plot as shown in Figure 
6, two clusters are formed, one cluster containing the 
majority of the observation, and another smaller cluster 
containing observations 7, 11, 14, 20, 30, and 34. It 
can be seen that the proposed clustering technique for 
the data in the LFRM successfully identified outliers 
for observations 11, 20, 30, and 40, respectively. 
Observation 7 and observation 14 have been detected 
as the swamping observations in this study.

As another illustration, we apply the proposed 
method to identify outliers for the Telephone Data that 
can be modelled by the linear functional relationship. 
The scatterplot of x  and y variables is shown in Figure 
7, where x variable is the year from 1950 to year 1973, 
and y variable is the number of calls in tens of millions. 
From the graph, observations 15 to 24 seem to be lying 
away from the other observations. To confirm this, we 
apply the clustering process in LFRM and obtained a 
proposed robust stopping rule at 1.4398 as shown in 
Figure 8. From the cluster dendrogram plot, we observe 
that there are three clusters. One cluster contains the 
majority of the observation, and another two smaller 
clusters containing the outlying observation, which 
are observations 15 till to 24.  It can be seen that the 
proposed clustering technique successfully identified all 
the outliers in the classic Telephone Data that has been 
modelled using LFRM.

TABLE 2. The ‘classical’ multiple outlier data sets

No Data Sets
Outlying 

observation in the 
data

Outlying 
observations 

being identified

Number of 
observations 

swamped

Number of 
observations 

masked

1 Hertzsprung-Russell stars data
(Rousseuw & Leroy 1987) 11,20,30 and 34 11,20,30,34,7 

and 14 2 0

2 telephone data
(Rousseuw & Leroy 1987) 15-24 15-24 0 0

.
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FIGURE 5. The scatterplot of Hertzsprung-Russell stars data

FIGURE 6. The cluster tree for Hertzsprung-Russell stars data
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FIGURE 7. The scatterplot for telephone data

FIGURE 8. The cluster dendrogram for telephone data
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CONCLUSIONS

In this study, we have proposed an efficient procedure to 
identify multiple outliers in the LFRM using the single 
linkage algorithm with the Euclidean distance as the 
similarity measure and a robust stopping rule based on 
the median and the median absolute deviation (MAD) 
of the tree heights. With the presence of outlier, the 
conventional approach by using mean and standard 
deviation in the cut-off rule is no longer valid as both 
measures may be severely affected by outliers and may 
produce bias measure. The novelty of our proposed 
method is that we use the median and MAD which are 
robust measures especially in situations when outliers 
exists. Numerical experiments using simulation 
study suggest that our proposed method is able to 
identify multiple outliers in LFRM. In other words, the 
probability of swamping and masking is practically 
small and at certain levels of contamination it is almost 
zero and this is good as the two main issues in multiple 
outlier detection are addressed. Application in real data 
also shows that our proposed clustering method for the 
LFRM successfully detects the outliers as found in other 
classical data.

LIMITATION AND FUTURE WORK

Some limitations in this study include the application 
of the proposed techniques to data that are in modelled 
by the LFRM. Some suggestions for future work include 
addressing the swamping issues and looking into the 
probability of swamping and masking and also addressing 
for a multivariate EIVM. The proposed cut-tree will 
be used in the application of real data sets such as 
clustering in business and economics as well in the future. 
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