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This paper studies the modeling of fatigue crack propagation on a multiple crack site of a finite plate

using deterministic and probabilistic methods. Stress intensity factor has been calculated by the

combined deterministic approach of the dual boundary element method (DBEM) and the probabilistic

approach of the Gaussian Monte Carlo method. The Gaussian Monte Carlo method has been

incorporated to simulate the random process of the fatigue crack propagation. A finite plate of

aluminum alloy 2024-T3 with a thickness of 1.6mm and 14 holes is analyzed and the fatigue life of the

plate is predicted by following a linear elastic law of fracture mechanics. The results of fatigue life

predicted by DBEM-Monte Carlo method are in good agreement with experimental ones. The same

approach is also applied to two other engineering applications of a gear tooth and a bracket.

Crown Copyright & 2009 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Probabilistic methods as a stochastic concept are a new
approach of modeling fatigue crack propagation and they have
several advantages over deterministic methods. One of the
probabilistic methods is randomizing the coefficients of an
established deterministic model to consider, for example, inho-
mogenity of materials [1]. Probabilistic data are generated by a
random process of multiple dynamic characteristics of fatigue
crack growth in this investigation.

In the area of fatigue analysis, an estimation of failure
probability is required. A failure contains probabilistic character-
istics because of uncertainties in the location of initial cracks,
material properties, applied loads and possible flaws in the
material or structure. Manufacturing defects like poor surface
roughness, scratches or weld defects also contribute to the
uncertainties of a failure [2]. As a crack grows, the crack size
varies according to those uncertainty parameters. Moreover,
dynamic factor is one of the reasons why a deterministic method
is not accurate for crack modeling in a structure. The residual life
of a structure appears as a dynamic character and varies with

time. Fatigue crack propagation is inherently a random process
because of the inhomogenity of material, which is related to its
crystal structure and variations of molecules movement due to
unit cell arrangement and other similar causes [3].

Fatigue degradation caused by a flaw still allows a structure to
continue operating properly even in the event of the failure of
some of its uncritical components. However, there is a possibility
for a flaw to initiate crack propagation during operation of a
structure. Therefore, a probabilistic method is normally used for
estimating the failure probability of a component subject to
degradation, as mentioned by Cadini et al. [4].

In addition to the material factor, service conditions also play a
main role in crack growth rate. Factors such as temperature and
other uncontrolled variables contribute to variability in experi-
mental data of kinetic energy during fatigue crack growth. That is
why crack propagation is considered a random process.

A stochastic model considering all types of variability is thus
needed for the rational assessment of fatigue crack propagation.
Therefore, the analysis of fatigue crack propagation should be
based on the probabilistic approach in order to consider uncertain
factors.

There are several parameters used to measure crack growth in
fracture mechanics. Effective stress intensity factor, Keff is one of
the parameters that represent the level of crack propagation.
Stress intensity factor as a failure criterion depends on sample
geometry, the size and location of the crack and the load
distribution. They are subjected to variations and considered
random variables. The failure probability is considered high if the
value of Keff exceeds the critical value Kic. In short term, normally
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large cracks dominate in the failure probability at the beginning of
failure stage. However, in long term, small cracks may have the
dominant influence on the failure probability. This creates
uncertainty in determine the location of the failure. The failure
probability for crack locations with Keff in failure range can be
estimated by DBEM-Monte Carlo method.

The special interest in the probabilistic approach lies in its
significant advantages over the deterministic approach for
structural integrity assessments. The state of damage of a
structure in terms of probability density function (PDF) is one
feature of the probabilistic approach [5]. This approach affords
information on fatigue life because it expresses safe-life and
damage tolerance characteristics. The time taken by and cost
required of this method are lower compared with the experi-
mental approach used in the past. So it is an efficient and useful
technique for assessment of a structure’s life.

This paper presents the development of an assessment
program for the fatigue crack propagation in order to determine
the fatigue life of a structural component. Initial crack scenarios
are randomly defined by a probabilistic approach and crack
evolution has been simulated through a deterministic approach
using DBEM incorporating a fracture mechanics law [6]. The stress
intensity factor value, K, is provided by the DBEM after given
inputs are processed. For multi-site cracks, a probabilistic
approach of the Monte Carlo method is used by Kebir et al. [6]
only to identify the crack sites locations for crack propagation
increment base on effective stress intensity factor value, Keff. Then,
the crack magnitude is determined by fully deterministic
approach. In addition to the Kebir et al.’s [6] works, the Monte
Carlo modeling of fatigue crack propagation is expended for
predicting crack growth magnitude by randomizing the DBEM
calculations and this is the originality of this paper.

2. Law of fatigue crack propagation

Paris and Erdogan [7] in 1963 put forward the Paris law shown
in Eq. (1) and it is still in use today

da

dN
¼ CðDKÞm ð1Þ

where da is crack growth and dN is the number of stress cycle.
Stress intensity range, DK equal to Kmax�Kmin, where Kmax and
Kmin denote the maximum and minimum values of effective stress
intensity factor respectively. C and m are parameters related to
material properties.

The stress concentration factor is one of the parameter widely
used in linear elastic fracture mechanics. The theory is valid if no
yielding happens at the crack tip. Therefore, Eq. (1) can be used for
only high cyclic fatigue cases. Forman et al. [8] tried to modify
Eq. (1) to include the stress concentration ratio R=Kmin/Kmax and
the fracture strength KC. Re-writing DK=Kmax(1�R) and taking
Kmax as Kc, the limit condition for fatigue crack propagation is
defined as follows:

lim it
DK-ð1�RÞKc

da

dN
¼1 ð2Þ

Substitution of Eq. (2) into (1) yields

da

dN
¼ CðDKÞm

ð1� RÞKc �DK
ð3Þ

Forman et al. [8] gave m=3 for aluminum alloy 7075-T6 in
Eq. (3), known as Forman equation. Starting from Forman
equation and considering that the crack will not propagate if DK
is below the threshold value of stress intensity range, DKth as
shown in Fig. 1 [9], a fatigue crack growth rate law can be derived

and is given as follows:

da

dN
¼ C

DK � DKth

Kc � Kmax

� �2

þC 0 ð4Þ

This equation is valid for soft metals under both constant-
amplitude cyclic loading and random loading. C0 was found to be
close to 2.4�10�7mm/cycle [8].

Crack behavior is determined by the values of the stress
intensity factor which is a function of the applied load and
geometry of the crack and the structural component. The crack
propagation process is modeled by performing a crack growth
calculation. The stress intensity factor is evaluated and the crack
path is defined in terms of the stress intensity factor.

3. Linear elastic fracture mechanics

Fracture mechanics seeks to establish the local stress and
strain fields around a crack tip in terms of global parameters. The
local stress and strain exist because of presence of a crack. Linear
elastic characteristics are used in crack path model. The cracks are
subjected to constant-amplitude cyclic loading. For linear elastic
solutions, the stresses in the vicinity of the crack are defined by
stress intensity factor.

Wöhler curve assumes that the average fatigue life Ni at a
certain point of aluminum alloy 2024-T3 is

Ni ¼ 105 Sm � Slim
IQF � Slim

� �p

ð5Þ

where Sm is average stress, p=2.28, IQF=176MPa, and Slim=59MPa.
In linear elastic fracture mechanics, there are several mixed

mode propagation criteria. One of them is stress intensity factor
that controls the near tip stress field. Magnitude of the crack tip
stress, s11 is governed by the mode I stress intensity factor, KI and
mode II stress intensity factor KII as shown in Eq. (6) where
subscripts I and II refer to directions. It is also observed that the
shear modulus, m is influenced by the stress intensity factor too, as
shown in Eq. (7). The stress distribution is described by the
position relative to the crack tip given by polar coordinates r and y

s11 ¼
KIffiffiffiffiffiffiffiffi
2pr

p cos
y
2

1� sin
y
2
sin

3y
2

� �

� KIIffiffiffiffiffiffiffiffi
2pr

p sin
y
2

2þcos
y
2
cos

3y
2

� �
ð6Þ

m¼ 1

4u

ffiffiffiffiffiffi
r

2p

r
KI ð2k� 1Þcos y

2
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3y
2

� ��
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2
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� ��
ð7Þ

Kth
m

Stage I
Region 

Stage II 
Region

Stage III 
Region

Failure

Stress intensity range, ΔK 

Fa
tig

ue
 c

ra
ck

 g
ro

w
th

 r
at

e,
 d

a/
dN

 

Fig. 1. Sceme diagram of short and long fatigue crack propagation [9].
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KI and KII are used to calculate the stress intensity factor near
the tip of a crack. This formula applies to opening mode cracks
where tensile loads are applied in the direction normal to the
plane of the crack, as in this paper. Two-dimensional numerical
stress analysis is carried out using DBEM for plane-stress and
plane-strain problems. DBEM is well suited for crack problems by
modeling only the boundaries of the model.

4. Dual boundary element method (DBEM)

The DBEM is a numerical computational method of solving
linear partial differential equations which have been formulated
as integral equations. DBEM is used in crack modeling because of
the single-region ability which is not required any remeshing
work during the analysis [10]. In order to create the DBEM super-
element stiffness matrix for a cracked domain, an algorithm based
on DBEM is applied. DBEM is a useful technique for treating the
volume integral without discretising the volume. The technique
approximates part of the integrand using local interpolating
functions and converts the volume integral into boundary integral
after collocating at selected points distributed throughout the
volume domain. In DBEM, although there is no need for the
volume to be discretised into meshes, unknowns at chosen points
inside the solution domain are involved in the linear algebraic
equations approximating the problem being considered.

Edges of the crack are modeled as discontinuous function and
crack-tip is modeled by singular elements that exactly represent the
strain field singularity 1/

ffiffiffi
r

p
. The discontinuous function represented

by generalized Heaviside step function at crack edges is an
enrichment for discontinuous fields, referred to as extended finite
elementmethod. The function allow the domain to bemodeled using
DBEM without explicitly meshing the crack surfaces [11]. In the
study of cracks, internal edges or surfaces that include no area or
volume and share the same coordinates before applying the forces
are modeled by coincident vectors as crack elements. Vectors can be
said coincident when their directions are the same though the
magnitude may be different. For symmetric crack problems, only one
of the edges of the crack needs to be modeled and a single-region
dual boundary element analysis may be used.

However, solutions of general crack problems cannot be
achieved in a single-region analysis with direct application of
the DBEM, as it is based on the coincident vectors. Coincident
vectors with the same coordinate are discretised throughout the
single edge before the load is applied. Then, the edge splits into
two to simulate the crack opening with the stresses applied to
both side of a crack, thus resulting in more than one singular
system of algebraic equations. In other words, the crack is
presented in different types of singularity because of the presence
of two coincident points on both sides of a crack. The DBEM is
formulated by representing one of the crack edges with displace-
ment component, U and on the other edge with the traction
component, T in separated boundary integrals. Both integrals are
incorporated together in Eq. (8).

In order to solved the coincidence problem, the Langrarian
continuous or discontinous dual boundary element is used to
satisfied Cauchy principal value integral which is defined in
displacement equation. At the same time, the different types of
singularity in a crack problem are solved by using the Hadamard
finite part integral before it can be integrated with DBEM as a
solution method. Extended from the Hadamard principal-value
integral, the traction equation is defined. The DBEM is adopted in
which the displacement and traction boundary integrals are
associated as follows:

uiðx0Þ ¼
Z

G
Uijðx0; xÞtjðxÞdGðxÞ �

Z
G
Tijðx0; xÞujðxÞdGðxÞ ð8Þ

where Uij(x
0,x) and Tij(x

0,x) in Eq. (8) are displacement and
Kelvin traction of a point x in domain G. |x�x0| defines the
distance between the source point x0 and the field point x. t

represents a traction component, u represents displace-
ment component and subscript i and j denote Cartesian
components.

By considering the crack element singularity caused by the
coincident points on both sides of a crack, crack modeling is
presented in the J-integral function, which is a way to calculate
the strain energy release rate per unit fracture surface area in a
material and it is given by

J¼ ðWn1 � tjuj;1Þds ð9Þ

where s is an arbitrary contour surrounding the crack tip, W is the
strain energy density, given by 1/2sijeij, where sij and eij are the
stress and strain tensors, respectively, tj is traction components
given by sijni, where ni are the components of the outward unit
vector component normal to the contour path. The relationship
between the J-integral and the stress intensity factor are given by

J¼ K2
I þK2

II

E0
ð10Þ

where E0 equals to E (Young’s modulus) for plane-stress conditions
and equals to E/(1�n2) for plane-strain conditions. The total J-
integral is represented by the sum of two integrals in different
directions as follows:

J¼ JIþ JII ð11Þ
By using DBEM, a stress analysis of the structure has been

performed where stress intensity factors are computed by the J-
integral technique after the displacement and traction boundary
integral equation is solved [12]. The direction of the crack-
extension increment is also computed through the deterministic
approach.

5. Probability approach of Monte Carlo method with Gaussian
distribution function

Monte Carlo methods are useful for modeling phenomena with
significant uncertainty in inputs, such as the calculation of
parameters for multi-site damage simulation. These methods
are also widely used in mathematics: a classic use is for the
evaluation of definite integrals, particularly multidimensional
integrals with complicated boundary conditions. These advan-
tages are fully utilized in fatigue crack propagation simulation
through an application of Monte Carlo estimator that provides
good estimation for crack parameter calculation. The underlying
mechanisms of random crack propagation simulation start by
applying a random number in mathematical equation. If x1,y,xn
are independent random numbers and range between 0 and 1,
then,

fi ¼ f ðxiÞ ð12Þ
is an independent variable. However, this variable is different
from the Monte Carlo estimator, y(f(xi)), where y is considered as a
function of random variable x having probability of greater than
zero on a set of values L and is given as follows:

yðf ðxÞÞ ¼
Z

xA L
f ðxÞdx ð13Þ

where xAL2(0,1) is greater than zero. The mean of function f(xi) is
computed as follows:

~f nðxÞ ¼
1

n

Xn
i ¼ 1

f ðxiÞ ð14Þ
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where n is the sample quantity. In this study, n-sample of x’s,
(x1,y,xn) are taken into account.

A number of Monte Carlo estimators may be proposed and
typically, a better Monte Carlo estimator has smaller variance for
the same amount of computational effort than its competitors.
The variance is calculated as

Varð~f nðxÞÞ ¼
1

n

Z
xA L

½f ðxÞ � yðf ðxÞÞ�2 dx¼ s2

n
ð15Þ

The standard deviation of Monte Carlo estimator, s~f is
expressed in terms of standard deviation of n-sample, s as
follows:

s~f ¼
sffiffiffi
n

p ð16Þ

However, in practice, the real standard deviation does not exist.
So, the only way to estimate the sample variance, s2 is

s2 ¼ 1

n� 1

Xn
i ¼ 1

ðfi � f Þ2 ð17Þ

If the Monte Carlo method is used for only once, the mean and
effectiveness ratio, defined in Eq. (18), will not change. However,
there will be a change in the mean and effectiveness ratio when
the Monte Carlo method is used repeatedly. The effectiveness ratio
of using the Monte Carlo method twice in a single simulation is
expressed as

Effectiveness ratio¼ n1s2
1

n2s2
2

Z ð18Þ

where n1 and n2 are the numbers of sample used in first and
second rounds of applying the Monte Carlo method, respectively,
s2 is a variances and Z is a constant weighting parameter.

In any case study of fatigue crack propagation, the effective-
ness ratio is the product of variance ratio, s12/s2

2 and work ratio, n1/
n2. The variance ratio is only influenced by the Monte Carlo
method while the work ratio is influenced by both the Monte
Carlo method and error in computation due to poor-quality or
missing data.

Crack profiles are probably generated for any side of the notches
presented. However, the crack propagation still mainly influenced by
SIFs value, as mentioned in Equation (1). The SIFs, which are
depended to the force applied and geometry properties of the crack
are assumed to be distributed in Gaussian form. The Gaussian
distribution function, fgðxÞ is given in Equation (19) below:

fgðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

p e
�ðx�aÞ2

2s2 ð19Þ

where a is a mean value of n number of samples and p is a
probability of any integer value of x and relates each other with the
equation below:

a¼ np ð20Þ
The Gaussian distribution function may be used to describe

physical events. The Gaussian distribution is a continuous
function which approximates the exact binomial distribution of
events. The Gaussian distribution is normalized so that the sum
over all values of x gives a probability of 1.

6. Crack modeling strategy

In this study, the spatial domain was modeled as a boundary
super-element by BEASY [12]. It is necessary to calculate the
relation between stiffness matrix and effective stress intensity
factor, Keff by DBEM, as follows:

� Carry out a DBEM for stress analysis of the structure.

� Compute the Keff with the J-integral technique.
� Choose crack site to be propagated through the Monte Carlo

method.
� Compute the direction of the crack growth.
� Extend the crack propagation length determined by the Monte

Carlo method along the direction computed in the current step.
� Compute the crack cycle using Gaussian and non-Gaussian

Monte Carlo Method.
� Repeat all the steps above sequentially until a failure limit

exceed.

The DBEM super-element stiffness matrix and Keff, after
consideration, has been inserted into crack initialisation routine
and also into crack propagation routine by the Monte Carlo
method in MATLAB source code. The Woehler’s curve at 50% of the
stress level of 165MPa was applied to determine the life cycle for
the initial iteration. By running the Monte Carlo method through a
MATLAB program for 500 samples, it is possible to see how long
crack propagation takes, which are given by the number of life
cycles, N. This process is operated by randomizing a sampling set

Random Number

Number of 
Life Cycle 
Sampling 

Max. Principal 
Stress

Sampling 

Dedicate
Initial Point 

Fig. 2. Random parameter for fatigue crack propagation.

900

Constraint
375

Hold hole

25

Load

25

42hctoN1hctoN

2 4 6

Notch No. 

Holding holes 

8 10 12 14 16 18 20 22 24

Fig. 3. Schematic diagram of plate with 14 holes and with geometry dimensions in

mm unit. Detail of notches geometry is illustrated in Fig. 5.
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of life-cycle quantity. The length of a crack growth is based on
maximum principal stress, smax value while the initial location
where a crack starts to grow is determined by a random process
shown in Fig. 2. The modified data files in BEASY are used to
produce an updated data set. Prediction of the crack position and
length are randomly generated via Monte Carlo modeling. The
modeling using Gaussian and non-Gaussian distribution of the
mean crack length as a function of crack cycle are performed. n
number of samples are used in order to perform the modeling. The
mean and standard deviation are defined to proceed with
Gaussian distribution function. The effect of Gaussian
distribution in Monte Carlo modeling is discussed and
summarized.

7. Numerical results

7.1. Plate with 14 holes

In order to validate the global probabilistic approach, DBEM-
Monte Carlo results are compared with the fatigue test results on
a plate with 14 holes that was conducted by Kebir et al. [6] at
Aerospatiale-Matra Laboratory in Suresnes, France. The plate was
a 2-D 900mm�375mm rectangle fully constrained at the bottom

edge as shown in Fig. 3. The load was applied in the vertical
direction. The material was aluminum alloy 2024-T3 sheet with a
thickness of 1.6mm. Young’s modulus of the sample was 72.7GPa.

The initial structure was discretised by 262 elements, with
1202 degrees of freedom. It had 897 internal points which are laid
along the boundary line that encloses region of the model. The
fatigue test results [6] were compared with the numerical results
and a small difference was found. The total numbers of life cycles,
NTotal for multi-site cracks predicted by the DBEM-Monte Carlo
method are close to the test results [6], as depicted in Fig. 4.

In the deterministic approach, propagation iteration is short
with 30�103 cycles for multi-site cracks. It is because all the
cracks are assumed to begin at the same time, since all the edges
are undergoing the same stress level. However, the probabilistic
approach has an advantage of revealing initial crack propagation.
The synthesis of the probabilistic results is expressed in Fig. 5.
Several large cracks dominate the failure probability at the
beginning of the failure process. But in long term, any small
cracks size may have the most dominant effect on the failure
probability. This is because, not all the large cracks which
propagate at the notch with maximum principle stress, smax

cause failure since failure is independent of smax. The failure
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Fig. 5. Life cycle of fatigue crack propagation by iterations.

Table 1
Results of fatigue crack propagation.

Iteration
Crack length

(10�3 mm)

Gaussian

distribution

function

fg ðxÞ (10�2)

Cycle NTotal

(105)
Point no.

1 0.0056 2.55 0.2957 7

2 0.1702 3.81 0.3058 2

3 0.1034 3.17 0.3985 1

4 0.3706 9.68 0.4319 1

5 0.2498 5.02 0.5012 1

6 0.2077 4.30 0.6541 11

7 3.5293 41.7 0.7354 14

8 0.2219 4.52 1.2595 14

9 0.2557 5.15 1.3871 12

10 0.6363 9.32 1.4735 13

11 0.1043 3.18 1.5108 16

12 0.1557 3.65 1.7244 21

13 Failure – 1.9825 21
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criterion is based on Keff which depends on sample geometry, the
size and location of the crack and the load distribution. Keff must
be higher than the critical value of stress intensity required, Kic in
order to allow failure to occur. Failure simply occurs just when Keff

of any small cracks reaches the values that are slightly higher than
Kic. However, the presence of uncertain parameters in real
applications might be another cause of failure [6]. That is why
multi-site cracks propagate in a quite long time and the
calculation of the cracks length, da takes many iterations.

Table 1 shows the maximum crack length just before failure
which is 3.5293mm. At this moment, the number of life cycle is
only 0.7354�105 predicted at the 7th iteration. It happened
because the crack of notch 14 had enough energy to initiate the
propagation. The propagation of the cracks happened very fast.
However, the failure of the sample did not happened yet until the
life cycle reached 1.9825�105 cycles.

Any notches that allow initial cracks to form may increase Keff.
The Keff values are constantly increasing in several initial
iterations, until they achieve a constant value defined as the
maximum Keff. For the plate with fourteen holes, notch numbers 1,
2, 11, 12 and 14 are found to produce an initial crack as shown in
Fig. 6. The cracks growths continue for certain more iterations.
After that, the cracks randomly propagate at any notches, in-
cluding the notches which have a lower Keff (but higher than Kic).

In this scenario, the cracks pass through notches number 6, 15, 16,
17, 18 randomly. The cracks continue to propagate for certain
iterations until any of them reach the maximum Keff. The
extensive crack propagation can cause the sample to fail at any
time. Notch number 21 is found to have a catastrophic failure
when its Keff reaches 276,659.75MPam1/2 at the 14th iteration.
This happens due to the increment of high potential energy at
notch 21, where Keff, even though is low, exceeds Kic at the 7th
iteration. So, failure occurs randomly according to DBEM-Monte
Carlo method, reflecting the uncontrolled uncertainties in
modeling work. Uncertainties are taken into account because
they are able to affect the fatigue crack propagation process in real
applications.

Figs. 7 and 8 show themean life and standard deviation predicted
at the10th iteration. It is seen that the number of samples in the
Monte Carlo simulation influences fatigue life. The results become
constant when the number of samples is over 300. So the DBEM-
Monte Carlo combined method is able to produce a statistical value.
The mean life and standard deviation predicted at other iterations
are found to give the same result as the 10th iteration.

The values of the Gaussian distribution function at certain
crack length and the standard deviation are given in the Table 1.
For these conditions, the mean crack length is 5.01E-4 mm. Major
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influence of crack propagation is still stress intensity factor, even
uncertainties are considered. To this reason, Gaussian stress
intensity factor is considered in order to drive the crack
propagation prediction more accurately, based on the notch
presented. So, the Monte Carlo simulation for Gaussian SIF is
proceeded to obtain the crack cycle. The results are compared
with crack cycle of non-Gaussian Monte Carlo as depicted in Fig. 9.
It is clearly that, the Gaussian Monte Carlo is appropriated for the
crack cycle prediction in structure durability.

7.2. Gear tooth

The same method is applied to a gear tooth shown in Fig. 10.
The constraint is at the bottom edge that represents contact line

with the shaft. Two notches are made on the left and right sides
and named notch 1 and notch 2. The results are listed in Table 2.
Fig. 11 illustrates the major crack at notch 1. This is due to the
stress occurring at the left side by considering the real loading
situation when a gear is operating. However, because of the small
variation of stress intensity factor in the random process, a very
small crack also occurs at notch 2 in the 3rd iteration from the
simulation.

Next, fatigue crack propagation of the same gear tooth is
simulated by a fully deterministic approach. The results in Table 3
show that the crack propagation happens in a single iteration.
Failure happens after reaching 6.5984�104 cycles. The geometry
of the crack is illustrated in Fig. 12. The crack propagates at the
notch with maximum principle stress, smax. That is why the crack
propagation happens very fast and the calculation of the crack
length, da is finished within a single iteration. This reveals that a
fully deterministic method cannot provide the characteristics of a
random process.

7.3. Bracket

The analysis of fatigue crack propagation is continued for a
metal bracket shown in Fig. 13. The constraint is applied at the
bottom edge of the plate. Load is applied downward at the top half

Table 3
Life cycle of gear tooth by deterministic approach.

Iteration

no.

Crack length

(10�3) (mm)

Notch

no.

NInitiation

(104)

NPropagation

(104)

NTotal

(104)

1 Failure 1 4.5411 2.0573 6.5984

Fig. 12. Failure of the gear tooth.

Notch 1 Notch 2

Fig. 13. Bracket with its boundary condition.

Table 2
Life cycle and crack size of gear tooth by Monte Carlo analysis.

Iteration

no.

Crack length

(10�3) (mm)

Notch

no.

NInitiation

(105)

NPropagation

(103)

NTotal

(105)

1 0.3862 1 0.2840 35.7596 0.6416

2 7.9654 1 0.7782 8.6242 0.8645

3 0.4273 2 0.9752 0.3350 0.9786

4 4.7054 1 0.9967 4.2570 1.0393

5 (Failure) 1 1.0594 6.8270 1.1277

Load

Constraint

Crack

Fig. 11. Notch was propagate to be a crack.

Load

Constraint

Notch 2Notch 1

Fig. 10. Gear tooth with its boundary condition.

Table 4
Life cycle and crack size of bracket by Monte Carlo analysis.

Iteration

no.

Crack length

(10�3) (mm)

Notch

no.

NInitiation

(105)

NPropagation

(103)

NTotal

(105)

1 0.6852 2 0.9240 12.594 1.1527

2 1.2000 2 1.1548 5.8611 1.2134

3 1.2000 2 1.2394 6.7017 1.3064

4 2.3000 2 1.3424 4.6257 1.3887

5 107.00 2 1.4524 5.6059 1.4631

6 193.54 2 1.4653 0.3264 1.4685

7 Failure 2 1.4952 1.3358 1.5092
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of the hole. Double notches are made at the left and right sides of
the bracket hole. From the DBEM-Monte Carlo results presented in
Table 4, crack propagation consists of a few iterations. The
analysis is run until 7th iteration to get the maximum cycles of
failure. Figs. 14–16 show the fatigue crack propagation at the right
side from the random process.

Fig. 17 illustrates the failure mode by a fully deterministic
approach. Notch 1 fails when fatigue life reaches 11.5670�104

cycles. Crack starts to propagate at 8.2669�104 cycles and the

bracket fails when the number of life cycle increases by about
3.3001�104 cycles, as shown in Table 5. This propagation process
is modeled by a single iteration, i.e., without any random process.

8. Conclusion

A method has been developed to assess the fatigue crack
propagation with the implement of probabilistic approach of the
Monte Carlo method. The results from the combined dual
boundary element and Gaussian Monte Carlo analysis show that
the life cycle of several structural components can be predicted
and the predicted life cycle of a plate with 14 holes is in good
agreement with the experimental results.

The notches existing initially in those components have a
tendency to initiate cracks randomly. The cracks continue to
propagate for a certain number of cycles until any of the cracks
reach the maximum Keff. The increase of the fatigue life means
cracks continue to grow. Extensive crack propagation will cause a
catastrophic failure of the component.

The model in this work suggests that the length of the crack
growth based on Keff must be incorporated as a random variable.
The notch with the highest Keff value does not necessarily produce
the longest crack. This is proven by the life-cycle simulation
results of the fatigue crack propagation through DBEM-Gaussian
Monte Carlo method conducted in this research and is more
accurate compare to the results obtained from DBEM only.
Sometimes, the probability to produce a longer crack at a location
with low Keff (but higher than Kic, which is the minimum failure
criterion), is very high. This happens due to the random nature of
the simulated crack propagation process, which reflects real
applications and is modeled by DBEM-Gaussian Monte Carlo
method. Some scenarios show that, a crack that is smaller at the
beginning could be the critical one causing structural failure. A big
crack at the beginning sometimes is not at the critical location.
This is where the Monte Carlo method plays a key role in bringing
the uncertainties into modeling work. However, it must be made
clear that the low Keff must exceed Kic to cause crack propagation,
which is the criterion of crack propagation considered in this
paper.

From the study, the results show that the Gausian Monte Carlo
method provides a better crack monitoring model compare to non
Gausian Monte Carlo. The initial results, provided by both non -
Gausian and Gausian Monte Carlo method are quite similar.
However, starting from the middle to the end of simulation
process, Gausian Monte Carlo propose a lower crack life cycle. It is
because the crack length proposed in the simulation model is well
normalized. So, Gaussian distribution function has an advantage
to describe physical events.

By comparing the deterministic-Gaussian Monte Carlo com-
bined method with a fully deterministic method for a plate with
14 holes, a gear tooth and a bracket, the random behavior of
fatigue failure is revealed in this study. The results show that the
random behavior can only be demonstrated by the deterministic-
Gaussian Monte Carlo combined method.

Fig. 16. NTotal=1.4631�105 cycles.

Table 5
Life cycle of bracket by deterministic approach.

Iteration

no.

Crack length

(mm)

Notch

no.

NInitiation

(104)

NPropagation

(104)

NTotal

(104)

1 Failure 1 8.2669 3.3001 11.567

Crack 
propagate 
at notch 1

Notch 2

Fig. 17. Bracket with crack propagation at notch 1.

Fig. 15. NTotal=1.3887�105 cycles.

Fig. 14. NTotal=1.1527�105 cycles.

F.R.M. Romlay et al. / Engineering Analysis with Boundary Elements 34 (2010) 297–305304



ARTICLE IN PRESS

References

[1] Ditlevsen O, Olsen R. Statistical analysis of the Virkler data on fatigue crack
growth. Engineering Fracture Mechanics 1986;25(2):177–95.

[2] Yang JN, Manning SD, Rudd JL, Bader RM. Investigation of mechanistis-based
equivelent initial flaw size approach, in: ICAF 95, International Commitee on
Aeronautical Fatigue—18th symposium, Melbourne, Australia, 1995.

[3] Cherniavsky AO. Probabilistic approach to calculation of kinetics of crack
meshes. Dynamics, Strength & Wear-resistance of Machines 1997;3:91–5.

[4] Cadini FE, Zio, Avram D. Model-based Monte Carlo state estimation for
condition-based component replacement. Reliability Engineering & System
Safety 2009;94(3):752–8.

[5] Tong YC. Review on aircraft structural risk and reliability analysis. Airframes
and Engines Division, Aeronautical and Maritime Research Laboratory, 2001.

[6] Kebir H, Roelandt JM, Gaudin J. Monte-Carlo simulations of life expectancy
using the dual boundary element method. Engineering Fracture Mechanics
2001;68:1371–84.

[7] Paris PC, Erdogan F. Critical analysis of propagation laws. Journal of Basic
Engineering 1963;85:528–34.

[8] Forman RG, Shivakumar V, Newman JC. Fatigue crack growth computer
program ‘‘NASA/FLAGRO’’, 2nd ed. Texas: National Aeronautics and Space
Administration Press; 1993.

[9] Dharani LR. Fatigue crack growth, Department of Mechanical and Aerospace
Engineering and Engineering Mechanics, University of Missouri-Rolla,
2001.

[10] Portela A, Aliabadi MH, Rooke DP. Dual boundary element incremental
analysis of crack propagation. Computers and Structures 1993;46:237–47.

[11] Moës N, Gravouil A, Belytschko T. A finite element method for crack growth
without remeshing. International Journal for Numerical Methods in Engineer-
ing 1999;46(1):1371–84.

[12] Apicella A, Citarella R, Esposito R. MSD residual strength assessment for a
cracked joint. UK: Computational Mechanics BEASY Publications; 1999.

F.R.M. Romlay et al. / Engineering Analysis with Boundary Elements 34 (2010) 297–305 305


