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Probabilistic Finite Element for Fracture

Mechanics

This paper presents a probabilistic methodology for fracture mechanics analysis of cracked
structures. The main focus is on probabilistic aspect which related the nature of crack in
material. The methodology involves finite element analysis; statistical models for uncertainty in
material properties, crack size, fracture toughness and loads; and standard reliability methods
for evaluating probabilistic characteristics of fracture parameter. When a crack is observed,

the problem is to know whether it is suitable to repair the structure as a priority or if it can be
justified that an accident will not occur. Therefore, the probabilistic analysis can provide the
failure probability knowing that there is a crack and that the load can reach accidental values
defined in a particular range. The probability of failure caused by uncertainties related to loads
and material properties of the structure is estimated using Monte Carlo simulation technique.
Numerical examples are presented to show that probabilistic methodology based on Monte Carlo
simulation provides accurate estimates of failure probability for use in fracture mechanics.

Keywords: Probabilistic Fracture Mechanics, Finite Element Method, Probability of Failure,

Monte Carlo

Introduction

The performance of an engineered system or product is often affected
by unavoidable uncertainties (Apostolakis, 1990). It may be attributed to
the inhomogeneous material properties. Probabilistic uncertainty analysis
quantifies the effect of input random variables on model outputs. The
uncertainties inherent in the loading and the properties of mechanical
systems necessitate a probabilistic approach as a realistic and rational
platform for both design and analysis. Probability theory determines
how the uncertainties in crack size, loads, and material properties, when
modelled accurately, affect the integrity of cracked structures. Probabilistic
fracture mechanics (PFM) provides a more rational means to describe the
actual behaviour and reliability of structures than traditional deterministic
methods (Provan, 1987).

Several methods with various degrees of complexity that can be used to
estimate the reliability or safety index or the probability of failure have
been developed or implemented. Many of these methods are applicable
when the limit state equations are explicit functions of the random
variables involved in a problem. Most of these methods are based on
a finite element method (FEM). Although FEM based methods are well
developed, research in probabilistic analysis has not been widespread
and is only currently gaining attention.

The originality of mean value first-order second moment (MVFOSM)
method was introduced by Cornell (1969). The MVFOSM method
based on a first-order Taylor series approximation of the performance
function linearized at the mean values of the random variables. However
MVFOSM method has obvious deficiencies such as it uses only the first
two moments of random variables instead of the complete distribution
information (Haldar and Mahadevan, 2001, Youn and Choi, 2004) and
it assumes that the response is normally distributed.
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Then, first-order reliability method (FORM) was introduced which produces
more accurate solutions than MVFOSM method. However, FORM may not
generate accurate results when transform the original random variables
into standard normal variables and increases the nonlinearity of the
performance function (Youn and Choi, 2004).

Grigoriu et al. (1990) applied first and second order reliability methods
(FORM/SORM) to predict the probability of fracture initiation and a
confidence interval of the direction of crack extension. The method
can account for random loads, material properties, and crack geometry.
However, the randomness in crack geometry was modelled by response
surface approximations of stress intensity factor as explicit functions of
crack geometry. Furthermore, the usefulness of response surface based
methods is limited, since they cannot be applied for general fracture
mechanics analysis (Guofeng Chen et al., 2001).

This paper presents a computational methodology for probabilistic
characterization of fracture initiation in cracked structures. The
methodology based on finite element method for deterministic stress
analysis, statistical models for loads and material properties and Monte
Carlo method for probabilistic analysis. Examples are presented to
illustrate the proposed methodology lead to sufficiently close results
for the cracked structures. The results from these examples show that
the methodology is capable of predicting deterministic and probabilistic
characteristic for use in fracture mechanics.

Finite Element Calculation

In order to perform probabilistic analysis, the finite element analysis needs
to be well developed. In this study triangular mesh generation using
the advancing front method was used. The mesh finally optimised by
smoothing and associated boundary conditions are found by interpolation
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from the initial geometry conditions, then finally producing the output
files. The remeshing algorithms place a rosette of quarter point elements
around the crack tip, and then rebuild the mesh around the crack tip.
A computer code has been developed using FORTRAN programming
language for finite element analysis calculation processes, which is based
on displacement control for cracked structure modelling.

The important parameter used in linear elastic fracture mechanics are
the stress intensity factors in various modes. In this paper, the stress
intensity factors during simulation steps were calculated by using the
displacement extrapolation method, which shown to be highly accurate.
In this paper, the displacement extrapolation method (Phongthanapanich
and Dechaumphai, 2004) is used to calculate the stress intensity factors
as follows:

= ; 2n (V[ _ Ve)

K= 3(1 + v)(1 + x) F(va—vd)_T) )
= ; 27 (uC _ Ue)

Ky = 3(1 + v)(1 + ) F (4(ub -u,) _T) 2

where E is the modulus of elasticity, v is the Poisson’s ratio, x is the
elastic parameter defined by

- 4v)

‘— ( plane strain
B=v/(1+V)

plane stress
and L is the quarter-point element length. The u’ and v’ are the

displacement components in the x” and y’ directions, respectively; the
subscripts indicate their position as shown in Figure 1.

u,x

Figure1 — The Arrangements of the Natural Quarter Point Triangular
Elements around the Crack Tip

For the elastic plastic materials, the crack tip is blunted by plasticity.
Then the crack tip opening displacement (CTOD) introduced by A.A.
Wells in 1961, used as a material crack parameter. Sutton et al. (2000)
developed the CTOD criterion based on a detailed analysis of crack
kinking, and assumed that the crack growth occurs when the current
CTOD reaches a critical value.

The mesh refinement guided by a characteristic size of each element,
predicted according to a given error rate and the degree of the element
interpolation function. The error estimation for the simulation is based
on stress smoothing. It was a point wise error in stress indicator (ESI) to
evaluate the accuracy of the finite element solution.

In general, the smaller mesh sizes in a finite element mesh, give more
accurate finite element approximate solution. However, reduction in the
mesh size leads to greater computational effort.

The adaptive mesh refinement is based on a posteriori error estimator
which is obtained from the solution from the previous mesh. The error
estimator used in this paper is based on stress error norm. The strategy
used to refine the mesh during analysis process is adopted from Alshoaibi
et al. (2007) as follows:

(i) Determine the error norm for each element

lelle =J (0 - 0)"(0 - o) 3)
Q

where o is the stress field obtained from the finite element calculation

and o* is the smoothed stress field.

(ii) Determine the average error norm over the whole domain
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where m is the total number of elements in the whole domain.

(iii) Determine a variable, ¢, for each element as

1 (el
G

e

(5)

where 1 is a percentage that measures the permissible error for each
element. If ¢, > 1 the size of the element is reduced and vice versa.

(iv) The new element size is determined as
h

he= 6)

where h, is the old element size and p is the order of the interpolation
shape function.

Monte Carlo Simulation Technique

The reliability or the probability of failure can be estimated by using several
methods with various degrees of complexity such as FORM, first-order
second-moment method (FOSM), Hasofer-Lind method and second-order
reliability method (SORM). Many of these methods are applicable when
the limit state equations are explicit functions of the random variables
involved in a problem. But with a simulation technique, it is possible to
calculate the probability of failure for both the explicit or implicit limit
state functions. In fact, to evaluate the accuracy of these sophisticated
technique, simulation is routinely used to independently evaluate the
underlying probability of failure. The Monte Carlo simulation technique
is the method commonly used for this purpose. This technique has
evolved as a very powerful tool for engineers for evaluating the risk or
reliability of complicated engineering systems.

The Monte Carlo simulation technique has five essential elements:
(1) the problem in terms of all the random variables are defined; (2)
the probabilistic characteristics of all the random variables in terms
probability density functions (PDFs) and the corresponding parameters
are quantified; (3) the values of these random variables are generated;
(4) the problem evaluated deterministically for each set of realizations
of all the random variables; (5) probabilistic information from number
of simulations, such realization are extracted.

Formulation of the Problem

Consider a cracked structure under uncertain mechanical and geometric
characteristics subject to random loads. Denote by X an N-dimensional
random vector with components X, X, ,..., X, characterizing uncertainties
in the load, crack geometry, and material properties. For example, if
the crack size a, elastic modulus E, far field applied stress magnitude
0”, and mode | fracture toughness at crack initiation K, are modelled
as input random variables, then X = g(a, E, 0%, K ). Let stress intensity
factor K, be a relevant crack driving force that can be calculated using
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standard finite element analysis. Suppose the structure fails when K
> K,.. This requirement cannot be satisfied with certainty, since K is
dependent on the input vector X which is random, and K _ itself to be
a random variable. The K is evaluated by finite element method which
can be expressed in Equation (1).

Quantifying the Probabilistic Characteristics of
Random Variables

Mathematical modelling or representation of a random variable is thus
a primary task in any probabilistic formulation, which needs to be
conducted systematically. The double edged notched tension (DENT)
specimen is considered to carry comprehensively evaluate the modelling
of uncertainty by the developed program. Information on modulus of
elasticity is presented in Table 1. Similar information can also be obtained
for other random variables of interest.

Test no. Elastic modulus, Test no. Elastic modulus,
E(GPa) E(GPa)
1 721 21 79.3
2 785 22 72.3
3 72.4 23 67.4
4 735 24 725
5 72.8 25 72.0
6 66.5 26 7.7
7 731 27 70.0
8 73.4 28 80.0
9 73.5 29 73.8
10 68.6 30 711
11 71.9 31 73.0
12 741 32 70.8
13 67.6 33 75.6
14 75.2 34 74.4
15 70.8 35 71.6
16 76.8 36 65.0
17 70.7 37 68.8
18 71.3 38 71.2
19 69.8 39 7
20 71.4 40 71.8

Table 1 - Elastic Modulus E for the DENT Specimen

The mean or expected value of X, a measure of central tendency in the
data, also known as the first central moment and denoted as E(X) or p,,
can be calculated for the n observations as

\ZE

y X, (7)
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The variance of X, a measure of spread in the data about the mean,
also known as the second central moment and denoted hereafter as
Var(X), can be estimated as

1
var(X) = ﬁE (x, — )2 ®)

The standard deviation, denoted as o, can be calculated as

o, = Var(X) (9)

Since the mean and the standard deviation values are expressed in the
same units, a nondimensional term can be introduced by taking the ratio
of the standard deviation and the mean. This is called the coefficient of
variation (COV) and denoted as COV(X) or d,. Thus,

covx) = o, = -2

X

o (10)
My

A smaller value of the COV indicates a smaller amount of uncertainty or
randomness in the variable and larger amount indicates a larger amount
of uncertainty. In many engineering problems, a COV of 0.1 to 0.3 is
common for a random variable (Haldar and Mahadevan, 2000).

Determination of Probability Distribution

In practice, the choice of probability distribution may be dictated by
mathematical convenience or by familiarity with a distribution. In some
cases, the physical process may suggest a specific form of distribution.
As an example, elastic modulus E is frequently modelled as a Gaussian
random variable for DENT specimen. The task is to establish its validity,
based on sample information such as that given in Table 1. The underlying
distribution can be established by conducting some statistical tests known
as Goodness-of-fit tests for distribution.

Two commonly used statistical tests for this purpose are the Chi-square
(?) and the Kolmogorov-Smirnov (K-S) tests. Firstly, the K-S test is used
because it is not necessary to divide the data into intervals so the
error or judgment associated with the number or size of the interval
is avoided. The K-S test compares the observed cumulative frequency
and the cumulative density function (CDF) of an assumed theoretical
distribution. The data was arranged in increasing order for the first step.
Then the maximum difference between the two CDFs of the ordered
data estimated by using

D, = max|F,(x) — S,(x)| (11)
where F,(x) is the theoretical CDF of the assumed distribution at the ith
observation of the ordered samples x,, and S (x) is the corresponding
stepwise CDF of the observed ordered samples. S (x,) can be estimated
as

S(X)=9—,X =X=X (12)
1, X=X,

The concept is shown in Figure 2. Mathematically, D, is a random variable
and its distribution depends on the sample size n. The CDF of D, can
be related to the signif-icance level o as

PD,<DY=1-a (13)

and the D¢ values at various significance levels o. can be obtained from
a standard mathematical table as shown in Appendix 1. Then, according
to the K-S test, if the maximum difference D, is less than or equal to
the tabulated value D", the assumed distribution is acceptable at the
significance level a.

The elastic modulus E data given in Table 1 are considered. For Gaussian
distribution, the two parameters are p, = 72.4 GPa and o, = 3.259
GPa. The maximum differences D, for the Gaussian distributions is
calculated as shown in Table 2 and is found to be 0.1121. The result for
the Gaussian distribution is plotted in Figure 2. For a 5% significance
level and 40 sample points, D% is found to be 0.21 from Appendix
1. Thus, Gaussian distribution is acceptable with 5% significance level
for the K-S test.

Generation of Random Numbers

The elastic modulus E is a Gaussian random variable with p, = 72.4
GPa and o, = 3.259 GPa, and far field tensile stress 6 is a uniformly
distributed random variable between 48.3 and 103.4 MPa. Both are
statistically independent random variables. N random numbers generated
for elastic modulus E according to its probabilistic characteristics and
another N random numbers for o®, which is uniformly distributed.

The generation of random numbers according to a specific distribution
is the heart of Monte Carlo simulation. In general, all modern computers
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Figure 2 — K-S Test on Elastic Modulus for Gaussian Distribution

m  E(GPa)  S(e)=min  Ffe) D,=|Fl,)-S,e,)
1 65.0 0.0250 0.0121 0.0129
2 665 0.0500 0.0363 0.0137
3 674 0.0750 0.0644 0.0106
4 676 0.1000 0.0725 0.0275
5 686 0.1250 0.1249 0.0001
6 688 0.1500 0.1380 0.0120
7 698 0.1750 0.2170 0.0420
8 700 0.2000 0.2354 0.0354
9 707 0.2250 0.3063 0.0813
10 708 0.2500 0.3172 0.0672
11 708 0.2750 0.3172 0.0422
12 711 0.3000 0.3506 0.0506
13 712 0.3250 0.3621 0.0371
14 713 0.3500 0.3737 0.0237
15 714 0.3750 0.3853 0.0103
16 716 0.4000 0.4090 0.0090
17 717 0.4250 0.4210 0.0040
18 718 0.4500 0.4330 0.0170
19 719 0.4750 0.4451 0.0299
20 720 0.5000 0.4572 0.0428
21 721 0.5250 0.4694 0.0556
22 723 0.5500 0.4939 0.0561
23 724 0.5750 0.5061 0.0689
24 725 0.6000 0.5184 0.0816
25 728 0.6250 0.5549 0.0701
26 730 0.6500 0.5790 0.0710
27 731 0.6750 0.5910 0.0840
28 734 0.7000 0.6263 0.0737
29 735 0.7250 0.6379 0.0871
30 735 0.7500 0.6379 0.1121
31 738 0.7750 0.6718 0.1032
32 741 0.8000 0.7044 0.0956
33 744 0.8250 0.7353 0.0897
34 752 0.8500 0.8091 0.0409
35 756 0.8750 0.8407 0.0343
36 768 0.9000 0.9140 0.0140
37 777 0.9250 0.9497 0.0247
38 785 0.9500 0.9704 0.0204
39 793 0.9750 0.9835 0.0085
40 800 1.0000 0.9905 0.0095

Table 2 — K-S Test on Elastic Modulus for DENT Specimen

have the capability to generate uniformly distributed random numbers
between 0 and I. Corresponding to an arbitrary seed value, the generators
produced the required number of uniform random numbers between 0
and 1. By changing the seed value, different sets of random numbers
can be generated. Depending upon the size of the computer, the random
numbers may be repeated. Random numbers generated this way are
called pseudo random numbers. Fifty random numbers for a uniform
distribution between 0 and 1 are given in Table 3. These random numbers
will be used in the subsequent discussion.

Then, the uniform random numbers u, between 0 and 1, transformed
to random numbers with the appropriate characteristics. The process is
shown graphically in Figure 3. This is commonly known as the inverse
transformation technique or inverse CDF method. In this method, the
CDF of the random variable is equated to the generated random number
u, that is, F, (x) = u, and the equation is solved for x; as

X, = F'(u) (14)
0.86061 0.15017 0.42171 0.48932 0.73958
0.92546 0.74098 0.95349 0.54707 0.51527
0.41806 0.58515 0.16119 0.64271 0.63765
0.28964 0.70074 0.58394 0.66930 0.52224
0.14225 0.09666 0.95626 0.27681 0.46079
0.44961 0.97948 0.20661 0.90451 0.17326
0.24653 0.65400 0.24566 0.79163 0.10593
0.21687 0.67980 0.94934 0.42397 0.72448
0.56503 0.46872 0.16118 0.68086 0.44245
0.40015 0.12846 0.01988 0.82174 0.37091

Table 3 — Uniform random numbers between 0 and 1
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Figure 3 — Mapping for Simulation

A simple example to describe the technique is the transformation of a
uniform random number U between 0 and 1, such as u, = 0.86061 (the
first number in Table 3), to another uniform random number x, between
two limits a and b. The CDF of U is u,. Since X is uniform, its CDF will
be F, (x) = (x - @)/(b - @). The transformation to obtain the corresponding
X, value can be accomplished by equating the two CDFs as

X,—a
u =

b-a
x,=a+ (b-au, (15)
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When a=0and b =1, x, = u, which is obvious. If X is uniform between
10 and 20, the corresponding first random number is

x;= 10 + (20 — 10)0.86061 = 18.6061

If X is normally distributed, that is, N(u,, c,), then S = (X - p)/o, is a
standard normal variate, that is, N(O, 1). It can be shown that

X, =
u = F(x) = dls) = q>('—“*) (16)
OX
or
X -
Si — i ”’X
O—X
Thus
X = Uy + 0,8, = U + o,d7'(u) (17)

For Equation (17), the u, values first need to be transformed to s, that is,
s, = ®'(u), and @' is the inverse of the CDF of a standard normal
variable.

Table 4 shows the set of 50 standard normal random numbers
corresponding to the uniform random numbers between 0 and 1 given
in Table 3. The x; values can be calculated from the information on the
s, values. For u, = 0.86061, s, = ®'(0.86061) = 1.08306; with the
information on y, and o,, the corresponding X, can be calculated.

If the random variable X is lognormally distributed with parameters
A, and T, then the ith random number X, according to the lognormal
distribution can be generated as

u=ao (M) (18)
[

or

X, = exp[A, + T @7'(u)] (19)
1.08306 -1.03571 -0.19750 -0.02677 0.64205
1.44279 0.64637 1.67968 0.11826 0.03829
-0.20686 0.21509 -0.98958 0.36571 0.35218
-0.55444 0.52653 0.21198 0.43798 0.05578
-1.07027 -1.30081 1.70884 -0.59234 -0.09844
-0.12665 2.04313 -0.81824 1.30769 -0.94136
-0.68545 0.39614 -0.68821 0.81209 -1.24847
-0.78281 0.46714 1.63849 -0.19175 0.59620
0.16373 -0.07849 -0.98962 0.47011 -0.14476
-0.25296 -1.13370 -2.05621 0.92202 -0.32944

Table 4 — Standard Normal Random Numbers Corresponding to the
Uniform Numbers in Table 3

Evaluation of the Problem

The N generated random numbers for each of the random variables in
the problem gave N sets of random numbers, each set representing a
realization of the problem. The generated sample points for the output
or response, then used to calculate the probability of failure considering
various performance criteria. The accuracy of the evaluation will increase
as the number of simulations M, increases. The DENT and cracked pipe
specimens are considered to carry comprehensively evaluate the modelling
of uncertainty by the developed program in the forthcoming section.

Probability of failure

Consider the limit state represented by X = g(a, E, 0*, K) corresponding
to a failure mode for a structure. With all the random variables assumed

to be statistically independent, the Monte Carlo simulation approach
consists of drawing samples of the variables according to their PDFs and
then feeding them into the mathematical model g( ). The samples thus
obtained gave the probabilistic characteristics of the response random
variable X. It is known that if the value of K is over than K, it indicates
failure. Let M, be the number of simulation cycles when K is over than
K, and let M be the total number of simulation cycles. Therefore, an
estimate of the probability of failure P, can be expressed as

Mf
P=— (20)
M

Numerical Examples

In order to carry out comprehensive evaluation of the Monte Carlo
simulation technique by the developed program, two well-known plate
geometries namely, DENT and cracked pipe are considered.

Double Edged Notched Tension (DENT)

Consider a two dimensional DENT specimen subjected to quasi-static far
field tension stress 0. The geometry of the DENT specimen, shown in
Figure 4a, has width 2W, length 2L and crack length a. The load, crack
size and material properties were treated as statistically independent
random variables. The Poisson’s ratio of v = 0.3 was assumed to be
deterministic. Figure 4b depicts a finite element mesh of DENT specimen.
A total of 1184 elements and 2451 nodes were used in the mesh. Both
plane stress and plane strain conditions were studied. Focused elements
were used in the vicinity of crack tip.

The probabilistic characteristics of the stress intensity factor for the DENT
specimen represented by Equation (1) can now be generated using
the Monte Carlo simulation technique. For the sake of brevity, only 10
simulation cycles results are shown here. Again, elastic modulus E is
N(72.4 GPa, 3.259 GPa) and o” is uniform between 48.3 and 103.4
MPa. Since o” is uniformly distributed, its mean value and COV can be
calculated. In this case, the mean value is w . = (48.3 + 103.4) / 2 =
75.85 MPa and the COV is

2 [ (103.4 - 48.3)

= — | ———— | =021
° 12 | (103.4 + 48.3) }

and the corresponding standard deviation is ¢_.= 0.21 (75.85) = 15.93
MPa.
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Figure 4 — A DENT Specimen Under Far-field Uniform Tension;
(a) Geometry and Loads, (b) Finite Element Mesh
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Suppose 10 uniform random numbers between 0 and 1 (the first 10
numbers in Table 3) are generated for elastic modulus E and another
10 (the next 10 numbers in Table 3) are generated for o”. The steps
involved in generating a set of random numbers for e, and o™, according
to their statistical characteristics are summarized in Table 5. For the elastic
modulus E under consideration, the first random number according to
the normal distribution is

e, =724+ 3.259(1.08306) = 75.92969

The Kk, values were calculated base on generated a set of random
numbers for e, and o%,.

o Uniform between

E~N(72.4,3.259) 48.3 and 103.4MPa

u; S; € u; Cb'°°i
0.86061 1.08306 75.92969 0.83771 94.45782
0.92546 1.44279 77.10205 0.73006 88.52631
0.41806 -0.20686 71.72584 0.56341 79.34389
0.28964 -0.55444 70.59308 0.82178 93.58008
0.14225 -1.07027 68.91199 0.32715 66.32597
0.44961 -0.12665 71.98725 0.68853 86.23800
0.24653 -0.68545 70.16612 0.74358 89.27126
0.21687 -0.78281 69.84882 0.24672 61.89427
0.56503 0.16373 72.93360 0.90324 98.06852
0.40015 -0.25296 71.57560 0.79263 91.97391

Table 5 — Monte Carlo Simulations

Using the sample points for the stress intensity factor thus generated, the
mean and standard deviation are can be calculated, respectively. This
example indicates the power and simplicity of the simulation technique.
With the data given in Table 1 and the corresponding equations, the
following information in Table 6 can be calculated.

Random variable Mean cov Probability
distribution
Normalised crack length, a/w 0.5 Variable* Lognormal
Elastic modulus, E 72.4 GPa 0.05 Gaussian
Initiation fracture toughness, K, 24.83 MPa.m"?  0.51 Lognormal
Far field tensile stress, o 75.85 MPa 0.21 Gaussian

2 Arbitrarily varied.

Table 6 — Statistical Properties of Random Input for DENT Specimen

The probability of failure of the DENT specimen calculated by using
Monte Carlo simulation technique in two different ways; by considering
the statistics of the limit state equation, and by counting the failures in
different cycles of simulations. In the first method, using the mean and
the standard deviation of K, the safety indices calculated as shown in
Table 7. Assuming K,_is a lognormal random variable, the corresponding
probability of failure is shown Column 3.

A number of probabilistic analyses were performed to calculate the
probability of failure P, of the DENT specimen, as a function of mean far
field tensile stress E[0”], where E[] is the expectation (mean) operator.
Figure 5 plots the P, versus E[c”] results for v, = 20 percent and the
plane stress condition, where v, is the COV of the normalised crack
length a/W. As can be seen in Figure 2, the probability of failure by
Guofeng Chen et al. (2001) and FORM are in good agreement with the
present study results.

Figure 6a and 6b indicates the plots of P, versus E[0*] using FORM and
present study methodology for plane stress and plane strain conditions,
for both deterministic (v, = 0) and random (v,,, = 10,v_,, =20, v, =
40 percent) crack sizes. The results indicate that the failure probability
increases with the COV of a/W, and can be much larger than the

probabilities calculated for a deterministic crack size, particularly when

LOE+00 € Plane stress
Vaw = 0.2
ol LOE-01 f
g
=
E 1.0E02 t
E-]
z\
= LOE-03 f
'_E *®  Guofeng Chen et al.
A LOE-04 E FORM
o Present study
1.0E-05
80 120 160 200 240 280 320 360 400
Ele” ], MPa

Figure 5 — Failure Probability of DENT Specimen by Guofeng Chen et al.
(2001), FORM and Present Study
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Figure 6 — Failure Probability of DENT Specimen by FORM and Present
Study for Various Uncertainties in Crack Size; (a) Plane Stress, (b) Plain
Strain

the uncertainty of a/W is large. The predicted finite element results from
this study well matched with the FORM results. This indicates that the
Monte Carlo method provides accurate estimates of failure probability
for use in fracture mechanics.

Cracked Pipe

The pipes of nuclear plants undergo great thermal and mechanical
cycles which can lead to initiation and propagation of cracks. When a
crack is observed, the problem is to know whether it is suitable to repair
the structure as a priority or if it can be justified that an accident will
not occur. Therefore, the probabilistic analysis can provide the failure
probability knowing that there is a crack and that the load can reach
accidental values defined in a particular range.
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Figure 7 — Axisymmetrically Cracked Pipe

Figure 7 shows an axisymmetrically cracked pipe under internal pressure
and axial tension. Due to the boundary conditions at the pipe ends,
the applied hydraulic pressure induces, beside the radial pressure,
longitudinal tension forces.

The system variables are described as follows:
« a, the crack length (15 mm)

« L, the pipe length (1000 mm)

« P, the internal pressure (15.5 MPa)

« Ri, the inner radius (393.5 mm)

t, the thickness (62.5 mm)

« o, the applied tensile stress (varying from 100 up to 200 MPa). It
represents the load effect which could accidentally increase, knowing
that the nominal value is around 100 MPa.

* 0,, the stress due to the end effects, given by

R?2
O P P
0 R + 12 - R2

Figure 8 depicts an adaptive finite element mesh of cracked pipe. A half
model was used to take advantage of the symmetry. Table 8 lists the
means, COV and probability distributions of elastic modulus, crack tip
opening angle, applied tensile stress and yield strength. The Poisson’s
ratio of v = 0.3 was assumed to be deterministic.

Figure 8 — An Adaptive Mesh for Cracked Pipe

Random variable Mean cov Probability
distribution
Elastic modulus, E 175.5GPa 0.05 Lognormal
Crack tip opening angle, CTOA 5.25° 0.15 Gaussian
Applied tensile stress, o 150MPa 0.19 Gaussian
Yield strength, o, 260.5MPa 0.05 Lognormal

Table 8 — Statistical Properties of Random Input for Cracked Pipe

Figure 9 shows the comparisons of the probability of failure, P, using
present study method and published results done by Pendola et al.
(2000) for the cracked pipe. The continuous lines in Figure 9 represent
the values of P, obtained from combinations of ANSYS-RYFES software.
The circle points in Figure 10 indicate the P, from this study involving
elastic-plastic analysis. The P, values from this study are comparatively
closer to the Pendola et al. (2000) solution. The calculation of P, is much
simpler than the analysis presented in this paper.
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Figure 9 — Failure Probability of Cracked Pipe by Pendola et al. (2000)
and Present Study

Conclusions

The probabilistic method has been presented for fracture mechanics
analysis of cracked structures. The numerical examples presented in this
paper are derived on linear-elastic and elastic-plastic fracture mechanics
based failure criterion. The methodology involves development of finite
element analysis codes, statistical models for uncertainty and probabilistic
analyses using Monte Carlo simulation. The numerical implementations
lead to sufficiently close results and attest the quality of the solution
of the cracked model. The calculation of P, is much simpler than the
analysis presented in this paper. The results from these examples indicate
that the methodology is capable of determining accurate probabilistic
analyses in fracture mechanics.

Appendix 1

n D"0.2 Dn0.15 Dn0.1 Dn0.05 Dn0.01
5 0.446 0.474 0.510 0.563 0.669
6 0.410 0.436 0.470 0.521 0.618
7 0.381 0.405 0.438 0.486 0.577
8 0.358 0.381 0.411 0.457 0.543
9 0.339 0.360 0.388 0.432 0.514
10 0.322 0.342 0.368 0.409 0.486
11 0.307 0.326 0.352 0.391 0.468
12 0.295 0.313 0.338 0.375 0.450
13 0.284 0.302 0.325 0.361 0.433
14 0.274 0.292 0.314 0.349 0.418
15 0.266 0.283 0.304 0.338 0.404
20 0.231 0.246 0.264 0.294 0.352
25 0.210 0.220 0.240 0.264 0.320
30 0.190 0.200 0.220 0.242 0.290
35 0.180 0.190 0.210 0.230 0.270
40 0.170 0.180 0.190 0.210 0.250
45 0.160 0.170 0.180 0.200 0.240
50 0.150 0.160 0.170 0.190 0.230
>50 1.07 1.14 1.22 1.36 1.63

yn yn yn yn yn
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