
MODIFIED MONTE CARLO WITH IMPORTANCE SAMPLING METHOD 

 

Monte Carlo simulation methods apply a random sampling and modifications can be 

made of this method is by using variance reduction techniques (VRT). VRT objective 

is to reduce the variance due to Monte Carlo methods become more accurate with a 

variance approaching zero and the number of samples approaches infinity, which is 

not practical in the real situation (Chen, 2004). These techniques are the use of 

antithetic variate, variate control and sampling methods are different. In crack fatigue 

and reliability analysis of structures, other than random sampling, the types of 

sampling that has been used by researchers are: 

 

a) importance sampling 

b) Latin Hypercube sampling 

c) adaptability of the radial-based importance sampling for determining the most 

likely point (MPP) 

 

3.3.1 Importance sampling 

 

According Boessio et al. (2006), a modified Monte Carlo method with importance 

sampling can avoid a number of simulations, which is too much like the original 

Monte Carlo method. Importance sampling function by increasing concentrations of 

sample points in areas with a higher probability of failure. Distribution point 

penyampelan focused on important areas only, namely 𝑓𝑤 (𝑋)  the sample space is a 

random variable, 𝑋.  

 

 The equation is the probability of failure can be defined by: 

 

 𝑃𝑓 =  𝑓𝑋(𝑋)𝑑𝑥
𝑔(𝑋)≤0

=  𝐼 𝑔 𝑋  𝑓𝑋𝑑𝑋
𝑋

 

 

𝑃𝑓 =  𝐼𝑤  𝑔 𝑋  𝑓𝑤𝑑𝑋
𝑋

=
1

𝑛𝑠
 𝐼𝑤 [𝑔(𝑋)]

𝑛𝑠

1

 

 

(3.7) 

(3.8) 
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where 𝑓𝑤 (𝑋)  is a function of probability sampling, while  𝐼𝑤  can be defined: 

 

𝐼𝑤 = 𝐼[𝑔 𝑋 ]
𝑓𝑋(𝑋)

𝑓𝑤 (𝑋)
 

 

Anderson (1999) states that it is important for the distribution are selected for 

sampling, or generating random numbers. 

 

3.3.2 Latin Hypercube sampling 

 

Latin Sampling Method Hypercube is one branch of the sampling layers are arranged 

in general. According to Choi et al. (2007), the distribution of each random variable 

can be divided into n intervals with equal probability. Any interval is not beyond 

themselves as they have the same probability, and has its own point of analysis. Thus, 

there are n-number of points of analysis are randomly mixed and each has probability 

1 / n of the probability distribution. This will ensure that each of the input variable has 

a range of samples from all. 

 

 Implementation steps can be summarized as follows:: 

a) Distribution of the distribution for each of the n-interval is not beyond 

themselves. 

b) Choose a random value for each variable in each interval. 

c) The second step is repeated for all variables to completion. 

d) Relate the value of n is found for 𝑥𝑖   with a random value of  𝑥𝑗≠1  .  

 

Cumulative probability, 𝑃𝑚  can be defined as: 

 

𝑃𝑚 =
1

𝑛
𝑈𝑚 + (

𝑚 − 1

𝑛
) 

 

where 𝑈𝑚  are random numbers from uniform distribution, and m is a value from 1 to 

𝑛. The value of 𝑈𝑚  located in each interval -𝑚  be used to obtain the probability of 

normal distribution of the, 𝜉 ie: 

(3.9) 

 (3.10) 
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𝜉 = 𝛷−1(𝑃𝑚 ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 3.1: Basic steps for sampling the Latin Hypercube 

        (Source: Choi et al., 2007) 

 

 Orthogonal sampling is one of Latin Hypercube. Orthogonal layout is a 

fractional factorial matrix that ensures a uniform comparison between the level or 

relationship to any factor. This method is similar to the method of Latin origin 

Hypercube where the sample space is divided into spaces smaller with the same 

probability. All the sampling points chosen and sampled simultaneously with the same 

density. These techniques try to ensure that random numbers are representative of true 

randomness approach.  

 

3.3.3 Importance Sampling-Based Radial Adaptability 

 

According Grooteman (2008), based on Importance sampling technique was 

developed by the radial Harbitz that sphere-β ' ie to the n-dimensional sphere of 

domain sampling in the secure part. Sampling domain is restricted to the values that 

(3.11) 

 

b)  Step 2 a) Step 1 

d)  Step 4 c)   Step 3 
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are beyond the sphere- β ' the joint probability density function. The value of β ' refers 

to the optimum radius of the sphere is the shortest distance to the limit in the most 

probable point (MPP). In general, the value of β ' is not known, but this method can 

save a lot of simulation due to the reduction of sampling is not needed in the safe area. 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

  Figure 3.2 : Importance sampling based on  berasaskan optimum radial 

    (Source: Grooteman, 2008) 

 

This method also guarantees convergence to a solution with a much reduced number 

of sampling. However, this method considers the optimum value of β ' is known and in 

reality, this value is not known. So, Grooteman (2008) have suggested an Importance 

sampling method based on radial flexibility of finding the value β ' real first. This 

method starts by assuming an initial value βo high as this will ensure the probability of 

this value lies outside the true radius β. The value of β ' can be characterized by the 

equation 3.12: 

 

𝛽′ =  𝜒𝑛
−2(1 −

𝑝𝑜

𝑝𝑠𝑡𝑒𝑝
) 

 

 

(3.12) 
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where 𝑝𝑜  adalah kebarangkalian domain sampel berada di luar sfera manakala 𝜒𝑛  is a 

chi distribution with n degrees of freedom as the number of stochastic variables and 

𝑝𝑠𝑡𝑒𝑝  is a probability sample is not in the 𝛽 and 𝛽𝑜𝑝𝑡𝑖𝑚𝑢𝑚 . Nilai 𝑝𝑠𝑡𝑒𝑝  right is close to 1 

to reduce the sample domain 𝛽′  and 𝛽𝑜𝑝𝑡𝑖𝑚𝑢𝑚  while the value of 0.8 could be a 

suitable option. 

 

3.4 MODIFIED MONTE CARLO SIMULATION (MMCS) 

 

MCS method, introduced by Ulam and von Neumann in the 1940's era can be defined 

as a method to approach the expectations of the sample mean for the function of the 

simulated random variables (Anderson, 1999). This method is one of the methods used 

to conduct the reliability assessment of engineering structures and it is one of the most 

popular methods among researchers in the works or structural reliability assessment of 

engineering components. In this section, the steps to this method and a modified 

(MMCS) will be discussed in depth. 

 

3.4.1 Performance Equation for Problem Statement  

 

In the simulation, modeling is crucial in understanding the system or structure to 

identify the variables and coefficients that exist and to ignore factors that are not 

important. This means that the early stages of MCS is to identify the random variables 

involved in an engineering problem. Random variables that will lead to the 

construction or the issuance of the equation that connects all of them. According 

Grooteman (2007), if there is uncertainty whether the parameter or combination of 

parameters is random or not, sensitivity analysis can be conducted. If different 

parameter values are not shown diffusing it should be considered as a regulation. A 

sample of the great value of the random variable will be generated at random and 

according to the most appropriate statistical distributions in describing it. 

Subsequently, a calculation based on the performance of the equation may be carried 

out. 
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3.4.2 Modified Monte Carlo Method Implementation 

 

According to Boessio et al. (2006), Monte Carlo method is simulating a large number 

of experiments that are generated in the form of artificial. This experiment is a sample 

of random variables, X and then the limit state equation will be evaluated. Relative 

frequency of cases of failure when 𝑔 𝑋  < 0 and the number of samples. 

 

Reliability analysis by Monte Carlo method can be summarized as: 

 

a) Loop for 𝑘=1, initiated until it reaches the total number of simulations  𝑛𝑠. 

b) Random number in the vector u is distributed uniformly from 0 to 1 generated. 

c) random numbers generated are based on probability distributions that 

characterize the engineering parameters involved. 

d) Calculate the limit state function as in equation 3.1.  

e) The calculation of equation 3.13: 

 

𝐼 𝑔 𝑋  =  
1 𝑖𝑓 𝑔(𝑋) ≤ 0

0 𝑖𝑓 𝑔 𝑋 > 0
  

 

f) The calculation of the probability of failure run as equation 3.14 until the loop 

stops at 𝑘 = 𝑛𝑠, 

 

𝑃𝑓 =  𝑓𝑋(𝑋)𝑑𝑥
𝑔(𝑋)≤0

=  𝐼 𝑔 𝑋  𝑓𝑋𝑑𝑋 =  𝐼 𝑔 𝑋  = 𝜇𝑃𝑓

𝑛𝑠

1𝑋

 

 

g) The calculation of standard deviation and coefficient of variance of the next 

run:  

 

𝜎𝑃𝑓
≅  

 1 − 𝑃𝑓 𝑃𝑓

𝑛𝑠
 

1
2

 

 

(3.14) 

(3.15) 

(3.16) 

(3.17) 
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𝐶𝑂𝑉 𝑋 = 𝛿𝑋 =
𝜎𝑋

𝜇𝑋
≅  

 1 − 𝑃𝑓 

𝑛𝑠𝑃𝑓

 

1
2

 

   

before the simulation is terminated and the results are displayed in the 

MATLAB workspace. Simulation results will dplotkan in the form of diagrams 

that are appropriate to the variables studied. 

 

For the deterministic variables, 𝐶𝑂𝑉 𝑋  are zero. The values of  𝐶𝑂𝑉 𝑋  

means that the smaller the smaller the uncertainty in the random variable. According 

to Grooteman (2008), with 95% confidence interval and 𝐶𝑂𝑉𝑃𝑓
 the probability of 

failure, the relative error in the estimated probability of failure is: 

 

𝐸𝑚𝑎𝑥

𝑃𝑓 = 1.96𝐶𝑂𝑉𝑃𝑓
 

 

𝐶𝑂𝑉𝑃𝑓
=  

1 − 𝑃𝑓

𝑁𝑠𝑖𝑚 𝑃𝑓
 

 

In reality, the error is less than 10% and it is acceptable for most engineering 

structures. COV led to the decline in value relative error reduction and increase in the 

number of simulations. Effects of decreasing COV of the simulation results will be 

discussed further in the next chapter.  

 

3.4.3 Modifications to the Sample Generation 

 

Generation of samples for each parameter is the most appropriate probability 

distribution characteristics. However, any distribution that is used has its own 

characteristics that have the statistics variables. Thus, the effects of statistical variables 

on the reliability of the structure of the simulation results are reviewed and discussed 

in the next chapter. 

 

 

 

(3.18) 

(3.19) 
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3.5 CONCLUSION 

 

Thus, through the use of modification techniques, the number of samples required for 

the simulation and the simulation is expected to be reduced. Thus, the Monte Carlo 

method is modified to become more efficient and effective in analyzing a problem of 

fatigue in structural engineering. Importance sampling techniques are discussed in this 

chapter will be used to modify the basic Monte Carlo method, and subsequently 

applied to the structural reliability analysis will be discussed in subsequent chapters. 

 

 

RESULTS AND DISCUSSION 

 

Table 4.1 Statistical variables for specimens 

Random Variables Average Value COV
   

Distribution 

Probability 

Fracture toughness, KIc 

 

Crack Size, A 

 

Tensile stress, σ∞ 

 

Specimen Width, W 

 

44 MPa m  

 

0.02  m 

 

100 MPa 

 

0.05 m 

0.30 
 

 

0.30 
 

 

0.30 
 

 

-
 

 

Weibull
 

 

Lognormal 
 

 

Normal  

 

-
 

 

 

 

4.3 ANALYSIS OF PROBABILITY DISTRIBUTION 

 

In the modified Monte Carlo method with importance sampling techniques, 

random numbers for random variables in each sample must be generated and 

characterized by appropriate probability distributions. However, for each type 

of probability distribution, there are statistical parameters that need to be set to 

control the properties of a distribution. In general, the statistical parameters are 

the form factor, the factor of location and scale factor. In this study, the effects 

on the reliability of statistical parameters studied before the values are selected 

for use in the simulation.  
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4.3.1 Lognormal distribution 

 

For the lognormal probability distribution, the mean and standard deviation of the 

distribution representing the shape and scale factors respectively. The standard 

lognormal probability distribution having zero location factors and the scale factor 1 

and zero form factor. 

 

As discussed in chapter III, the initial crack size a more appropriate structure is 

characterized by a lognormal probability distribution as compared with the normal 

probability distribution. Both the Cross (2007) and Liu (2006) states that the size of 

the crack can not be characterized by a normal probability distribution for the negative 

value generated is not a physical meaning because the size of the crack is not possible 

to be less than zero.  

 

Table 4.2 The value of statistical factors 

Simulation Mean Standard 

Deviation 

Location 

Factors 

Type 

Distribution 

1 1 1 0 Assumption 

2 0 1 0 Standard 

3 1 0.5 0 Assumption 

 

 Through simulations made, it is found that the standard lognormal probability 

distributions had a higher reliability value of about 80% compared with the other 

configuration at about 50 - 60%. According to Cross (2007), these factors should be 

determined statistically by the statistical analysis of experimental data because it 

depends on other variables such as geometric shapes and loading. Thus, it is sufficient 

to use the standard lognormal distribution for this study. 
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Figure 4.1 The reliability of the structure of a sampling Lognormal To Crack Size 

 

4.3.2 Weibull distribution 

 

For the Weibull probability distribution, statistical factors to be considered is the form 

factor, η and scale factor. In this study, which used the Weibull probability distribution 

is known as a 2-parameter Weibull distribution. 

 

As already discussed, the Weibull distribution shape factor, η is used to characterize 

the behavior of engineering parameters that influence the rate review and the 

probability density distribution. Unknown parameters of stochastic fracture toughness 

of engineering and kerawakannya as characterized by the Weibull distribution. So in 

this study, the Monte Carlo method has been modified by the factor of different forms 

to see the impact on structural reliability. 
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Figure 4.2 The reliability of the structure of a sample of Weibull For fracture 

toughness 

   

 It was found that, when η worth 4, the reliability is converging on the 300 000 

samples with a value of 95.0523%, while the η value of 3, 2 and 1, the reliability is 

94.3893%, 93.4027% and 91.6457%, respectively. This shows the higher value of η, 

the stochastic nature of the probabilistic parameters of fracture toughness has a higher 

value and leads to a higher structural reliability. For the fracture toughness parameter, 

η = 2 was chosen as a standard factor for the Weibull distribution for the subsequent 

simulations. 

 

4.3.3 Normal Distribution 

 

The standard normal probability distribution that is without any modification to the 

statistical factors, was used to characterize the stochastic nature of the tensile stresses 

imposed on the model structure studied. 

 

 

4.3.4 The selection of distribution and distribution parameters 
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Selection of the appropriate statistical factors are important to characterize the 

randomness of engineering parameters to allow a more accurate simulation results and 

the factors summarized below. 

 

Table 4.3 Statistical Variables Used For Individual Distribution Simulation 

Distribution Statistical parameters 

Lognormal Mean = 0 
a
, Standard deviation = 1 

a 

Weibull Location factors = 0 
a 

, Scale factor = 1 
a 

, geometry factor 

= 2 
b 

Normal Mean = 0 
a 
, Variance = 1 

a 

 

4.4 CENTRAL CRACK TENSION (CCT) 

 

𝐾𝐼 = 𝜎 𝜋𝑎 𝑓(𝑎 𝑤)  

 

𝑓(𝑎 𝑤) = 1 + 0.128(𝑎 𝑤) −  0.288(𝑎 𝑤) 2
+  1.525(𝑎 𝑤) 3

 

 

Figure 4.3 The reliability of the structure of a central crack tension 
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Figure 4.4 First simulation: The reliability of the structure of a CCT 

 

 

 

Figure 4.5 Second simulation: The reliability of the structure of a CCT 
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Table 4.4 Converged Value Comparison Between MCS and MMCS 

Simulation MCS (%) MMCS (%) 

difference 

between the 

methods (%) 

1 94.162 93.370 0.8411 

2 94.022 93.460 0.5977 

Difference between 

simulation (%) 
0.1487 -0.0964  - 

 

 

4.4.1 Probability of Failure 

 

 

Figure 4.6 Structural Failure Probability Model CCT 

 

 

4.4.2 Kecekapan Kaedah Pengubahsuaian Penyelakuan Monte Carlo 
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Figure 4.7 number of samples on Simulation 

 

 

Table 4.5 Time Needed To Make Every sample with MMCS 

Samples Time (s) 
Time to generate each 

sample (s) 

1 000 000 1381.2860 0.00138 

500 000 203.7105 0.000406 

200 000 42.6096 0.000213 

100 000 14.5166 0.000145 

10 000 1.0930 0.0001093 

1000 0.2023 0.0002023 

 

 

4.5 SENSITIVITY ANALYSIS OF RANDOM VARIABLES 

4.5.1 loading conditions 
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Figure 4.8 Tension Stress Effect on Reliability 

 

4.5.2 Initial crack size 

 

 

 

Figure 4.9 Effect of Crack Size on Reliability 

 

 

 

 

 

4.5.3 Fracture toughness 
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Figure 4.10 The effect on reliability of material fracture toughness 

 

4.5.4 Varian constant probability of failure 

 

Figure 4.11 Effects of constant probability of failure on Simulation Variance 

 

 

4.7 ENGINEERING APPLICATION 

4.7.1 Model simulations on Different Materials 
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Figure 4.13 Simulation Comparison of Different Materials 

 

 

 

Figure 4.14 Simulation Comparison of Different Materials 
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4.7.3 Bridge Case Study Box Galang 

Limit state function equation can be given 

 

𝑔 𝑋 =  
𝑑𝑎

 𝑓 𝑎 𝑤   𝜋𝑎 
𝑚 − 𝐶. 𝑆𝑅𝐸

𝑚
𝑎𝑐

𝑎𝑜

. (365. 𝐴𝐷𝑇𝑇. 𝐶𝑠 . 𝑌) 

  

the geometric factor, 𝑓 𝑎 𝑤   can be defined as 

 

𝑓 𝑎 𝑤  =
1 − 0.5 𝑎 𝑤  + 0.37(a w )2 − 0.044(𝑎 𝑤 )3

 1 − (𝑎 𝑤 )
 

 

 

  

 

Figure 4.15 Bridge Box 

(Source: Chung, 2004) 

 

Table 4.6 Input Data For Variable-Variable Involved 

Variable Type Distribution Average COV 

0a  Lognormal 0.020 in 0.500 

(4.3) 

(4.4) 
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ca  constant 2.000 in - 

C   Lognormal 2.05x10
-10 

0.630 

m   Normal 3.000 0.100 

RES  Normal 9.85 ksi 0.300 

sC  constant 1.000 - 

ADTT  constant 300.000 - 

W  constant 42.000 in                                                                                                                                                                       - 

  

 

4.7.4  Results 

 

 

Figure 4.16  Decrease in fatigue reliability index structure with Time Service 
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