
 
 

FUZZY FINITE ELEMENT METHOD 

RELIABILITY STRUCTURE ANALYSIS USING PROBABILITY 

 

3.2.1 Maximum Normal Stress 

Internal force is the shear force, V has a magnitude equal to the load P and bending 

moment, M. Bending moments are then creating the normal stress on the cross section, 

while the shear force, V produces shear stress on the section. Maximum normal stress, S݉ܽݔ  is a parameter that is commonly used in structural design. Maximum normal 

stress depends on the bending moment and section modulus, s and then: 

 S݉ܽݔ = ݔܽ݉ܯ| ݏ|  

 

and 

ݏ  = ܫܿ
 

 

where c is the maximum distance from the neutral surface and I is the moment of 

inertia of the cross-section. The bending moment equation for a uniform load beam 

structure having a support and a simple support is shown below: 

ܯ  = 8ݓ− 2ݔ4) − ݔ5݈ + ݈2) 
 

where w, x, dan l are the distributed loading, distance and length of the beam.  

 

3.2.2 Reliability Assessment Approach Using Normal Probability 

 Reliability equation can be written as below: 

 

Pr = 1 – Pf  

 

where Pf is the probability of structural failure and Pr can be interpreted as a measure 

for the reliability. 

(3.2) 

(3.3) 

(3.1) 

(3.4) 
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Safety margin equation, Z is: 

 

Z = Sy –Smax  

 

The probability of a structural failure is when the Z value is less than or equal to zero 

and can be represented by the equation: 

 Pf=P(Z ≤ 0) 
 

where Sy and S݉ܽݔ  are normal independent variables. 

Thus, the mean value of yield strength and maximum stress are respectively 
ySm and 

maxSm . While the standard deviation of the yield strength and maximum stress are 

respectively
 yS  dan 

maxS . The combination of the two independent variate will 

generate a new variate with mean and standard deviation different from the original. 

The equation of mean and standard deviation of the margin of safety is: 

 mZ = mSy −mS݉ܽݔ  

Zߪ  = ቀߪSy − ݔS݉ܽߪ ቁ1/2 

 

The probability of structural failure can be identified with the function as below: 

 P݂ = Φ൬0 −mZߪZ ൰ 

 

where  Φ is the standard normal distribution function and mZ and ߪZ are the mean and 

standard deviation of the safety margin. 

 

  

(3.5) 

 (3.6) 

(3.7) 

(3.8) 

(3.9) 
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3.3 STRUCTURAL ANALYSIS USING FUZZY THEORY 

 

Procedures for structural reliability analysis using fuzzy sets theory begins with the 

fuzzification of uncertainty input and followed up with cutting-α, defuzzification and 

reliability assessment.  

 

3.3.1 fuzzification of Uncertainty input 

Fuzzification can be interpreted as a specification of the membership function x  of 

an sets of uncertainty. The uncertainty of each parameter that is interpreted by a 

membership function that will bring value to the trend. Two parameters of the 

modulus of section, s and loading, w are used as fuzzy parameters.  

Fuzzy normal stress is the result after the α-cut. It was found that, the normal stress 

depends on and bending moment and modulus of section, while the bending moment 

depends on the load. 

Since both loading and bending moment is the dependent variable, then the 

bending moment is a fuzzy parameter. Triangular fuzzy numbers are used for 

understanding the function of all parameters of fuzzy membership. Upper limit value 

(su , wu, Mu) and the lower limit (sl , wl, Ml) of these functions will be determined by 

expert opinion. While the middle value (st , wt, Mt) is between the upper and lower 

limit. Then the two parameters are mapped to a decision (output) with the α-cut. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Membership functions with triangular fuzzy numbers for the modulus of 

section and loading 
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Figure 3.2 Membership functions with triangular fuzzy numbers of bending moment 

 

Figure 3.1 and 3.2 shows that the tendency for the upper limit of the bending moment, 

Ml and the lower limit, Mu is zero, ie no tendency for the moment, whereas the trend 

with a value of 1 implies that the trend of the moment is getting a hundred per cent, 

and symbolized by the symbol Mt.  

 

3.3.2 α-cut 

The α-cut is one way of mapping that maps fuzzy input to fuzzy output with specific 

functions (Moller et al., 2000). The term mapping is specified here to mean logical 

relationship between two or more entities. Mapping of the input (modulus of section, s 

and the bending moment, M) to output (the maximum normal stress, Smax) performed 

after the fuzzification. In this process, all the fuzzy section modulus, s~  and fuzzy 

bending moment, M~  at each stage of the trend, α mapped by using equations 3.1. This 

mapping resulted in four significant values for each level of the trend, α at the normal 

stress space, S. The maximum and minimum values are selected from a combination 

of these results and used as the upper limit and lower limit for the output fuzzy. 
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Figure 3.3 mapping of s~  and M~  at at all stages of the trend, α 

 

3.3.3 Defuzzification of Normal stresses  

Defuzzification of Normal stress is using the center of gravity or centroid. This 

technique determines the point at which it will distribute one area (area graph) into 

two parts which have the same value. Mathematically, the point is called center of 

gravity, COG (Negnevitsky, 2005). COG is expressed as equation 3.10. 

 
s M  

s M sk,l su Mk,l Mu sk,u Mk,u 

Fuzzy section modulus, Fuzzy bending moment, M~   
1 1 

αk αk 

S

S Sk,l Su Sk,u 

Normal stress, 
1 

αk 

mapping 

0 0 

0 
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 By applying the numerical solution methods, namely trapezoidal rule, the 

equation of the new COG would be formed as shown in equation 3.11. 
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3.3.4  Fuzzy Structural reliability definition 

The definition of fuzzy reliability of the structure begins with the determination of 

safety margins, Z with COG along with the real maximum normal stress, Smax. Given 

that the yield strength of the variable distribution is normal. So the probability is used 

in the calculation Pr with a mean value, mSy and standard deviation, 
yS  is fixed. In 

this context, the probability of structural failure is the maximum normal stress exceeds 

the yield strength and can be represented by the following equation: 

 

yS

max
max

m-S
SSPP yS

yf

 
 

Then the reliability, Pr can be evaluated using equation 3.4. 

 

Maximum normal stress: 

 

s
M

I
Mc

m  

(3.10) 

(3.13) 

(3.19) 

(3.11) 

(3.12) 
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where s is the modulus of section. 

 

Table 3.1 Shear, moment and deflection of the beam structure statically determinate 

and indeterminate 
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3.4.3 Centroid 

 

The equation can be written as: 

 

dA

dAx
x

A

A

 

 
~

 

 

3.5 ANALYSIS OF MAXIMUM NORMAL STRESS 

The loading, w is 5.55 MN/m and moment of inersia, I is 6.58 x 10-5 m4. Height of the 

beam structure is 0.161m and the structure is made of aluminum alloy 2024-T4 where 

the elastic modulus is 73.1 GPa. The statistical distribution of aluminum 2024-T4 

where the mean value and standard deviation of the yield strength are 324 MPa and 

32.4 MPa respectively. 

 

 

 

 

 

 

 

 

Figure 3.5 Free body diagram of the beam structure 

 

3.5.1 Deterministic method 

 

The deterministic method is the most common method to help engineers to solve 

problems relating to the loading on the beam structure. The stress values obtained 

using the method is 219 MPa. The stress value is then compared to the statistical 

distribution of aluminum 2024-T4 in which the mean and standard deviation of the 

yield strength is 324 MPa dan 32.4 MPa respectively.  

 

 

(3.24) 

M1 

w 

R1 R2 
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3.5.2 Stochastic Methods 

Stochastic methods are also derived from the deterministic method in which all 

common terms are also used in stochastic methods. The difference between the two 

methods are stochastic methods involving the distribution of data for input parameters, 

such as in this study were uniformly distributed load parameter, w and moment of 

inertia, I. The input parameters for uniformly distributed load and moment of inertia 

are in normal form with constant variance of 0.2. By using stochastic methods and 

taking into account the effects of error propagation in the beam of maximum stress is 

366 MPa and the structural reliability is 0.9649.  

 

3.5.3 Fuzzy methods 

Normal stresses can be determined using equation 3.19 and bending beam structure 

can be determined using equation 3.3. Figure 3.6 shows the upper, middle and lower 

limit for each input parameter (uniformly distributed load and moment of inertia) and 

the fuzzy normal stress output. Figure 3.7 shows the location of COG in the fuzzy 

normal stress profile.  

 
Figure 3.6 Figure membership functions for loading, w, 

section modulus, s and the bending moment, M 
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Figure 3.7 Fuzzy maximum normal stress diagram 

 

Results showed that the maximum normal stress for the structural support 

beam is 251 MPa. The reliability of the structure is 0.9879 and the value obtained by 

comparing the value of maximum stress with the distribution of data in 2024-T4 

aluminum material as described in section 3.5. 

 

3.6 FUZZY FINITE ELEMENT METHODS (FFEM) 

 

Figure 3.8 shows the flow chart for structural analysis. Mapping function is based on 

the finite element method.  
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Figure 3.8 The flow chart of structural analysis 
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RESULTS AND DISCUSSION 

Table 4.1 describe the physical properties involved in this reliability analysis. 

 

Table 4.1 Mechanical Properties of Aluminum 2024-T4 

Physical Properties SI unit 
 

Density 
 

2780 kg/m3 
 

Ultimate strength (tension) 
 

469 MPa 
 

Yield Strength (Tension) 324 MPa 
 

Elastic Modulus 73.1 GPa 
 

 

 

 

 

 

 

 

 

Figure  4.1 position of the nodes on the beam structure 

 

 

Table 4.2 Types of entry 

 

Method 

Input Type 

Uniform Distributed load Moment of Inertia 
   
Determinent 
 
Stochastic 
 
Fuzzy 
 
 
FFEM 

Average Value 
 

Normal distributiona 
 

Triangular Membership 
Functionc 

 
Triangular Membership 

Functionc 

Average Value 
 

Normal distributionb 
 

Triangular Membership 
Functionc 

 
Triangular Membership 

Functionc 
 

a COV = 0.2 
b COV = 0.1 
c width = 6σ normal distribution 

w 

1 21 13 
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4.3 FUZZY FINITE ELEMENT METHOD (FFEM) 

4.3.1 Deflection 

 From the graph of deflection against the nodes, the highest possible deflection is 

located at node 13. Black lines represent the minimum and maximum,  the green line 

is the highest confidence level. While the red line graph represents the deflection for 

the COG. COG value is not equal to the value at the highest peak. The value of the 

maximum deflection of the beam structure is equivalent to the value of the COG 

deflection components at node 13 is 0.5mm. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 fuzzy deflection against beam length 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 maximum deflection of the fuzzy 
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4.3.2 rotation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 fuzzy rotation against beam length  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 maximum fuzzy rotation 
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4.3.3 bending moment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 fuzzy bending moment against beam length 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 maximum fuzzy bending moment 
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4.3.4 shear force 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 fuzzy shear force against beam length 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 maximum fuzzy shear force 
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4.3.5 Bending Stress 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 fuzzy bending stress against beam length 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 maximum fuzzy bending stress 
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4.4.1 node number 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 failure probability against node number. 

 

4.4.2 α-cut 

 

 
Figure 4.13 reliability against α-cut 
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4.4.3 Pemalar Varian 

 
Figure 4.14 Relationship between the reliability of COV of moment of inertia and 

COV of distributed load 

 

4.5 ANALYSIS OF FFEM  

 

 
Figure 4.15 Comparison of analytical methods in structural reliability analysis 
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4.6 OTHER TYPE OF BEAMS 

 

 
 

 
Figure 4.16 fuzzy deflections 

 

 
Figure 4.17 membership function of bending stress 
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Figure 4.18 fuzzy deflections 

  

  

 
Figure 4.19 membership function of bending stress 
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