
Reliability Assessment Using Modified Monte Carlo Simulation 

 

3.1 INTRODUCTION 

 

 In this chapter, the method of assessing the reliability or probability of fracture 

mechanics assessment methods will be discussed in depth. In section 3.2, theoretical 

approach to analyze the reliability of linear elastic fracture mechanics (LEFM) to be 

used in this study will be discussed. Monte Carlo simulation method (MCS) in 

reliability analysis is discussed in section 3.3 and section 3.4, an important sampling 

technique (CI), which is one of variance reduction techniques (VRT) is popular for 

modified Monte Carlo simulation methods are discussed. Chapter III concludes with a 

summary. 

 

3.2 Fatigue Reliability Analysis using Linear Elastic Fracture Mechanics 

(LEFM) 

 

Fatigue reliability analysis using linear elastic fracture mechanics approach, which 

considers the existence of the original crack in an engineering structure or component 

are used in this study. The method of reliability analysis tools used is based on the 

principles of the approach of linear elastic fracture mechanics, critical stress intensity 

factor threshold and Paris law to describe the failure by fatigue cracking. In this 

section, the limit state function for fatigue reliability analysis, random variables such 

as size of initial crack and the crack will be discussed critically. 

 

3.2.1 Limit state function 

 

 Some of the engineering component, the crack propagation is not allowed 

because it would weaken the strength of an engineering system and the subsequent 

failure by fracture mechanics. Then a maximum limit state function associated with 



 

 

both these random enablement should be issued and limit state function is as equation 

3.1; 
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and 

 

  aaFK      (3.2) 

where  aF  is a function that characterizes the geometry of the crack in a specimen 

geometry used,   is the average stress exerted on the material and the size of the 

original crack. 

 

 For large engineering systems such as bridges, cargo ships, and pipelines on 

the seabed that is exposed to cyclic loading in the long run, a reliability analysis 

method should be used to determine the reliability of the system of tenure, then Paris 

and Erdogan (1963), the relationship between crack growth rate with stress intensity 

factor can be described as equation 3.3; 
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and 
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where N  is the number of stress cycles imposed and C and m  the mechanical 

properties of materials used and it is determined in Zone II, and RES  is the equivalent 

stress range. 

 

Derived by substituting equation 3.5 from equation 3.4; 
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where 0a and fa  is the original crack size and final crack size, 0N  and fN  is the 

number of stress cycles required for crack 0a  and the number of stress cycles required 

for crack fa . 

 

 According to Chung (2004), equation 3.5 can apply to the fatigue limit state 

function with the approach proposed by Madsen et al. (1985) as equation 3.6; 
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Equation 3.6 can also be simplified to; 
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where N adalah is the total number of stress cycles given. 

 

 

3.2.2 Random variables in the limit state function 

 

3.2.2.1 Initial crack size, a0 

 

Non-Destructive Testing methods included ultrasonic testing, radiographic testing, 

magnetic particle testing, acoustic emission testing and thermography tests are tests 

used to determine the size of the initial crack in the environment and the special 

material. The selection of NDE methods is essential to estimate the size of the initial 

crack . Because of the uncertainty that always exists in measurement for each method, 



 

 

the initial crack size will usually give different results. Mean and constant variance of 

the number of resources are shown in Appendix C. 

 

 

3.2.2.2 Critical Crack Size / Threshold, ac 

 

Critical crack size or crack size threshold is that the fatigue failure is estimated to have 

occurred. According to Chung, 2004, the critical crack size is usually determined by 

the approach of fracture mechanics or service approach. 

 

 With fracture mechanics based approach used in this study, critical crack size 

is directly proportional to the critical stress intensity factor of a material. critical stress 

concentration factor is the mechanical properties of materials are usually determined 

by tests using Impact Charpy V-notch (CVN). Because of the existence of uncertainty 

in the CVN tests, the critical stress intensity factor is a random variable. Appendix D 

shows some data for steel A36, A588 and A514. 

 

3.2.2.3 Fatigue Crack Parameter, C  and m 

 

Because there is a very high variance in many fatigue experiments, the random nature 

of two-parameter fatigue crack propagation in the Paris equation to be considered in 

the analysis of reliability of this fatigue crack. Statistical properties of these two 

parameters can be determined by performing regression analysis on the data available. 

Appendix E and F reflect the randomness of the two parameter crack growth from 

many aspects and it shows that the environmental conditions, types of metals and 

metal manufacturing methods (heat treatment) will affect these two parameters of 

fatigue crack. 

 

 

 



 

 

3.2.2.4 Load cycle 

 

Load cycle is a cause of fatigue in a material. Materials can be classified into the load 

cycle amplitude and variable amplitude. At the maximum amplitude of the load, the 

stress imposed is the maximum, max  and instead produce a minimum amplitude of 

the stress minimum, min  which can be described in Figure 3.1; 

 

 

Figure 3.1 Load cycles with maximum and minium stress (Dowling 1999) 

  

Then, 
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2
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
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Typically, to load completely reversible, the ratio of the stress is -1. 

 



 

 

3.2.3  Fatigue Reliability Evaluation 

 

The probability of fatigue crack and failure of the reliability index can be determined 

using equations 3.1 and 3.6 to calculate the probability of bringing   0Xg  with 

some methods of reliability analysis. Monte Carlo simulation methods and Modified 

Monte Carlo simulation will be used in this study and will be discussed in the next 

section. 

 

3.3 MONTE CARLO SIMULATION METHOD (MCS) 

 

MCS method is one of the methods used to conduct the reliability assessment of 

engineering structures and it is one of the most popular methods among researchers in 

the works or structural reliability assessment of engineering components. The six main 

steps in the method or element of this MCS will be discussed in depth. 

 

3.3.1 Problem Statement 

 

The intial stages of the MCS method is to identify the random variables involved in an 

engineering problem. When the random variable is identified, an equation that 

connects all these random variables can be issued in the form of the equation and thus 

the value of the parameter that determines the rigidity of a structural engineering 

calculations can be performed and failure criteria can be calculated based on the 

specific performance of the equation involves the use of a random variable. 

 

 Uncertainty that always exists in the world of engineering and it cannot be 

reduced scientifically. Uncertainty, it is meant as the mechanical properties of 

engineering materials, properties and structural geometry of loading conditions is 

introduced. Mechanical properties such as elastic modulus and fracture toughness 

critical properties, geometry such as position fracture and loading conditions that 

cause random probability analysis that takes into account the statistical properties of 



 

 

random variables and hence, the nature of these statistics will be used as input values 

the performance equation, g(X). 

 

Fracture toughness values can be calculated based on the input values have 

been obtained and will be compared with the critical fracture toughness value. 

Structural failure will occur if the equation is less than the nature of performance that 

is, g(X) <0. Because the fracture toughness value depends on the random variables 

generated and self-critical fracture toughness value is a random variable so 

comparisons cannot be carried out in determinately.  

 

3.3.2 Probability Characteristic of Random Variables 

 

A mathematical representation of the performance equation using a stochastic random 

variable is one important element in the assessment of reliability of engineering 

structures. This representation reflects the real situation prevailing in the structural 

engineering that has always existed in a stochastic. 

 

As an example, the modulus of elasticity of a material engineering is one of 

the random variable that has always existed naturally, then the probability of 

assessment should be conducted on the material. To carry out the quantization 

properties of the probability of a random variable, the information on each random 

variable should be known in advance and this information is usually obtained from the 

experiments were carried out repeatedly. If the experiments in determining the elastic 

modulus of a material carried over engineering and it will always give a different 

modulus of elasticity. The information obtained can be quantified mathematically. 

 

If the sample X is one of the random variable that has undergone n time 

monitoring of the population. A method of measuring the central tendency of data, or 

better known as the mean or the forecast of X, also known as the first central moment 

is represented by the symbol E(X) can be calculated as; 
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Measurement method which measures the spread of the data from the mean X 

is known as a variance or second central moment is represented by symbols Var(X) 

can be calculated as; 
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or by using the standard deviation is represented by a symbol which can be 

calculated as; 

 

)(XVarX      (3.14) 

 

 However, the standard deviation or variance was used to characterize the data 

distribution of the mean, but it does not explain the orderly distribution of random 

variables without reference to the mean value, then a parameter without units as the 

ratio between the standard deviation of the average value of the introduced a constant 

variance that provides symbols, COV(X) or δX , ie; 
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For the variable conditions, COV (X) is zero for deterministic calculation. The 

value of COV (X) is smaller meaning smaller uncertainty in the random variable. 

According, Haldar and Mahadevan (2000), the value of COV (X) is between 0.1 to 0.3 

for most engineering problems. 

 



 

 

The calculation of the probability characteristics of a random variable is easy. 

The main problems or challenges faced by many researchers and engineers are in the 

process of determining a suitable probability distribution of random variables that 

deed to be characterize. Typically, the determination of the probability distribution is 

based on data available and it requires a mathematical proof. 

 

Method of mathematically proving that the method proposed here is a 

statistical test called the Kolmogorov-Smirnov tests (K-S). The selection method is 

based on the convenience of this method is not necessary to divide the data into a 

narrow range, the error range of sizes and selection can be avoided. 

 

K-S experiments are based on a comparison between the cumulative frequency 

with the theoretical cumulative distribution function of the type proposed distribution. 

Then the data is arranged in ascending order and the maximum range between the two 

cumulative functions can be approximated by equation 3.16, 

 

   iniXn xSxFD  max                     (3.16) 

 

where  iX xF  is the cumulative distribution function of the theoretical observations to  

i in samples xi  and Sn  is the cumulative distribution function of the corresponding 

stages of the data obtained from monitoring and when arranged in ascending order. 

The value of
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K-S concepts can be shown in Figure 3.2 below, 

 



 

 

 

Figure 3.2 Experimental K-Q for the random variable X 

 

Mathematically, nD  is a random variable and its distribution is dependent on sample 

size, n. Cumulative distribution function of nD  may be associated with the  with, 

 

    1nn DDP        (3.18) 

 

where the 

nD  value at various levels can be obtained from standard mathematical 

tables in Appendix A. According to the KS tests, if the maximum range nD  is less 

than or equal to the value 

nD  that appear in Appendix A, the type of distribution can 

be estimated initially received at . 
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3.3.3 Random Number Generation 

 

Random number generation performed for each variable identified in the section 3.3.1 

according to the nature of the probability of each random variable is defined in section 

3.3.2. Generation of N sets of random numbers for each variable performed according 

to the nature of probability. The generation of random numbers according to certain 

distribution is at the heart of the Monte Carlo simulation. 

 

In general, all modern computers have the ability to generate a uniform 

random number between 0 and 1 in bits or binary digital. Based on the source, the 

generator will generate random numbers uniformly distributed between 0 and 1. By 

changing the source, a different set of random numbers will be generated. Depending 

on the capabilities of computers, random numbers are generated may be repeated, but 

usually it will happen after the process of generating random numbers as large as 10
9
 

random numbers. Random numbers generated in such a manner called Pseudo 

Random Number. 

 

After generating a uniform random number between 0 and 1, the random 

numbers should be transformed to the true values of random variables according to 

their probability nature. The process of transformation of random numbers to the 

actual value of the random variable can be shown graphically in figure 3.2 and the 

transformation technique is known as the inverse transformation technique or method 

of the inverse cumulative distribution probability. 
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Figure 3.3 Random Number Transformation Process. (Haldar & Mahadevan, 

2000) 

 

 In this transformation method, a random variable for the cumulative 

distribution function is equivalent to the random number, ui  generated by the equation 
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and solutions to equations xi  is; 
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For example, if a random variable, X is normally distributed with mean and 

standard deviation is ( , )X XN    the value
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or, 
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the actual value of the random variable, xi  is; 
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where 1( ),i is u dan 1  is inverse to the cumulative distribution function for the 

normal variables. 

 

If the random variable X is lognormal distributed, the average value in the 

form of lognormal, λx and standard deviation in lognormal, ζx should be calculated in 

advance using the following equation. 
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and, 
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If COV( ) 0.3X   therefore COV( )X X  . Then a random number, xi for the -i 

lognormal distribution can be generated by using the following equation 



 

 

 

                                                   
ln i X

i

X

x
u





 
  

                

                 (3.26)

   

or 
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Each transformation of random variables will be used as input to the response 

equation is derived from the performance of 3.3.2 and it will be discussed in detail in 

the next section. 

 

3.3.4 Numerical Computation 

 

The N generation of random numbers for each random variable in engineering 

problems will produce a set of N random numbers that represent the actual 

engineering problem of uncertainty of random variables. Problem solving in terms of 

N times using equations that have been published in sections 3.3.1 to generate N 

sample points that represent the output response of the engineering problems. With the 

release response to N samples, statistical analysis such as probability density functions 

and probability distribution can be carried out. Numerical accuracy would be 

improved if the number of simulations N increased. 

 

3.3.5 Computation of Failure Probability 

 

Assuming all the random variables identified in the performance equation that affects 

the structure of fracture mechanics are statistically independent. MCS method of 

generating random variables based on probability density functions will give the 

response characteristics of engineering structures on the uncertainty of this random 



 

 

variable. The properties of this response to describe the probability of failure of the 

structure. 

 

The probability of failure of engineering structures can be calculated by 

equation 3.28, ie; 
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where FN  is the number of simulations that provide value of g(X) < 0 and N is the 

number of simulations that were carried out. The high probability of failure, FP  would 

mean the engineering structure will crack and vice versa. 

 

3.3.6 Determining the Accuracy and Efficiency Simulations 

 

The ability of equation 3.17 to give an accurate estimate of the probability of failure of 

engineering structures should be considered. As discussed in section 3.2.4, the 

accuracy of the estimated probability of failure is dependent on the number of 

simulations that were carried out. For a very small probability of failure or a small 

number of simulations that will bring an error. For real accuracy, the simulation is an 

infinite number. 

 

 The accuracy of equations 3.28 can be studied by several methods. One 

method is to measure the variance or COV(PF) of each simulation is assuming 

Bernoulli trials, the number of failures in N simulation is a Bernoulli distribution, then 

COV(PF) can be calculated as; 
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the small 
FP  is required. From equation 3.29, can be observed

 FP  is almost zero if N 

is infinite. 

 

 Equation 3.28 show the number of simulations required to achieve a level of 

accuracy depends on the probability of failure is not known. The probability of failure 

is worth 10
-5

 may exist in engineering problems. This means that the 100 000 

simulations have calculated to estimate the behavior of the structure. Typically, 

millions of simulations required to produce results acceptable to the researchers. For 

engineering structures which have n random variables, N million simulations required 

to accurately estimate the probability of failure.  

 

3.4 MODIFIED MONTE CARLO SIMULATION - IMPORTANT 

SAMPLING 

 

3.4.1 Introduction to Importance Sampling (IS) 

 

The weakness of MCS calculation is a takes computer time and a lot of computer 

memory space. This section will discuss a technique that will be used and it is also  

popular among researchers, the importance sampling method (IS). 

 

 The basic principle is an important sampling method attempts to focus on the 

distribution of sampling points in all important areas, namely the area that most 

contributions, )(' Xf  the structural failure of the fatigue crack of the overall 

consideration of random variables in the sample space of random variables. In other 

words, an important area, )(' Xf  should be estimated from the sample that has a high 

potential for failure. This principle can be demonstrated by reference to the figure 3.5 

below. Reduction of the effective variance of the simulation process is carried out 

only in areas potential failures only. 

 



 

 

 With consideration of the mathematical definition of the basic equations for 

the probability of failure of; 

 

dxXfXIdxXfP
Xg Xg

FF )()()(
0)( 0)(  

   (3.30) 

 

For this important sampling method, cumulative distributions function for )(' Xf  

which represents the most important thing is to be used and )(' Xf  is known as a 

function of sampling density. Thus, the probability of failure will be as common 3:31; 
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and equation 3.30 can be written more briefly as the equation 3:32; 
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 The accuracy of this important sampling method depends on the choice of 

sampling density function, )(' Xf  and variance for the probability of failure is as 

follows; 
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 Selection of sampling density function,  Xf '  the optimum can be observed 

from equation 3:33 with  FPVar = 0, ie; 
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The optimal functions can not be applied directly because it depends on the goals or 

objectives of the study, the probability of structural failure. But some types of 

techniques have been developed by researchers for the purpose of estimating the 

density function of this important sampling. Among the proposed technique is the 

method of kernel density function by Ang et al. (1992), the method of support vector 

machines by Sanseverno and Moreno (2002) and Hurtado (2007), Fission and roulette 

method of Hong and Wang (2002), descriptive sampling method by Kalman (1995) 

and the design point method by Fan and Wu (2007). 

 

 Design point method developed by Fan and Wu (2007) will be used in 

determining the importance sampling density function. According to his method of 

kernel density functions are developed is not suitable in view of difficulties to obtain 

the optimal sampling density function and this method is only focused on a small area 

of the entire area may be menpengaruhi failure reliability analysis results. 

 

 In the next section, an important sampling method proposed by Fan and Wu 

(2007) will be discussed and used in reliability analysis of engineering structures. 

 

3.4.2 Determination of Most Probable failure Point (MPP) 

 

Important first step sampling method proposed by Fan and Wu is to determine the 

likely high titk (MPP), also known as the design point. To determine the MPP point, 

all the random pemboleubah required to transform the standard normal space is called 



 

 

the space U. Then the mean and standard deviation equal to estimated by the method 

or methods Fiesseler Rackwitz-Chen-Lind.  

 

After changes to the equivalent normal space, there are many techniques and 

methods can be used to determine the point of which is the method of MPP FORM, 

SORM and the rules pengotimuman. For this study, the method Rackwitz-Fiessler-

FORM will be used to determine the MPP point, as shown in Figure 3.4; 

 

Figure 3.4 First Order Reliability Analysis Method  (FORM) 

 

3.4.3 The tendency of Random Variables Around MPP 

 

With reference to Figure 3.6 (a), after the transformation of all random variables is 

equivalent to the normal space, every variable that has transformed the standard 

normal distribution, then all space-U is a normal distribution multivarians. As shown, 

the distance from the origin to the MPP point is β, and a circle of radius β and drawn 

centered at the origin and the normal distribution multivarians divided into two parts. 

Failure area 

FORM 



 

 

It is believed that the inside of the circle would not exist any failure of it and 

this area can be removed or disposed of the entire space. This can be explained by 

showing the figure 3.5; 

 

Figure 3.5 A circle with center origin and radius β  

 

 

3.4.4 Determination of important sampling density function 

 

After all the random variables tend to be around the MPP point, to run the simulation, 

an important sampling density function (the left) should be determined and this can be 

done to re-unite the left as shown in Figure 3.6 (c). It should be noted that this 

important sampling density function is normally distributed as the original functions 

are normally distributed. 

 

Failure area 



 

 

 

Figure 3.6 Significant sampling method proposed by Fan and Wu (2007) 

 

3.4.5 Simulation 

 

Because all variables have tended to point around the MPP, the cause of the failure 

rate will increase and thus the number of simulation will be reduced drastically 

compared to the original Monte Carlo simulation methods with a very menyaknikan 

resolution. 

 

According Shakarayev and Krashanitsa (2005), the probability of failure for each 

component in the plane is in the range 10
-10

 to 10
-5

. The proposed method can 

drastically reduce the number of simulation because it will reduce the number of 

Safe area 

important area of sampling 



 

 

samples required for the guilty of the simulation. According to Fan and Wu, according 

to the method applied to systems with high reliability index. 

 

3.5 Conclusions 

 

The theoretical analysis of the reliability of fatigue cracking in Zone I and Zone II to 

consider all random variables involved in this study are discussed. Engineering 

structural reliability assessment method with Monte Carlo simulation method that has 

six key elements are discussed. 

 

The probability of failure of engineering structures can be determined by the ratio 

between the number of simulations with the number of simulations are carried out. 

The efficiency of Monte Carlo simulation methods can be improved by using variance 

reduction techniques, the method of sampling is important to focus key areas in which 

the samples it has the potential to cause structural failure. The next section will 

discuss the results of failure probability using Monte Carlo simulation method of 

renovation so the efficiency of this method compared with Monte Carlo simulation 

methods are discussed. 

 

  



 

 

4.1 Introduction 

In this chapter, the results of failure probability and reliability index for 

various crack geometries commonly found in engineering problems are discussed with 

a view to display the concept of fatigue reliability analysis using linear elastic fracture 

mechanics approach (LEFM) by weighing the nature of random or stochastic nature of 

all the variables involved . 

 

The concept of fatigue reliability analysis is applied by using the modified 

Monte Carlo simulation (MMCS) and the results are compared with Monte Carlo 

simulation method (MCS). The purpose of this comparison is to determine the 

effectiveness of the modifications are developed. The effects of such statistical 

properties of random variables on the efficiency of the MMCS is examined to 

determine the extent to which the statistical properties will affect the efficiency of the 

MMCS and the probability of failure. 

 

 Finally, the concept of fatigue reliability analysis is used to determine the 

reliability index of the bridge structure is modeled and Implemented the concept of 

fatigue reliability analysis is to determine the length of service and optimal inspection 

period for engineering structures will be discussed. 

 



 

 

4.2 Material Model 

Table 4.1 statistical variables for specimens Cracks 

Random Variables Average Value COV
  c 

Probability 

Distribution 

Fracture Intensity, KIc 

 

Crack Size, a 

 

Tension stress, σ∞ 

 

Specimen Width, w 

 

44 MPa m  

 

0.01 m 

 

100 MPa 

 

0.05 m 

0.15 
a 

 

0.15 
a 

 

0.15 
a 

 

-
 

 

Normal 
b 

 

Normal 
b 

 

Normal 
b
 

 

-
 

 

 

4.4 CENTRE CRACK TENSION (CCT) 

Analytical function for stress intensity factor; 

32 )/(525.1)/(288.0)/(128.01)/( WaWaWaWaf     (4.3) 

4.4.1 Probability of Failure 

 

 

Figure 4.9 The probability of failure of specimens CCT 
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Figure 4.10 Effects of Number of Samples Used to Constant Variance 

 

4.4.2 The efficiency of Modified Monte Carlo Simulation Method 

Table 4.3 Comparison of methods for MCS with MMCS Method CCT specimens 

Number of Samples Number of 

Simulations  

(MCS) 

Number of 

Simulations 

(MMCS) 

Percentage 

Reduction 

Simulations (%) 

10,000 10,000 185 98.2 

100,000 100,000 1,793 98.2 

200,000 200,000 3,617 98.2 

300,000 300,000 5,312 98.2 

400,000 400,000 7,188 98.2 

600,000 600,000 10,953 98.2 

1,000,000 1,000,000 18,097 98.2 
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Figure 4.11 Comparison of Number of Simulations conducted by the MCS and MMCS 

 

4.4.3 Factors Affecting Efficiency of Modified Monte Carlo Simulation  

 

 

Figure 4.12 Effects of failure probability to the number of simulation methods for Modified 

Monte Carlo Simulation 
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Figure 4.13 Effects of constant variance to the number of Simulations Conducted for Modified 

Monte Carlo Simulation 

 

4.4.4 Sensitivity Analysis of Random Variables 

4.4.4.1 loading conditions 

 

Figure 4.14 Effects of Stress Stress to Failure Probability 
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4.4.4.2 Crack Size 

 

 

Figure 4.15 Crack Size Effect on Probability of Failure 

 

4.4.4.3 Varian constants 

 

 

Figure 4.16 Effects of Random Variables on Probability of Failure 
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4.7 ENGINEERING APPLICATIONS 

4.7.1 Bridge Girder 

 

Figure 4.25 Crack problem at the Bridge 
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where sC  is the number of stress cycles per truck passage, and ADTT  is the average daily truck 

traffic. 
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Jadual 4.7 Variables Related to Stress fractures of the Bridge 

Variable Type Distribution Average COV 

0a  Lognormal 0.020 in 0.500 

ca  constant 2.000 in 0.000 

C   Lognormal 2.05x10
-10 

0.630 

m   Normal 3.000 0.100 

RES  Normal 9.85 ksi 0.300 

sC  constant 1.000 0.000 

ADTT  constant 300.000 0.000 

W  constant 42.000 in                                                                                                                                                                       0.000 

 

4.7.2 Fatigue Reliability Index 

 

 

Figure 4.26 Fatigue Reliability Index in 100 years 
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4.7.3 Comparison of Monte Carlo simulation and Midified Monte Carlo Simulation 

 

Jadual 4.8 The comparison of time of simulation and the percentage reduction in the MCS and 

MMCS 

Method time of simulation 

(sec) 

time of simulation 

 (hour) 

reduction  

(%) 

MCS 122436.359 34.01 - 

MMCS 72493.484 20.14 40.79 

 

 

  



 

 

LAMPIRAN C 

 

Initial Crack Size Distribution from Multiple Sources

 

Sumber: Chung 2004 

 

  



 

 

LAMPIRAN D 

 

Critical Stress Intensity Factor for A36, A588 dan A514 Steel 

 

 

  



 

 

LAMPIRAN E 

 

Fatigue Crack statistical parameters from various sources 

 

 

  



 

 

LAMPIRAN F 

 

Statistical parameters for fatigue crack propagation Waterways From Various Sources 

 

 


