Reliability Assessment Using Modified Monte Carlo Simulation

3.1 INTRODUCTION

In this chapter, the method of assessing the reliability or probability of fracture
mechanics assessment methods will be discussed in depth. In section 3.2, theoretical
approach to analyze the reliability of linear elastic fracture mechanics (LEFM) to be
used in this study will be discussed. Monte Carlo simulation method (MCS) in
reliability analysis is discussed in section 3.3 and section 3.4, an important sampling
technique (CI), which is one of variance reduction techniques (VRT) is popular for
modified Monte Carlo simulation methods are discussed. Chapter Il concludes with a

summary.

3.2  Fatigue Reliability Analysis using Linear Elastic Fracture Mechanics
(LEFM)

Fatigue reliability analysis using linear elastic fracture mechanics approach, which
considers the existence of the original crack in an engineering structure or component
are used in this study. The method of reliability analysis tools used is based on the
principles of the approach of linear elastic fracture mechanics, critical stress intensity
factor threshold and Paris law to describe the failure by fatigue cracking. In this
section, the limit state function for fatigue reliability analysis, random variables such

as size of initial crack and the crack will be discussed critically.
3.2.1 Limit state function
Some of the engineering component, the crack propagation is not allowed

because it would weaken the strength of an engineering system and the subsequent

failure by fracture mechanics. Then a maximum limit state function associated with



both these random enablement should be issued and limit state function is as equation
3.1;

g(K|C’K):K|C -K (3.1)

and

K=F(a)o,./7a (3.2)
where F(a) is a function that characterizes the geometry of the crack in a specimen

geometry used, o, Is the average stress exerted on the material and the size of the

original crack.

For large engineering systems such as bridges, cargo ships, and pipelines on
the seabed that is exposed to cyclic loading in the long run, a reliability analysis
method should be used to determine the reliability of the system of tenure, then Paris
and Erdogan (1963), the relationship between crack growth rate with stress intensity

factor can be described as equation 3.3;

da m

N C(AK) (3.3)
and

AK = F(a)Sy -1/7a (3.4)

where N is the number of stress cycles imposed and Cand m the mechanical
properties of materials used and it is determined in Zone Il, and S is the equivalent

stress range.

Derived by substituting equation 3.5 from equation 3.4;
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where a,and a, is the original crack size and final crack size, N, and N, is the

number of stress cycles required for crack a, and the number of stress cycles required

for crack a;, .

According to Chung (2004), equation 3.5 can apply to the fatigue limit state
function with the approach proposed by Madsen et al. (1985) as equation 3.6;

3 da
X)=| +———=-CSR(N-N, 3.6
g(Xx) LﬂF@%f_r ( ) (3.6)

Equation 3.6 can also be simplified to;

CSILN (3.7)
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where N adalah is the total number of stress cycles given.
3.2.2 Random variables in the limit state function
3.2.2.1 Initial crack size, ap
Non-Destructive Testing methods included ultrasonic testing, radiographic testing,
magnetic particle testing, acoustic emission testing and thermography tests are tests
used to determine the size of the initial crack in the environment and the special

material. The selection of NDE methods is essential to estimate the size of the initial

crack . Because of the uncertainty that always exists in measurement for each method,



the initial crack size will usually give different results. Mean and constant variance of
the number of resources are shown in Appendix C.

3.2.2.2 Critical Crack Size / Threshold, a.

Critical crack size or crack size threshold is that the fatigue failure is estimated to have
occurred. According to Chung, 2004, the critical crack size is usually determined by

the approach of fracture mechanics or service approach.

With fracture mechanics based approach used in this study, critical crack size
is directly proportional to the critical stress intensity factor of a material. critical stress
concentration factor is the mechanical properties of materials are usually determined
by tests using Impact Charpy V-notch (CVN). Because of the existence of uncertainty
in the CVN tests, the critical stress intensity factor is a random variable. Appendix D
shows some data for steel A36, A588 and A514.

3.2.2.3 Fatigue Crack Parameter, C and m

Because there is a very high variance in many fatigue experiments, the random nature
of two-parameter fatigue crack propagation in the Paris equation to be considered in
the analysis of reliability of this fatigue crack. Statistical properties of these two
parameters can be determined by performing regression analysis on the data available.
Appendix E and F reflect the randomness of the two parameter crack growth from
many aspects and it shows that the environmental conditions, types of metals and
metal manufacturing methods (heat treatment) will affect these two parameters of

fatigue crack.



3.2.2.4 Load cycle

Load cycle is a cause of fatigue in a material. Materials can be classified into the load
cycle amplitude and variable amplitude. At the maximum amplitude of the load, the

stress imposed is the maximum, o, and instead produce a minimum amplitude of

the stress minimum, o, which can be described in Figure 3.1,

V\\//\\//\\//\\/ p‘ 7/\ %\ /\ Rl

'

Smin
~— one cycle

Figure 3.1 Load cycles with maximum and minium stress (Dowling 1999)

Then,
Average stress, S_ = %“Tmm‘" (3.8)
Stress amplitude, S, = w (3.9)
Stress Range, AS =0, — O (3.10)
. o
Stress Ratio, R = —™¢ (3.11)

O-min

Typically, to load completely reversible, the ratio of the stress is -1.



3.2.3 Fatigue Reliability Evaluation

The probability of fatigue crack and failure of the reliability index can be determined
using equations 3.1 and 3.6 to calculate the probability of bringing g(X)sO with

some methods of reliability analysis. Monte Carlo simulation methods and Modified
Monte Carlo simulation will be used in this study and will be discussed in the next

section.
3.3 MONTE CARLO SIMULATION METHOD (MCYS)

MCS method is one of the methods used to conduct the reliability assessment of
engineering structures and it is one of the most popular methods among researchers in
the works or structural reliability assessment of engineering components. The six main

steps in the method or element of this MCS will be discussed in depth.
3.3.1 Problem Statement

The intial stages of the MCS method is to identify the random variables involved in an
engineering problem. When the random variable is identified, an equation that
connects all these random variables can be issued in the form of the equation and thus
the value of the parameter that determines the rigidity of a structural engineering
calculations can be performed and failure criteria can be calculated based on the

specific performance of the equation involves the use of a random variable.

Uncertainty that always exists in the world of engineering and it cannot be
reduced scientifically. Uncertainty, it is meant as the mechanical properties of
engineering materials, properties and structural geometry of loading conditions is
introduced. Mechanical properties such as elastic modulus and fracture toughness
critical properties, geometry such as position fracture and loading conditions that

cause random probability analysis that takes into account the statistical properties of



random variables and hence, the nature of these statistics will be used as input values
the performance equation, g(X).

Fracture toughness values can be calculated based on the input values have
been obtained and will be compared with the critical fracture toughness value.
Structural failure will occur if the equation is less than the nature of performance that
iS, g(X) <0. Because the fracture toughness value depends on the random variables
generated and self-critical fracture toughness value is a random variable so

comparisons cannot be carried out in determinately.

3.3.2 Probability Characteristic of Random Variables

A mathematical representation of the performance equation using a stochastic random
variable is one important element in the assessment of reliability of engineering
structures. This representation reflects the real situation prevailing in the structural

engineering that has always existed in a stochastic.

As an example, the modulus of elasticity of a material engineering is one of
the random variable that has always existed naturally, then the probability of
assessment should be conducted on the material. To carry out the quantization
properties of the probability of a random variable, the information on each random
variable should be known in advance and this information is usually obtained from the
experiments were carried out repeatedly. If the experiments in determining the elastic
modulus of a material carried over engineering and it will always give a different

modulus of elasticity. The information obtained can be quantified mathematically.

If the sample X is one of the random variable that has undergone n time
monitoring of the population. A method of measuring the central tendency of data, or
better known as the mean or the forecast of X, also known as the first central moment

is represented by the symbol E(X) can be calculated as;



B0 =t =2 (3.12)

Measurement method which measures the spread of the data from the mean X
is known as a variance or second central moment is represented by symbols Var(X)

can be calculated as;
1 3 )
Var(X)=n—12(Xi — Hy) (3.13)
—4j=1

or by using the standard deviation is represented by a symbol which can be

calculated as;

oy = 1/Var(X) (3.14)

However, the standard deviation or variance was used to characterize the data
distribution of the mean, but it does not explain the orderly distribution of random
variables without reference to the mean value, then a parameter without units as the
ratio between the standard deviation of the average value of the introduced a constant

variance that provides symbols, COV(X) or dx, ie;

COV(X)=5, =2 (3.15)

Hx

For the variable conditions, COV (X) is zero for deterministic calculation. The
value of COV (X) is smaller meaning smaller uncertainty in the random variable.
According, Haldar and Mahadevan (2000), the value of COV (X) is between 0.1 to 0.3

for most engineering problems.



The calculation of the probability characteristics of a random variable is easy.
The main problems or challenges faced by many researchers and engineers are in the
process of determining a suitable probability distribution of random variables that
deed to be characterize. Typically, the determination of the probability distribution is

based on data available and it requires a mathematical proof.

Method of mathematically proving that the method proposed here is a
statistical test called the Kolmogorov-Smirnov tests (K-S). The selection method is
based on the convenience of this method is not necessary to divide the data into a

narrow range, the error range of sizes and selection can be avoided.

K-S experiments are based on a comparison between the cumulative frequency
with the theoretical cumulative distribution function of the type proposed distribution.
Then the data is arranged in ascending order and the maximum range between the two

cumulative functions can be approximated by equation 3.16,
D, =max|F, (x,)—S,(x; ) (3.16)

where F, (x;) is the cumulative distribution function of the theoretical observations to

i in samples x; and S, is the cumulative distribution function of the corresponding

stages of the data obtained from monitoring and when arranged in ascending order.

The value of S,(x;) can be estimated,

0, x<x
S, (x;)= %,xm <X< Xy (3.17)
1, X2 X

K-S concepts can be shown in Figure 3.2 below,



Maks D,

Cumulative Distribution Function S,(x;) or Fx(x;)

L

Random variables, X

Figure 3.2 Experimental K-Q for the random variable X

Mathematically, D, is a random variable and its distribution is dependent on sample

n

size, n. Cumulative distribution function of D, may be associated with the « with,
P(D, <Df)=1-a (3.18)

where the D, value at various levels can be obtained from standard mathematical
tables in Appendix A. According to the KS tests, if the maximum range D, is less
than or equal to the value D, that appear in Appendix A, the type of distribution can

be estimated initially received at « .



3.3.3 Random Number Generation

Random number generation performed for each variable identified in the section 3.3.1
according to the nature of the probability of each random variable is defined in section
3.3.2. Generation of N sets of random numbers for each variable performed according
to the nature of probability. The generation of random numbers according to certain
distribution is at the heart of the Monte Carlo simulation.

In general, all modern computers have the ability to generate a uniform
random number between O and 1 in bits or binary digital. Based on the source, the
generator will generate random numbers uniformly distributed between 0 and 1. By
changing the source, a different set of random numbers will be generated. Depending
on the capabilities of computers, random numbers are generated may be repeated, but
usually it will happen after the process of generating random numbers as large as 10°
random numbers. Random numbers generated in such a manner called Pseudo

Random Number.

After generating a uniform random number between 0 and 1, the random
numbers should be transformed to the true values of random variables according to
their probability nature. The process of transformation of random numbers to the
actual value of the random variable can be shown graphically in figure 3.2 and the
transformation technique is known as the inverse transformation technique or method

of the inverse cumulative distribution probability.
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Figure 3.3 Random Number Transformation Process. (Haldar & Mahadevan,
2000)

In this transformation method, a random variable for the cumulative

distribution function is equivalent to the random number, u; generated by the equation

and solutions to equations x; is;

in (Xi) =U;

Xj = FX_l(ui)

(3.19)

(3.20)



For example, if a random variable, X is normally distributed with mean and
standard deviation is N(z,,o,) the value S=(X —x,)/o, . This equation can be

shown by
U =F (%) =®(s) = CD[XI_—’UXJ (3.21)
Ox
or,

g = N THx (3.22)

the actual value of the random variable, x; is;
Xi =y + 0y = py +0, @T(U,) (3.23)

where s, =d*(u,),dan ®* is inverse to the cumulative distribution function for the

normal variables.
If the random variable X is lognormal distributed, the average value in the

form of lognormal, A4 and standard deviation in lognormal,  should be calculated in

advance using the following equation.

1
Ay =1n py _Eé,xz (3.24)

and,
£y =In(l+COV(X)?) (3.25)

If COV(X)<0.3 therefore ¢, ~COV(X). Then a random number, x; for the -i

lognormal distribution can be generated by using the following equation



Inx. — A
=] X 3.26
u; [ 3 j (3.26)

or
X, =exply +4, @7 (u,)] (3.27)

Each transformation of random variables will be used as input to the response
equation is derived from the performance of 3.3.2 and it will be discussed in detail in

the next section.
3.3.4 Numerical Computation

The N generation of random numbers for each random variable in engineering
problems will produce a set of N random numbers that represent the actual
engineering problem of uncertainty of random variables. Problem solving in terms of
N times using equations that have been published in sections 3.3.1 to generate N
sample points that represent the output response of the engineering problems. With the
release response to N samples, statistical analysis such as probability density functions
and probability distribution can be carried out. Numerical accuracy would be

improved if the number of simulations N increased.
3.3.5 Computation of Failure Probability

Assuming all the random variables identified in the performance equation that affects
the structure of fracture mechanics are statistically independent. MCS method of
generating random variables based on probability density functions will give the

response characteristics of engineering structures on the uncertainty of this random



variable. The properties of this response to describe the probability of failure of the

structure.

The probability of failure of engineering structures can be calculated by
equation 3.28, ie;

P =—F (3.28)

where N_ is the number of simulations that provide value of g(X) < 0 and N is the
number of simulations that were carried out. The high probability of failure, P- would

mean the engineering structure will crack and vice versa.
3.3.6 Determining the Accuracy and Efficiency Simulations

The ability of equation 3.17 to give an accurate estimate of the probability of failure of
engineering structures should be considered. As discussed in section 3.2.4, the
accuracy of the estimated probability of failure is dependent on the number of
simulations that were carried out. For a very small probability of failure or a small
number of simulations that will bring an error. For real accuracy, the simulation is an

infinite number.

The accuracy of equations 3.28 can be studied by several methods. One
method is to measure the variance or COV(Pg) of each simulation is assuming
Bernoulli trials, the number of failures in N simulation is a Bernoulli distribution, then
COV(Pg) can be calculated as;

(1_ PF)PF
COV(P.)=5, ~+— N (3.29)

P



the small &, is required. From equation 3.29, can be observed &, is almost zero if N

is infinite.

Equation 3.28 show the number of simulations required to achieve a level of
accuracy depends on the probability of failure is not known. The probability of failure
is worth 10° may exist in engineering problems. This means that the 100 000
simulations have calculated to estimate the behavior of the structure. Typically,
millions of simulations required to produce results acceptable to the researchers. For
engineering structures which have n random variables, N million simulations required

to accurately estimate the probability of failure.

3.4  MODIFIED MONTE CARLO SIMULATION - IMPORTANT
SAMPLING

3.4.1 Introduction to Importance Sampling (IS)

The weakness of MCS calculation is a takes computer time and a lot of computer
memory space. This section will discuss a technique that will be used and it is also

popular among researchers, the importance sampling method (1S).

The basic principle is an important sampling method attempts to focus on the

distribution of sampling points in all important areas, namely the area that most
contributions, f (X) the structural failure of the fatigue crack of the overall
consideration of random variables in the sample space of random variables. In other
words, an important area, f (X) should be estimated from the sample that has a high

potential for failure. This principle can be demonstrated by reference to the figure 3.5
below. Reduction of the effective variance of the simulation process is carried out

only in areas potential failures only.



With consideration of the mathematical definition of the basic equations for
the probability of failure of;

P =-[g(x)so f(X)dX=L(X)SO|F(X)f(X)dX (3.30)

For this important sampling method, cumulative distributions function for f (X)

which represents the most important thing is to be used and f (X) is known as a

function of sampling density. Thus, the probability of failure will be as common 3:31;

P :Q(LO{IF(X)%}'(XMX (3.31)

and equation 3.30 can be written more briefly as the equation 3:32;

p. =%iIF(xi) fi () (3.32)

The accuracy of this important sampling method depends on the choice of
sampling density function, f (X) and variance for the probability of failure is as

follows;

Var(P; ) = %Var{l . (x)%} (3.33)

)

Var(PF)=ﬁ( J1:00) :&;

f'(x)dx — PFZJ (3.34)



Selection of sampling density function, f'(X) the optimum can be observed

from equation 3:33 with Var(P. )= 0, ie;

opt — P. (3.35)

The optimal functions can not be applied directly because it depends on the goals or
objectives of the study, the probability of structural failure. But some types of
techniques have been developed by researchers for the purpose of estimating the
density function of this important sampling. Among the proposed technique is the
method of kernel density function by Ang et al. (1992), the method of support vector
machines by Sanseverno and Moreno (2002) and Hurtado (2007), Fission and roulette
method of Hong and Wang (2002), descriptive sampling method by Kalman (1995)
and the design point method by Fan and Wu (2007).

Design point method developed by Fan and Wu (2007) will be used in
determining the importance sampling density function. According to his method of
kernel density functions are developed is not suitable in view of difficulties to obtain
the optimal sampling density function and this method is only focused on a small area

of the entire area may be menpengaruhi failure reliability analysis results.

In the next section, an important sampling method proposed by Fan and Wu

(2007) will be discussed and used in reliability analysis of engineering structures.
3.4.2 Determination of Most Probable failure Point (MPP)
Important first step sampling method proposed by Fan and Wu is to determine the

likely high titk (MPP), also known as the design point. To determine the MPP point,

all the random pemboleubah required to transform the standard normal space is called



the space U. Then the mean and standard deviation equal to estimated by the method
or methods Fiesseler Rackwitz-Chen-Lind.

After changes to the equivalent normal space, there are many techniques and
methods can be used to determine the point of which is the method of MPP FORM,
SORM and the rules pengotimuman. For this study, the method Rackwitz-Fiessler-
FORM will be used to determine the MPP point, as shown in Figure 3.4;

S (e uy)

g (w.1,)=0

Figure 3.4 First Order Reliability Analysis Method (FORM)

3.4.3 The tendency of Random Variables Around MPP

With reference to Figure 3.6 (a), after the transformation of all random variables is
equivalent to the normal space, every variable that has transformed the standard
normal distribution, then all space-U is a normal distribution multivarians. As shown,
the distance from the origin to the MPP point is , and a circle of radius £ and drawn

centered at the origin and the normal distribution multivarians divided into two parts.



It is believed that the inside of the circle would not exist any failure of it and
this area can be removed or disposed of the entire space. This can be explained by
showing the figure 3.5;

Figure 3.5 A circle with center origin and radius j

3.4.4 Determination of important sampling density function

After all the random variables tend to be around the MPP point, to run the simulation,
an important sampling density function (the left) should be determined and this can be
done to re-unite the left as shown in Figure 3.6 (c). It should be noted that this
important sampling density function is normally distributed as the original functions

are normally distributed.



Figure 3.6 Significant sampling method proposed by Fan and Wu (2007)
3.4.5 Simulation

Because all variables have tended to point around the MPP, the cause of the failure
rate will increase and thus the number of simulation will be reduced drastically
compared to the original Monte Carlo simulation methods with a very menyaknikan

resolution.

According Shakarayev and Krashanitsa (2005), the probability of failure for each
component in the plane is in the range 10 to 10™. The proposed method can

drastically reduce the number of simulation because it will reduce the number of



samples required for the guilty of the simulation. According to Fan and Wu, according
to the method applied to systems with high reliability index.

35 Conclusions

The theoretical analysis of the reliability of fatigue cracking in Zone | and Zone 11 to
consider all random variables involved in this study are discussed. Engineering
structural reliability assessment method with Monte Carlo simulation method that has

six key elements are discussed.

The probability of failure of engineering structures can be determined by the ratio
between the number of simulations with the number of simulations are carried out.
The efficiency of Monte Carlo simulation methods can be improved by using variance
reduction techniques, the method of sampling is important to focus key areas in which
the samples it has the potential to cause structural failure. The next section will
discuss the results of failure probability using Monte Carlo simulation method of
renovation so the efficiency of this method compared with Monte Carlo simulation

methods are discussed.



4.1 Introduction

In this chapter, the results of failure probability and reliability index for
various crack geometries commonly found in engineering problems are discussed with
a view to display the concept of fatigue reliability analysis using linear elastic fracture
mechanics approach (LEFM) by weighing the nature of random or stochastic nature of

all the variables involved .

The concept of fatigue reliability analysis is applied by using the modified
Monte Carlo simulation (MMCS) and the results are compared with Monte Carlo
simulation method (MCS). The purpose of this comparison is to determine the
effectiveness of the modifications are developed. The effects of such statistical
properties of random variables on the efficiency of the MMCS is examined to
determine the extent to which the statistical properties will affect the efficiency of the
MMCS and the probability of failure.

Finally, the concept of fatigue reliability analysis is used to determine the
reliability index of the bridge structure is modeled and Implemented the concept of
fatigue reliability analysis is to determine the length of service and optimal inspection

period for engineering structures will be discussed.



4.2 Material Model

Table 4.1 statistical variables for specimens Cracks

Random Variables Average Value cov e Probability
Distribution
Fracture Intensity, K 44 MPa+/m 0.15° Normal °
Crack Size, a 0.01m 0.15° Normal
Tension stress, o, 100 MPa 0.15° Normal
Specimen Width, w 0.05m - -

44  CENTRE CRACK TENSION (CCT)

Analytical function for stress intensity factor;

f(a/W)=1+0.128(a/W)—0.288(a/W)* +1.525(a/W)? (4.3)
4.4.1 Probability of Failure
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Figure 4.9 The probability of failure of specimens CCT



Constant variance
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Figure 4.10 Effects of Number of Samples Used to Constant Variance

4.4.2 The efficiency of Modified Monte Carlo Simulation Method

Table 4.3 Comparison of methods for MCS with MMCS Method CCT specimens

Number of Samples Number of Number of Percentage
Simulations Simulations Reduction
(MCS) (MMCS) Simulations (%)

10,000 10,000 185 98.2

100,000 100,000 1,793 98.2

200,000 200,000 3,617 98.2

300,000 300,000 5,312 98.2

400,000 400,000 7,188 98.2

600,000 600,000 10,953 98.2

1,000,000 1,000,000 18,097 98.2
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Figure 4.11 Comparison of Number of Simulations conducted by the MCS and MMCS

4.4.3 Factors Affecting Efficiency of Modified Monte Carlo Simulation
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Figure 4.12 Effects of failure probability to the number of simulation methods for Modified
Monte Carlo Simulation
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Figure 4.13 Effects of constant variance to the number of Simulations Conducted for Modified
Monte Carlo Simulation

4.4.4 Sensitivity Analysis of Random Variables

4.4.4.1 loading conditions
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Figure 4.14 Effects of Stress Stress to Failure Probability



4.4.4.2 Crack Size
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Figure 4.15Crack Size Effect on Probability of Failure

4.4.4.3 Varian constants
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Figure 4.16 Effects of Random Variables on Probability of Failure



4.7 ENGINEERING APPLICATIONS

4.7.1 Bridge Girder
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Figure 4.25 Crack problem at the Bridge

g(X) = ~C-Sp -(365-ADTT-C,-Y) (4.5)

J‘ac da
“[t(@/wz a|

where C, is the number of stress cycles per truck passage, and ADTT is the average daily truck

traffic.

1-0.5(a/w) +0.370(a/w)* —0.044(a/w)®

J1-(al/w)

f(a/w) = (4.6)




Jadual 4.7 Variables Related to Stress fractures of the Bridge

Variable Type Distribution  Average cov
a, Lognormal 0.020 in 0.500
a, constant 2.000 in 0.000
C Lognormal 2.05x10™° 0.630
m Normal 3.000 0.100
Sre Normal 9.85 ksi 0.300
C. constant 1.000 0.000
ADTT constant 300.000 0.000
w constant 42.000 in 0.000

4.7.2 Fatigue Reliability Index

3.500 -
37060-é
2.500
2.000
1.500

1.000 -

Fatigue Reliability Index

0.500

0.000 -

Length of Service (Years)

Figure 4.26 Fatigue Reliability Index in 100 years



4.7.3 Comparison of Monte Carlo simulation and Midified Monte Carlo Simulation

Jadual 4.8 The comparison of time of simulation and the percentage reduction in the MCS and

MMCS

Method time of simulation  time of simulation  reduction
(sec) (hour) (%)

MCS 122436.359 34.01 -

MMCS 72493.484 20.14 40.79




LAMPIRAN C

Initial Crack Size Distribution from Multiple Sources

Initial Crack Size aq

Detail Reference

Distribution | Mean (in) | COV

Weld Toe Undercut in Butt Weld Exponential | 4.331E-3 1.00 Bokalrud and Karlsen (1982)

Fillet Welded Joint Lognormal | 4.900E-3 | 0.34 Engesvik and Moan (1983)

HSLA Rolled Beam Lognormal | 1.276E-3 | 0.45

HSLA Welded Beam Lognormal | 3472E-2 | 0.36

HSLA Transverse Stiffener Lognormal | 1.741E-2 | 0.71

HSLA Cover Plate Lognormal | 1.084E-2 | 0.80

HSLA Thick Cover Plate Lognormal | 1.843E-2 | 0.28 Yazdani (1984)

QT Rolled Beam Lognormal | 5.100E-5 | 1.78

QT Welded Beam Lognormal | 9.159E-3 | 0.47

QT Transverse Stiffener Lognormal | 5.280E-3 | 0.57

QT Cover Plate Lognormal | 1.700E-4 | 0.19

Tubular Joint Exponential | 4.331E-3 1.00 Kirkemo (1988)

TLP Joint Lognormal | 2.874E-2 1.07 Kountouris and Baker (1989)

Tubular Joint Lognormal | 2.874E-2 1.07 Shetty and Baker. (1990)

Tubular Joint Exponential | 4.331E-3 1.00 Pedersen et al. (1992)

Butt Weld Lognormal | 2.000E-2 | 0.50 Zhao et al. (1994a)

Cover Plate Lognormal | 2.000E-2 | 0.50 Zhao and Haldar (1996)

Stiffener to Bottom Flange Lognormal | 2.362E-2 | 0.10 Cremona (1996)

30 North Sea Jackets Exponential | 3.701E-2 1.00 Moan et al. (1997)

Stiffener to Bottom Flange Lognormal | 4.921E-3 | 0.36 Lukic and Cremona (2001)

Butt Weld Lognormal | 7.874E-3 | 0.50 | Zhang and Mahadevan (2001)

Butt Weld Lognormal | 7.874E-3 | 0.20 Chryi;iﬁigg’;ﬁjfé 003)

Cover Plate Lognormal | 2.362E-2 | 0.40 Chwsﬁ;ﬁiﬁggﬁ;ﬁé 003)

Gusset Plate Lognormal | 3.937E-3 | 0.20 Chryi;%ﬁg;ﬁﬁj??z 003)

Butt Weld at a Hole Lognormal | 3.937E-3 | 0.20 C'hry::;iltfcl)gﬁ;gséom)

Sumber: Chung 2004




LAMPIRAN D

Critical Stress Intensity Factor for A36, A588 dan A514 Steel

Steel Type Mean (ksi \/E) COV
A36 40.0 0.18
AS588 45.1 0.19
AS514 70.1 0.24




LAMPIRAN E

Fatigue Crack statistical parameters from various sources

. C .
Steel Type Environment oV m Reference
mean
(’;ASS%) Air 9.476E-11 0.221 3.183 Klingerman and Fisher (1973)
A36_‘ AS88 Air 7.831E-11 0.076 3.523 Barsom and Novak (1977)
(n=260)
Martensitic Air 4.650E-09 - 2.250 Barsom and Rolfe (1999)
Ferrite-Pearlite Air *3.600E-10 — 3.000 Barsom and Rolfe (1999)
Austenitic Air *3.000E-10 - 3.250 Barsom and Rolfe (1999)
2
(}fjfi b Air S183E-10 | 0.140 | 3.725 | Mayfield and Maxey (1982)
A36, A588 .
’ - 2
(n=724) Air 9.344E-11 0.200 3.202 Roberts et al. (1986)
HSLA steel Air 8201E-11 | 0226 | 3344 | Yazdani and Albrecht (1989)
(n=1394)
A(";f:’ 5%25};8 Aqueous 2.231E-10 | 0.150 | 3.279 Yazdani and Albrecht (1989)
Asl4 Air 2.794E-11 | 0.088 | 3.026 | Barsom and Novak (1977)
(n=372)
AS514 N . 4
(1=499) Air 1.324E-11 0.187 2.456 Roberts et al. (1986)
(11881-7 1 Air 1.174E-09 0.167 2.534 Yazdani and Albrecht (1989)
(ngllé 4) Aqueous 2.975E-09 0.156 2.420 Yazdani and Albrecht (1989)
1020 (HR) Air 2.960E-10 - 3.070 Hertzberg (1995)
4130 (QT) Air 3.730E-10 - 2.590 Hertzberg (1995)

n: number of test data
*: upper bound

The units of C assume units of inches for crack size and ksiv/in for AK
HSLA: high strength low alloy steel

QT: quenched and tempered steel

HR: hot rolled steel

Aqueous Environment: 3% solution sodium chloride in distilled water




LAMPIRAN F

Statistical parameters for fatigue crack propagation Waterways From Various Sources

c
Environment m Reference
mean Ccov
Air 2.587E-10 | 0.55 | 3.10 DNV
Classification
. Notes No. 30.2
Air 3.319E-10 0.77 3.50 (1984)
Air 7.031E-10 0.55 3.10 DNV-RP-404
C
Ailr 3.319E-10 0.77 3.50 (1988)
. Bokalrud and Karlsen
Air 1.360E-09 0.10 3.30 (1982)
- Cortie and Garrett
2 271F-
Air 2.271E-10 0.1 3.10 (1988)
. Aaghaakouchak et al.
7 - &
Air 2.418E-10 0.3 3.30 (1989)
. Shetty and Baker
ARE.- o) J
Air 3.343E-10 0.25 3.00 (1990)
Air, R~0.1 2.478E-10 0.35 3.00
Air, R>0.5 4.130E-10 0.37 3.00
Air, R~0.1 1.786E-15 | 131 | 8.16
Stage 1
Air, R~0.1 4295E-10 | 035 | 2.88
Stage 2
Ag;fg{:?j 1365E-11 | 1.69 | 5.10 BSI
Air R03 PD 6493
) - A - C
Stage 2 6.324E-10 0.60 2.88 (1991)
Seawater, R~0.1 1 5 199p 10 | 093 | 342
Stage 1
Seawater, R-0.1 1 5 5398 07 | 026 | 1.30
Stage 2
Seawater, R=0.5 | 3 9371 19 | 110 | 342
Stage 1
Seawater, R20.5 | ) 146E-06 | 016 | 111
Stage 2
) ) BS 7910
Air 4.130E-10 0.54 3.00 (1997)
The units of C assume units of inches for crack size and ksi+/in for AK




