SECURITY PERFORMANCE AND ENHANCEMENT FOR SPECTRAL AMPLITUDE CODING OPTICAL CODE DIVISION MULTIPLE ACCESS NETWORKS

HESHAM ABDULLAH AHMED BAKARMA

THESIS SUBMITTED IN FULFILMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF ENGINEERING AND BUILT ENVIRONMENT UNIVERSITI KEBANGSAAN MALAYSIA BANGI

2011
PRESTASI DAN PENAMBAIKAN KESELAMATAN RANGKAIAN PELBAGAI
CAPAIAN PEMBAHAGIAN KOD OPTIK DARI PENGKODAN
AMPLITUD SPEKTRA

HESHAM ABDULLAH AHMED BAKARMAN

TESIS YANG DIKEMUKAKAN UNTUK MEMPEROLEH IJAZAH
DOKTOR FALSAFAH

FAKULTI KEJURUTERAAN DAN ALAM BINA
UNIVERSITI KEBANGSAAN MALAYSIA
BANGI

2011
DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

10 DECEMBER 2011 HESHAM ABDULLAH AHMED BAKARMAN
 P 34851
AKNOWLEDGMENTS

Praise be to Allah Almighty for giving me the strength, patience and ability to complete this thesis.

I would like to express my sincere gratitude to my supervisor Professor Dr. Sahbudin Shaari, for his excellent idea, profound technical vision, invaluable guidance, many fruitful discussions and constant support in making this research possible over the years. I would like also to thank my co-supervisor Professor Dr. Mahamod Ismail for his helpful suggestions, support and co-operation throughout the study.

I am grateful to all my colleagues, friends, staff, and lecturers in Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia and Hadhramout University of Science and Technology, Yemen for their help and support at every step during this study.

I would like to thank my beloved family for all support, patience, understanding and being helpful throughout my study. I give my deepest gratitude and sincerest love to my parents for their love and support through my entire life. Special thank to my father for his help to solve any problem floating on the surface with my employer.

I wish to extend my grateful appreciation to all those who have contributed directly and indirectly to the preparation of this study.
ABSTRACT

In recent years, optical Code Division Multiple Access (optical CDMA) has become an interesting research area in optical communication technologies. Optical CDMA technology has obvious superiority for constructing the local area networks (LANs) and access networks in contrast to other multiplexing techniques. The need for transmission security in the developing of optical CDMA networks at the physical layer is becoming increasingly important. Spectral Amplitude Coding (SAC) is an encoding approach to implement optical CDMA networks. Although the system performance of SAC optical CDMA has been presented by many researchers, its security show has not presented widely. Therefore, there is a need to investigate the transmission security that can be provided by SAC optical CDMA. In this work, security performance of SAC optical CDMA schemes has been investigated. The eavesdropper probability of correctly detected Spectral Encoding Chip Bandwidth (SECB) pulses in a code word is investigated. The eavesdropper performance is based on tapping and observing the encoded transmitted signal using a tuning band pass filter followed by an envelope detector. The eavesdropper measures the intensity for each intercepted SECB pulse and calculates its corresponding signal to noise ratio (SNR). The eavesdropper SNR is investigated based on Modified Quadratic Congruence (MQC) code schemes. Thermal noise, shot noise and phase-induced intensity noise (PIIN) are included to be the main noise contributions. Our results showed that using unipolar optical CDMA codes schemes based on MQC and Modified Double Weight (MDW) code system enhances the security with a low cost implementation in comparison to the bipolar code schemes. Optisystem software V 7.0 is used to implement and simulate SAC optical CDMA networks, which are under this security investigation. At encoded spectral chip of 20 GHz the detected SNRs are 22 dB and 12 dB for authorized user and eavesdropper, respectively. These values are corresponding to bit error rate BERs of nearly 10^{-11} and 10^{-3}, respectively. The security enhancement for SAC optical CDMA has been included in this work. One Dimension Hybrid (ODH) code signature based on combining and integrating the properties for both m-sequence and enhanced double weight (EDW) code has been assigned to the authorized user. For probability of correct detection of 0.5, an eavesdropper receiver interceptor would need to detect SNR of 11 dB. When only the authorized user is active in the network, the eavesdropper could obtain encoded spectral pulses with SNR of nearly 10 dB. Therefore, the eavesdropper probability of correct detection of nearly 0.25 is achieved. ODH code shows remarkable security improvement compared with m-sequence, EDW and 2D EDW/m-sequence, respectively.
ABSTRAK

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER I INTRODUCTION

1.1 Background 1
1.2 Problems Statement 3
1.3 Objectives 5
1.4 Scope of Study 6
1.5 Summary of Thesis Contributions 8
1.6 Thesis Organization 10

CHAPTER II OPTICAL CDMA

2.1 Introduction 11
2.2 Multiplexing and Multiple Access Techniques 11
 2.2.1 Time division multiplexing (TDM) 12
 2.2.2 Frequency division multiplexing (FDM) 13
 2.2.3 Wavelength division multiplexing (WDM) 14
 2.2.4 Code division multiplexing access (CDMA) 15
2.3 Optical Code Division Multiple Access (Optical CDMA) 16
 2.3.1 Optical CDMA fundamentals 18
 2.3.2 Optical CDMA system characteristics 18
 2.3.3 Optical CDMA systems classifications 20
2.4 Types of Optical CDMA Codes 22
 2.4.1 Coherent optical CDMA systems 22
 2.4.2 Incoherent optical CDMA systems 26

2.5 SAC Optical CDMA Codes 33
 2.5.1 Optical orthogonal codes 35
 2.5.2 Prime codes 36
 2.5.3 Hadamard code 37
 2.5.4 Modified quadratic congruence code (MQC) 38
 2.5.5 Maximal Length Sequences (M-Sequences) 39
 2.5.6 Double Weight (DW) Codes 41
 2.5.7 Modified Double Weight (MDW) Codes 43
 2.5.8 Enhanced Double Weight (EDW) Codes 45

2.6 Overview of the vulnerabilities in Optical Communication Networks 48

2.7 Summary 49

CHAPTER III SECURITY IN OPTICAL COMMUNICATION NETWORKS

3.1 Introduction 51

3.2 Network Security Issues 51
 3.2.1 Security definitions 51
 3.2.2 Network security 52
 3.2.3 Network fundamentals 52
 3.2.4 Network topology Implications 52
 3.2.5 Security service objectives 54
 3.2.6 Security threats 55

3.3 Tapping and Detecting Optical Signals 56

3.4 Eavesdropper Code Pulse Detector 58

3.5 Eavesdropper Strategy 60

3.6 Eavesdropper’s Probability of Correct Detection 61

3.7 Simulation Software and Parameters Used 66

3.8 Tapping Encoded Spectral Chip Bandwidth from SAC Optical CDMA Systems 67

3.9 Security and Performance Tradeoffs 71

3.10 Summary 77
<table>
<thead>
<tr>
<th>CHAPTER IV</th>
<th>SECURITY PERFORMANCE FOR SPECTRAL AMPLITUDE CODE OPTICAL CDMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>4.2</td>
<td>Probability of The Eavesdropper Encoded Pulses Correct Detection</td>
</tr>
<tr>
<td>4.3</td>
<td>Eavesdropper SNR: a Spectrally Encoded Pulse Bandwidth Effects</td>
</tr>
<tr>
<td></td>
<td>4.3.1 Eavesdropper receiver and noise considerations</td>
</tr>
<tr>
<td></td>
<td>4.3.2 Eavesdropper SNR analysis</td>
</tr>
<tr>
<td></td>
<td>4.3.3 Eavesdropper Performance analysis</td>
</tr>
<tr>
<td>4.4</td>
<td>Simulation of Transmission Security Performance for SAC Optical CDMA Systems</td>
</tr>
<tr>
<td></td>
<td>4.4.1 Simulation set up</td>
</tr>
<tr>
<td></td>
<td>4.4.2 Eavesdropper simulation results</td>
</tr>
<tr>
<td>4.5</td>
<td>Summary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER V</th>
<th>SECURITY ENHANCEMENT OF SAC OPTICAL CDMA USING HYBRID ENCODING SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>5.2</td>
<td>Conventional Spectral Amplitude Coding Optical CDMA Systems</td>
</tr>
<tr>
<td></td>
<td>5.2.1 M-sequence codes</td>
</tr>
<tr>
<td></td>
<td>5.2.2 Enhanced double weight (EDW)</td>
</tr>
<tr>
<td>5.3</td>
<td>2-D Hybrid EDW/M.sequence</td>
</tr>
<tr>
<td></td>
<td>5.3.1 Code design</td>
</tr>
<tr>
<td></td>
<td>5.3.2 Security performance</td>
</tr>
<tr>
<td>5.4</td>
<td>One Dimension Hybrid (ODH) EDW/M-sequence System</td>
</tr>
<tr>
<td></td>
<td>5.4.1 Code design</td>
</tr>
<tr>
<td></td>
<td>5.4.2 ODH security performance</td>
</tr>
<tr>
<td></td>
<td>5.4.3 Simulation</td>
</tr>
<tr>
<td>5.5</td>
<td>Summary</td>
</tr>
</tbody>
</table>
CHAPTER VI CONCLUSION AND SUGGESTION FOR FUTURE WORK

6.1 Conclusion 134
6.2 Suggestions for Future Work 137

REFERENCES 139

APPENDICES

A List of Publications 149
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Advantages and disadvantages of the coherent and incoherent optical CDMA schemes</td>
<td>32</td>
</tr>
<tr>
<td>2.2</td>
<td>Properties of several SAC optical CDMA systems</td>
<td>49</td>
</tr>
<tr>
<td>3.1</td>
<td>Optical networks attack methods</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>Decision possibilities corresponding to detection threshold</td>
<td>62</td>
</tr>
<tr>
<td>3.3</td>
<td>The basic MDW code denoted by (9, 4, 1)</td>
<td>68</td>
</tr>
<tr>
<td>5.1</td>
<td>The basic EDW code denoted by (6,3, 1)</td>
<td>108</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Research scope of study</td>
</tr>
<tr>
<td>2.1</td>
<td>Time-division multiplexing (TDM)</td>
</tr>
<tr>
<td>2.2</td>
<td>Input signal spectrums are shifted in a number of various frequency ranges</td>
</tr>
<tr>
<td>2.3</td>
<td>Wavelength-division multiplexing (WDM)</td>
</tr>
<tr>
<td>2.4</td>
<td>Code Division Multiple Access system block diagram</td>
</tr>
<tr>
<td>2.5</td>
<td>Optical Code Division Multiple Access schematic diagram</td>
</tr>
<tr>
<td>2.6</td>
<td>Optical CDMA system classifications</td>
</tr>
<tr>
<td>2.7</td>
<td>Block diagram of (SPC-OCDMA) system architecture</td>
</tr>
<tr>
<td>2.8</td>
<td>Block diagram of (TPC-optical CDMA) system architecture</td>
</tr>
<tr>
<td>2.9</td>
<td>Representations of two code sequences for temporal spreading optical CDMA</td>
</tr>
<tr>
<td>2.10</td>
<td>Representations of two code sequences for wavelength-hopping time-spreading (WHTS) optical CDMA</td>
</tr>
<tr>
<td>2.11</td>
<td>Schematic block diagram of a WHTS optical CDMA network</td>
</tr>
<tr>
<td>2.12</td>
<td>Spectral amplitude coding (SAC) using diffraction gratings and spatial masks</td>
</tr>
<tr>
<td>2.13</td>
<td>Block diagram of encoding/decoding for SAC optical CDMA system</td>
</tr>
<tr>
<td>2.14</td>
<td>Four stage maximal length linear feedback shift-register</td>
</tr>
<tr>
<td>3.1</td>
<td>OSI Reference Model</td>
</tr>
<tr>
<td>3.2</td>
<td>Point to point star topology</td>
</tr>
<tr>
<td>3.3</td>
<td>Broadcast network topologies</td>
</tr>
<tr>
<td>3.4</td>
<td>Models of network attacks</td>
</tr>
<tr>
<td>3.5</td>
<td>Simple optical fiber tap by bending that allows the leaking of light</td>
</tr>
<tr>
<td>3.6</td>
<td>(a) micro-bend clamping tapping device, and (b) macro-bend tapping device</td>
</tr>
<tr>
<td>3.7</td>
<td>Places for an eavesdropper to attack and tap optical CDMA encoded pulses</td>
</tr>
<tr>
<td>3.8</td>
<td>Eavesdropper code interceptor structure</td>
</tr>
<tr>
<td>3.9</td>
<td>Probability of detection versus encoded pulse SNR, for several P_e values</td>
</tr>
<tr>
<td>3.10</td>
<td>Code intercepting detector performances using optical matched filter with envelope detection</td>
</tr>
<tr>
<td>3.11</td>
<td>Simulation setup for MDW optical CDMA system with eavesdropping from user 1</td>
</tr>
<tr>
<td>3.12</td>
<td>Encoded spectrum detected by eavesdropper with 20% tapping efficiency</td>
</tr>
<tr>
<td>3.13</td>
<td>Eavesdropper-tapping performance</td>
</tr>
<tr>
<td>3.14</td>
<td>Effect of combining multiple code pulses for both coherent and incoherent detection schemes</td>
</tr>
<tr>
<td>3.15</td>
<td>Per chip code SNR as a function of theoretical system capacity</td>
</tr>
<tr>
<td>3.16</td>
<td>Per chip code SNR as a function of theoretical system capacity for different specified authorized SNRs</td>
</tr>
<tr>
<td>3.17</td>
<td>BERs as a function of theoretical system capacity for different specified authorized SNRs</td>
</tr>
<tr>
<td>3.18</td>
<td>Security impact over system performance for spectral amplitude optical CDMA based on MDW code systems</td>
</tr>
<tr>
<td>3.19</td>
<td>Eavesdropper SNR vs bit rates</td>
</tr>
<tr>
<td>4.1</td>
<td>Code intercepting detector performances using optical matched filter with envelope detection</td>
</tr>
<tr>
<td>4.2</td>
<td>MQC eavesdropper performance</td>
</tr>
<tr>
<td>4.3</td>
<td>The system architecture of spectral amplitude code optical CDMA system network</td>
</tr>
<tr>
<td>4.4</td>
<td>The PSD of the received signal $r(v)$</td>
</tr>
<tr>
<td>4.5</td>
<td>Noise contributions versus the received optical power in eavesdropper receiver</td>
</tr>
<tr>
<td>4.6</td>
<td>Eavesdropper performance with variation of encoded spectral chip bandwidth</td>
</tr>
<tr>
<td>4.7</td>
<td>Authorized user and eavesdropper BER performance</td>
</tr>
<tr>
<td>4.8</td>
<td>Code dimension effects on eavesdropper performance</td>
</tr>
<tr>
<td>4.9</td>
<td>Eavesdropper performance for unipolar and bipolar optical CDMA codes</td>
</tr>
<tr>
<td>4.10</td>
<td>Simulation setup for MDW optical CDMA system with eavesdropping from user</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>4.11</td>
<td>Simulation set up for MQC optical CDMA system with eavesdropping from user</td>
</tr>
<tr>
<td>4.12</td>
<td>All users encoded spectrum</td>
</tr>
<tr>
<td>4.13</td>
<td>All users encoded spectrum detected by eavesdropper</td>
</tr>
<tr>
<td>4.14</td>
<td>Isolated user spectral chips for user 1</td>
</tr>
<tr>
<td>4.15</td>
<td>Effects of single spectral chip bandwidth on eavesdropper</td>
</tr>
<tr>
<td>4.16</td>
<td>Encoded spectrum detected by eavesdropper: (a) all users, (b) user 1, (c) user 5 and (d) user 9</td>
</tr>
<tr>
<td>4.17</td>
<td>User 1 encode spectral chips</td>
</tr>
<tr>
<td>4.18</td>
<td>Detected SNRs vs. encoded pulses bandwidth authorized user</td>
</tr>
<tr>
<td>5.1</td>
<td>Code matrices of the 2-D hybrid EDW/M- seq. optical CDMA for E=6 and N=3</td>
</tr>
<tr>
<td>5.2</td>
<td>Block diagram of hybrid EDW/M-seq. optical CDMA</td>
</tr>
<tr>
<td>5.3</td>
<td>BER versus active users</td>
</tr>
<tr>
<td>5.4</td>
<td>Eavesdropper code interceptor structure</td>
</tr>
<tr>
<td>5.5</td>
<td>Code intercepting detector performances using optical matched filter with envelope detection</td>
</tr>
<tr>
<td>5.6</td>
<td>The representation of the ODH users’ code sequences: (a) first user, (b) second user, and (c) third user</td>
</tr>
<tr>
<td>5.7</td>
<td>Eavesdropper performance based on detection theory</td>
</tr>
<tr>
<td>5.8</td>
<td>Eavesdropper SNR as a function of encoded spectral chip</td>
</tr>
<tr>
<td>5.9</td>
<td>ODH system block diagram</td>
</tr>
<tr>
<td>5.10</td>
<td>(a) ODH encoder and (b) ODH direct detection decoder</td>
</tr>
<tr>
<td>5.11</td>
<td>OSA measurements for encoded spectral chips (a) all users (b) user 1, (c) user 2, and (d) user 3</td>
</tr>
<tr>
<td>5.12</td>
<td>OSA measurements for encoded spectral chips (a) all users (b) users 1 & 2, (c) users 1 & 3, and (d) users 2 & 3</td>
</tr>
<tr>
<td>5.13</td>
<td>Encoded spectral pulses after eavesdropping from user one in an isolated situation (only user one is active in the network)</td>
</tr>
<tr>
<td>5.14</td>
<td>Eye patterns (a) minimum for eavesdropper, (b) maximum for eavesdropper and (c) authorized user</td>
</tr>
<tr>
<td>5.15</td>
<td>Encoded spectral pulses after eavesdropping from user one (when only two users are active in the network)</td>
</tr>
<tr>
<td>5.16</td>
<td>Encoded spectral pulses after eavesdropping from user one (when all users are active in the network)</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>5.17</td>
<td>Eye patterns when two users are active (a) minimum for eavesdropper, (b) maximum for eavesdropper and (c) authorized user</td>
</tr>
<tr>
<td>5.18</td>
<td>Eye patterns when all users are active (a) minimum for eavesdropper, (b) maximum for eavesdropper and (c) authorized user</td>
</tr>
<tr>
<td>5.19</td>
<td>Encoded spectral chip bandwidth effect</td>
</tr>
<tr>
<td>5.20</td>
<td>Eye patterns when user one is active at spectral chip of 20 GHz for (a) eavesdropper and (b) authorized user</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASE</td>
<td>Amplified Spontaneous Emission</td>
</tr>
<tr>
<td>BER</td>
<td>Bit Error Rate</td>
</tr>
<tr>
<td>CDMA</td>
<td>Code Division Multiple Access</td>
</tr>
<tr>
<td>CO</td>
<td>Central Office</td>
</tr>
<tr>
<td>DW</td>
<td>Double Weight</td>
</tr>
<tr>
<td>DWDM</td>
<td>Dense Wavelength Division Multiplexing</td>
</tr>
<tr>
<td>EDW</td>
<td>Enhanced Double Weight</td>
</tr>
<tr>
<td>FDMA</td>
<td>Frequency Division Multiple Access</td>
</tr>
<tr>
<td>FTTH</td>
<td>Fiber to the Home</td>
</tr>
<tr>
<td>GF</td>
<td>Galois Field</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>MAI</td>
<td>Multiple Access Interference</td>
</tr>
<tr>
<td>MDW</td>
<td>Modified Double Weight</td>
</tr>
<tr>
<td>MFH</td>
<td>Modified Frequency Hopping</td>
</tr>
<tr>
<td>MQC</td>
<td>Modified Quadratic Congruence</td>
</tr>
<tr>
<td>M-Sequence</td>
<td>Maximal Length Sequences</td>
</tr>
<tr>
<td>NDSF</td>
<td>Non-Dispersion Shifted Fiber</td>
</tr>
<tr>
<td>NRZ</td>
<td>Non-Return to Zero</td>
</tr>
<tr>
<td>OCDM</td>
<td>Optical Code Division Multiplexing</td>
</tr>
<tr>
<td>OCDMA</td>
<td>Optical Code Division Multiple Access</td>
</tr>
<tr>
<td>ODH</td>
<td>One Dimension Hybrid</td>
</tr>
<tr>
<td>OOC</td>
<td>Optical Orthogonal Codes</td>
</tr>
<tr>
<td>OOK</td>
<td>On/Off Keying</td>
</tr>
<tr>
<td>OSCDMA</td>
<td>Optical Spectrum Code Division Multiple Access</td>
</tr>
<tr>
<td>OSNR</td>
<td>Optical Signal to Noise Ratio</td>
</tr>
<tr>
<td>PIIN</td>
<td>Phase Induced Intensity Noise</td>
</tr>
<tr>
<td>PMD</td>
<td>Polarization Mode Dispersion</td>
</tr>
<tr>
<td>PON</td>
<td>Passive Optical Networks</td>
</tr>
<tr>
<td>PRBS</td>
<td>Pseudo Random Binary Sequence</td>
</tr>
<tr>
<td>PSD</td>
<td>Power Spectral Density</td>
</tr>
<tr>
<td>PSK</td>
<td>Phase Shift Keying</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------</td>
</tr>
<tr>
<td>TDMA</td>
<td>Time Division Multiple Access</td>
</tr>
<tr>
<td>WDM</td>
<td>Wavelength Division Multiplexing</td>
</tr>
<tr>
<td>WDMA</td>
<td>Wavelength Division Multiple Access</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

1.1 BACKGROUND

In the last few years, the increased demand of data services has driven a corresponding explosion in transportable bandwidth, most of which involve sensitive information, personal data, bank accounts, credit card numbers, proprietary documents, and more (Kartalopoulos 2009). From a security perspective, these rapid growths in data services need to be well secured from any type of attacks. As a result, network security concerns have recently been increased due to the huge amount of information that flows in a communication media.

In general, there are three types of network security concern in communications: physical network, user data, and network management and provisioning security. Physical layer security and data-level security correspond to where in the communication network the security is implemented. Physical layer security defines the transmission security at the physical layer of the network and is concerned with protecting the physical transmissions in transit from interception and detection by hostile eavesdroppers and adversaries. Data-level security focuses on information security that exists in the presentation layer of the network and relies on the cryptographic approach to encrypt and decrypt data. Information security means securing information and information systems from illegal access, disclosure, disruption, usage and modification, examination, inspection, recording or destruction (Allen 2001). Network management and provisioning pertains to network attacks to disable, manage and reprovision nodes (Kartalopoulos 2007).
For a long time, there has been an on-going misconception that optical fiber communication is a secure communication platform. Assuming there is possible access to the fiber link such as bend tapping, optical communications networks are susceptible to the same security threats as wireless communications. Security over the optical communications network gives numerous challenges to both network providers and intruders, and experiences the same sensitivities and vulnerabilities as wireless communications (Cederlof & Larsson 2008).

At the latter part of 1970, Code Division Multiple Access (CDMA) technology was initially developed for wireless military telecommunications to increase the robustness of information security. It is also called spread spectrum technique and has been widely applied to the fields of satellite communication, wireless communication and mobile communication (Prasad & Ojanpera 1998). Optical CDMA scheme is resulting from combining the advantages of the predominance of electrical CDMA as well as asynchronously random access with the tremendous bandwidth of fiber-optic and optical-signal processing devices, in which code multiplexing and transmission are performed in the optical domain. Therefore, an optical fiber communication network with more powerful function could be implemented, where passive optical-access networks, LAN and WAN can be built up by using optical CDMA technology.

Optical CDMA is a kind of multiplexing and networking for optical communication systems and networks in which optical signals are performed by encoding/decoding data employing simple and low cost passive optical components. Its main advantages include asynchronous random access, supporting multiple rates, good compatibility with WDM and TDM, flexible networking, and providing some privacy of transmission information.

In the literature where optical CDMA technologies and theories are introduced and investigated, information and transmission security are considered to be the most intrinsic advantages for optical CDMA networks (Iversen & Hampicke 1995; Karafolas & Uttamchandani 1996; Sampson et al. 1997; Tancevski et al. 1995; Torres et al. 2002). Some of these researches have focused on the data link layer security which relies on the cryptographic approach and others on the network physical layer.
security that defines transmission security in the encoding approach (Kamath et al. 2004; Mohamed et al. 2006; Shalaby 2003; Sun et al. 2007).

1.2 PROBLEM STATEMENT

Optical CDMA has become a promising technology to implement truly all-optical communication and networking that use optical signal processing directly combining the advantages of electrical CDMA with the bandwidth predominance of fiber-optic and optical-signal processing devices. The passive optical-access networks, LAN and WAN, can be built up by using optical CDMA technology.

The potential provided by optical CDMA for enhanced information security is frequently mentioned in addition to other possible advantages, such as simplified and decentralized network control, improved spectral efficiency, and increased versatility in the bandwidth partition that can be provisioned. Logically, the optical CDMA encoded signals manifest itself as a noise-like waveform that possibly will not be available to an eavesdropper without knowing and understanding of the assigned code. Studies have previously demonstrated there is no security at all in most coded optical CDMA for a single-user system employing on-off keying (OOK) (Shake 2005b).

Lately, to figure out this problem, a code switching scheme (or 2-code keying) was proposed, and its performance was evaluated theoretically (Mohamed et al. 2006; Shake 2005a). Experimental demonstration of the code switching system was carried out by utilizing coherent optical CDMA with a short coherent optical pulse (Leaird et al. 2005). However, a band-limited photodiode was assumed for eavesdropping and the degree of security was only investigated by measuring eye-diagrams at back-to-back configuration. An M-code keying optical CDMA system with parallel encoders/decoders presented by (Qin et al. 2008), and quantitatively analyzed its security performance. The results show that the security performance is slightly improved, but does not greatly enhance its security performance compared with the two-code keying optical CDMA system. Even though both the switching code keyings have better security compared to the OOK OCDMA system, their costs should be
taken into account. The increase in codes will increase multiple access interference (MAI), which may reduce the number of active users and many codes are needed.

An alternative to the huge code-space size techniques such as the wavelength hopping/time spreading (Fathallah et al. 1999; Yegnanarayanan et al. 2000), or spectral-phase coding (Salehi et al. 1990) for network protection against eavesdropping by using the spectral amplitude code optical CDMA approach in which a unipolar M-sequence is used for encoding/decoding processes (Yao-Tang et al. 2007). Security enhancement, based on reconfigurable AWG-based codec, has been implemented by controlling the processing time of the optical switches and the control registers. Since, optical switches have a shorter processing time than electrical devices, one needs to enable the processing time of the current electrical shift registers to move toward that of the optical switches to realize the optimum reconfigurable processing time throughout the code change.

Some data confidentiality measurements have been reported based on a wavelength/time optical CDMA system where the eavesdropper is always confronted with severe multi-access interference (MAI) (Mendez et al. 2005). This confidentiality will no longer be true, if at least one user in the network is active or when the eavesdropper can tap the transmitted information by isolating the intended user.

Optical CDMA technology has obvious superiority for constructing the local area networks (LANs) and access networks in contrast to other multiplexing techniques. The need for the transmission security in the developing of optical CDMA networks at the physical layer is becoming increasingly important. Spectral amplitude coding (SAC) is an encoding approach to implement optical CDMA networks. Although the system performance of SAC optical CDMA has been presented by many researchers, its security show has not been presented widely. Therefore, there is a need to investigate the transmission security that can be provided by SAC optical CDMA.

The security issues of optical CDMA system employing the incoherent bipolar complementary spectrally optical encoder and decoder were investigated by Chung et al. 2008. It showed that wideband in a single spectral chip enhances the performance
of both the authorized user and eavesdropper. In addition, the bipolar signaling has a 3-dB Signal-to-Noise Ratio (SNR) advantage over the on-off keying system with high cost implementation because each transmitter sends energy for both “0” and “1” bit (Nguyen et al. 1995). From the security viewpoint, one should minimize the eavesdropper ability to detect code word pulses by controlling the authorized performance to reasonable throughput.

There are four basic goals related to information security services of any communications network: confidentiality, integrity, availability and authenticity (Dhillon 2007). Confidentiality is the term used to avoid the expose of information to unofficial parties, individuals or systems. Integrity means that data cannot be adapted or changed without authorization permission. Availability is the term to guarantee that the data must be available whenever it is required. Certifying availability also involves avoiding denial-of-service attacks. Authenticity is to make sure that the information, dealings, communications or documents (electronic or physical) are authentic and legal.

1.3 OBJECTIVES

The main objective of this research is to investigate and enhance security performance of optical CDMA based on spectral amplitude code schemes. The specific objectives of this thesis include:

a. To investigate the eavesdropper performance based on calculating the probability of correctly detected the encoding spectral chip bandwidth (ESCB) pulses in a SAC optical CDMA code address;

b. To investigate the effects of the encoding spectral chip bandwidth (ESCB) for unipolar spectral amplitude code SAC schemes, such as MDW, EDW, M-sequence, and MQC code schemes;

c. To enhance security performance based on hybrid SAC optical CDMA systems using One Dimension Hybrid (ODH) and two dimensions hybrid code schemes.
1.4 SCOPE OF STUDY

In this study, we focus on transmission security issues of spectral amplitude code systems for optical CDMA networks. We concentrate on the physical layer security which defines the transmission security at the physical layer of the network and is concerned with protecting the physical transmissions from interception and detection by eavesdroppers and adversaries. Figure 1.1 shows the scope of study structure of this research which has three main stages. The first stage is focused on the implementation of the optical CDMA, based on SAC schemes that will be used in this work. Modified Double Weight (MDW), Enhanced Double Weight (EDW) and Modified Quadratic Congruence (MQC) codes have been implemented. The second stage concentrates on the theoretical and simulation analysis to investigate the transmission security performance of the eavesdropper. The security enhancement is demonstrated in the third stage, where hybrid SAC systems have been implemented with different dimensions.

![Diagram of SAC Optical CDMA and its components](image)

Figure 1.1 Scope of the study

The eavesdropper interception strategy is to tap and observe the encoded transmitted signal using a tuning band pass filter followed by an envelope detector. The eavesdropper measures the intensity for each intercepted ESCB pulse and
calculates its corresponding Signal to Noise Ratio (SNR). The eavesdropper probability of correctly detected spectral encoding chip bandwidth (ESCB) pulses in an SAC optical CDMA code word is examined based on classical detection theory. In this calculation, the eavesdropper is required to know or estimate such parameters as the code weight \(W \), code length \(N \), eavesdropper SNR and detection threshold. Different conventional SAC code schemes, such as MDW, EDW and MQC, have been used to evaluate the eavesdropper transmission security performance.

To investigate the effect of the encoded spectral chip bandwidth (ESCB) on transmission security performance, the eavesdropper SNR is derived based on Modified Quadratic Congruence (MQC) code schemes. Thermal noise, shot noise and phase-induced intensity noise (PIIN) are included to be the main noise contributions. The eavesdropper interceptor filters the received signal with pass band filter (direct single spectral chip decoder) which is spectrally matched with that of the authorized decoder spectral chip bandwidth. The output from this decoder is detected by a photodetector where the received intensity is converted and processed electrically by decision circuit. In addition to that, this analysis has been simulated by using commercial simulation software, OptiSystem Version 7.0. The implemented network layout parameters were activated and specified according to the typical industry values to simulate the real environment as close as possible. Our results show that using unipolar optical CDMA code schemes based on MDW code system enhances the security with a low cost implementation in comparison to the bipolar ones.

The transmission security enhancement for SAC optical CDMA has been included in this work. One dimension hybrid (ODH) code signature based on combining and integrating the properties for both M-sequence and enhanced double weight (EDW) code has been assigned to the authorized user. The hybrid code will add encoding complexity for special authorized users which will make the eavesdropper code word interception more complicated due to the code size expansion. Therefore, both the eavesdropper probability of correctly detected encoded spectral encoding chip bandwidth (ESCB) and the effect of the (ESCB) are presented for these hybrid SAC optical CDMA codes.
1.5 SUMMARY OF THESIS CONTRIBUTIONS

We have focused on the physical layer security which defines the transmission security at the physical layer of the network and is concerned with protecting the physical transmissions from interception and detection by eavesdroppers and adversaries. The major contributions of this research could be summaries as follows:

a. **Eavesdropper’s probability of correct detection based on SAC optical CDMA**

The transmission security issues of spectral amplitude code systems for optical CDMA networks have been investigated. We have used several SAC codes to implemented optical CDMA networks. Based on the proposed eavesdropper code interceptor, we have assumed that the eavesdropper could isolate the intended authorized user, which is considered to be the worst case for interception. The structure of the eavesdropper receiver is quite simple. It filters the received signal with direct spectral chip decoder, such as band pass filter (BPF), which is spectrally matched with that of the authorized encoded spectral chip. The remaining of the eavesdropper interceptor consists of a photodetector operating as a square-law envelope detector to detect the output of the matched BPF, a low pass filter with a cut off electrical bandwidth approximately equal to 75 % of the user data bit rate and a comparator that evaluate the integrator output against a threshold value in order to decide if a signal is received for each spectral chip code pulse.

We have introduced the eavesdropper performance based on evaluating the probability of correct detection for the encoded spectral chip bandwidths (ESCB), which represents the SAC user’s code sequence. This probability is adapted from the classical detection analysis that can be calculated by knowing the probability of missing a transmitted encoded pulse in a given time bin P_m and the probability of falsely detecting a pulse in a bin where none was transmitted P_f. For probability of correct detection of 0.5, an eavesdropper receiver interceptor would need to detect SNRs of 7, 8, 8.3, 9.3 and 11 dB for EDW, MDW, MQC, 2-D EDW/M-sequence and
ODH SAC code systems. Therefore, the proposed hybrid code systems showed remarkable security improvement compared with the conventional codes.

b. Eavesdropper SNR: a spectrally encoded pulse bandwidth effects

We have investigated the effect of the encoded spectral chip bandwidth (ESCB) on transmission security performance, the eavesdropper SNR is derived based on modified quadratic congruence (MQC) code schemes. In addition, this analysis has been simulated by using commercial simulation software, OptiSystem Version 7.0. Increasing the code dimension and decreasing the ESCB enhanced transmission security. We have shown that the unipolar SAC optical CDMA code schemes based on MDW code system enhanced the security with a low cost implementation in comparison to the bipolar codes. Both analytical and simulation results are close to each other.

c. Transmission security enhancement using hybrid SAC optical CDMA code systems

The enhancement of the transmission security of the SAC optical CDMA has been presented. The enhancement has been achieved by proposing hybrid SAC optical CDMA schemes. One dimension hybrid (ODH) EDW/M-sequence and two dimensions 2-D EDW/M-sequence code systems have been implemented to provide a degree of transmission security for SAC optical CDMA. These two approaches have been implemented by combining and integrating the properties for both M-sequence and EDW codes. In the ODH code design, we have introduced an easy method to construct the M-sequence code sequences for any number of (r) and maintained the same code properties. This new generation method will ease the construction of ODH mathematical model, and make it more convenient. Based on ODH, we have shown that when only user one is active in the network, the eavesdropper could obtain encoded spectral pulses with SNR of nearly 10 dB, which could achieve probability of correct detection of 0.25.
1.6 THESIS ORGANIZATION

This thesis is divided into six chapters. Chapter one presents a brief overview on the research background and problem statement regarding the security issues in an optical communication networks. The thesis objectives, scope of the study and the proposed methodology have been summarized. The second chapter includes the literature survey of optical CDMA system which includes classification of optical CDMA systems, based on SAC schemes, and types of codes used in this work. In the third chapter, security in optical communication networks is given, which includes tapping and detection strategies provided by eavesdroppers. In the fourth chapter, security performance is investigated based on the probability of correct code pulse from the transmitted encoded signal. The effect of spectral encoded pulse bandwidth is demonstrated by both theoretical and simulation analysis. The fifth chapter analyzes the security enhancement for SAC optical CDMA systems based on one-dimensional hybrid ODH and two-dimensional 2-D EDW/M-sequence code schemes. Finally, the sixth chapter includes conclusion and areas suggested for further research.
CHAPTER II

OPTICAL CDMA

2.1 INTRODUCTION

The optical communications networks are starting to assume an important responsibility as universal information infrastructures lead to the information revolution. This chapter aims to review the main issues related to optical CDMA technologies and provides a detail description about the multiplexing and multiple access technologies. Various existing multiplexing and multiple-access techniques are discussed with concentration on four main types of the multiplexing techniques in communication systems. Then, brief history about optical CDMA foundation, the fundamental principles of optical CDMA, advantages of optical CDMA, and encoding and decoding techniques are presented. Several optical CDMA codes and their properties are discussed, especially those related to spectral amplitude code schemes that are under security analysis study in this thesis.

2.2 MULTIPLEXING AND MULTIPLE ACCESS TECHNIQUES

In telecommunications, multiplexing techniques represent one of the most essential functions of access networks where two or more independent analog signals or digital information are combined into one signal over a common medium. Multiple-access networks offer a random bidirectional access to each subscriber. Each subscriber can receive and transmit information to any other subscriber of the network at all times. Multiple access techniques allow an expensive available resource communication medium to be shared between different subscribers, greatly increasing transmission capacity and reducing system costs (Sari et al. 2000). There are four main types of
multiplexing techniques in communication systems; they are Time Division Multiplexing (TDM), Frequency Division Multiplexing (FDM), Wavelength Division Multiplexing (WDM) and Code Division Multiplexing (CDM). There are also other types of multiplexing techniques such as polarization mode multiplexing and spatial multiplexing.

2.2.1 Time Division Multiplexing (TDM)

Time Division Multiplexing is a digital technique that requires sequencing groups of several bits or bytes from each individual input stream, one following another, and in a direction that they can be connected with the suitable receiver as shown in Figure 2.1. A short time sample of each signal channel is slotted into the multiplexed data stream. At the transmitter part, it allows a user to access the common transmission medium by assigning each user a selected time slot and by multiplexing lower bit rate data streams from all users to a higher bit rate data stream (Ramaswami & Sivarajan 1998). At the receiver end, a time demultiplexer separates the higher bit rate data stream into multiple data streams at the lower data rate. Provided that it is completed suitably and fast, the receiving instruments will not discover that some of the circuit time was used to serve another logical communication route.

Figure 2.1 Time division multiplexing (TDM)
2.2.2 Frequency Division Multiplexing (FDM)

Frequency-division multiplexing (FDM) is naturally an analog technology that accomplishes the mixing of several digital signals into one medium by launching signals in several separate frequency ranges over that medium as shown in Figure 2.2. At the transmitter, the simultaneous transmission of multiple separate signals through a shared medium, such as a wire or optical fiber, by modulating the separate signals into discrete frequency bands, and summing those outcomes linearly either before transmission or within the medium. At the receiver, equipment separates the multiplexed signals by frequency passing or rejecting filters, and demodulates the results independently. Each in a suitable method for the modulation system used for that band or group (DeLange 1970).

![Diagram of Frequency Division Multiplexing (FDM)]

Figure 2.2 Input signal spectrums are shifted in a number of various frequency ranges

FDM was previously the establishment of the long distance telephone technique. Other examples of FDM include ordinary radio, television, and cable service. Both transmitters and receivers do not need to be close to each other. Even though TDM lends itself to the manipulation of digital data due to the recent enhancements in its several forms, but the low cost and high quality of on-hand FDM apparatus particularly that considered for television signals make FDM apparatus performs satisfactorily, and can be used as an alternative for various intentions.
2.2.3 **Wavelength Division Multiplexing (WDM)**

Wavelength Division Multiplexing is a technology that employs multiple lasers and transmits few wavelengths of light all together over a single optical fiber. Every signal travels within its unique color band, which is modulated by the data (text, voice, video, etc.). WDM has spectacularly enlarged the transporting capability of the fiber infrastructure of the telephone companies and other transporter media.

Wavelength Division Multiplexing Access (WDMA) allows multiple accesses of users by combining multiple streams of data at multiple carrier wavelengths on a single fiber (Ramaswami & Sivarajan 1998). It allocates a separate wavelength to each user, and each of them can operate at the maximum bit rate of each wavelength channel (Banerjee et al. 2005). Figure 2.3 illustrates a simple block diagram for WDMA. However, WDMA has its own problems, such as high equipment cost, a limited number of users due to limited number of wavelengths, and lack of scaling flexibility. The device that combines the signals together is known as a multiplexer, and the one that separates them apart is a demultiplexer. The idea was first issued in 1970, and by 1978 WDM systems were being realized in the research laboratory. The first WDM systems only combined two signals. Current systems can handle up to 160 signals and can thus broaden a basic 10 Gbit/s system over a single fiber pair to over 1.6 Tbit/s (Ishio et al. 1984).

![Figure 2.3 Wavelength-division multiplexing (WDM)](image-url)
2.2.4 Code Division Multiplexing Access (CDMA)

Code Division Multiple Access is a technique for transporting multiple digital signals simultaneously over the same channel media (the same carrier frequency). The most widely known application of CDMA is for cell phones as well as in various radio communications systems. In data communication, one of the main basic ideas is the concept of enabling several transmitters to send information simultaneously over a single communication channel. This lets various users to share a bandwidth. This concept is called multiplexing, where the transmitter encodes the signal using a pseudorandom sequence which the receiver also distinguishes and can use to decode the received signal. Each different arbitrary sequence matches to a different communication channel.

CDMA utilizes spread-spectrum technology and a particular coding system. A spread spectrum technique spreads the bandwidth of the data consistently for the same transmitted power (Viterbi 1995). Each transmitter is allocated a code to enable multiple users to be multiplexed over the same physical channel medium. By contrast, time division multiple access (TDMA) separates access by time, while frequency-division multiple access (FDMA) separates it by frequency. CDMA is a figure of spread-spectrum signaling, because the modulated encoded signals have a much higher data bandwidth than the data being communicated (Ipatov 2005).

CDMA neither need the bandwidth allocation of FDMA, nor the time synchronization of the individual users needed in TDMA. A CDMA user has full bandwidth attainable, but the quality of the communication declines with a growing number of users. As shown in Figure 2.4, each user has its own pseudorandom noise (PN) code, uses the same RF code and transmits simultaneously (asynchronous or synchronous). The set of PN codes must have autocorrelation for good synchronization and low cross correlation for low Multiple Access Interference (MAI). Useful codes are Gold and Kasami codes (asynchronous CDMA) and Hadamard-Walsh codes (synchronous CDMA). The detector receives a signal that contains the total of all users’ signals, which overlap in time and frequency and introduce the major contribution of MAI that restricts the performance capacity of the
CDMA system. In conventional CDMA system, a particular user’s signal is detected by correlating the entire received with that user’s code waveform (Peterson et al. 1995).

![Code Division Multiple Access system block diagram](image)

Figure 2.4 Code Division Multiple Access system block diagram

2.3 OPTICAL CODE-DIVISION MULTIPLE ACCESS (OPTICAL CDMA)

Optical code-division multiple access (optical CDMA) is a multiplexing technique adapted from the successful implementation in wireless networks. Optical CDMA has become a promising technology to implement truly all-optical communication and networking that use optical signal processing directly combining the advantages of electrical CDMA with the bandwidth predominance of fiber-optic and optical-signal processing devices.

Optical CDMA systems are getting more and more attractive in the field of all-optical communications as multiple users can access the network asynchronously and simultaneously with high level of security (Salehi 1989), (Salehi & Brackett 1989) compared to other multiplexing techniques such as Wavelength Division Multiplexing WDM and Time Division Multiplexing TDM. The passive optical-access networks, LAN and WAN, can be built up by using optical CDMA technology as shown in Figure 2.5.
Optical CDMA is a technology used to realize multiplexing transmission and multiple accesses by encoding process in the optical domain, which advocates multiple simultaneous transmissions in the same timeslot and the same frequency. It is another technology of multiplexing and multiple accesses besides OTDM and WDM and a potentially encouraging technique for optical networks in the future, and particularly due to its easy access and versatile network structure. It is very applicable to the access network (Yin & Richardson 2007).

In 1986, Prucnal, Santoro and Fan proposed to realize the fiber-optic LAN by using optical signal processing (Prucnal, Santoro & Sehgal 1986; Prucnal, Santoro & Ting 1986), and used prime codes to carry out the experiment of electronic encoding and fiber-optic delay line decoding, verifying the feasibility to implement incoherent optical CDMA system by encoding in the time domain. In 1988, Weiner, Heritage and Salehi (Weiner et al. 1988) demonstrated how to spread the femto-second optical pulse into picoseconds-duration pseudo noise bursts. The spread frequency was achieved by encoding the light spectrum into pseudorandom binary phase and then by decoding the spectrum phase encoded to recover the original pulse. They proposed that the coherent ultra-short pulse coding and decoding could be applied to the fast reconfigurable optical CDMA communication networks. These two technical papers form the foundation of most developments in optical CDMA as we know it nowadays.
2.3.1 Optical CDMA Fundamentals

In an optical CDMA network, the transmission signal over a fiber-optic channel is formed by the superimposing of pseudorandom optical CDMA signals encoded from multiple channels. The signal is broadcasted to each node (user) in the network and a receiver in each node decodes the signal. If the decoder output in this receiver is an autocorrelation, the node can detect the information sent to it from the aforementioned pseudorandom signals. Otherwise, if the decoder output is a cross-correlation function (no apparent peak value), then the node cannot receive the information (Yin & Richardson 2007).

Therefore, in order to implement optical CDMA communication and networking, address codes with sufficient performance are required. Whenever a set of code specifications is preferred, a code can be constructed that has as many code words (corresponding to the number of nodes in the network) as required with good enough auto- and cross-correlation so that precise synchronization can be carried out and the multiple access interference (MAI) from other users can be suppressed effectively by decoding the signals. This requires that the address codes should satisfy two conditions (Salehi 1989; Salehi & Brackett 1989): shifted versions can easily produce all possible address code words and these shifted versions should be easily distinguished from every other code words group. From the viewpoint of coding theory, these address code words have to satisfy two main situations: (1) when the cross correlation role between each codeword and any other codeword in the same set of address code words is low, and (2) when each codeword in a set has a high autocorrelation peak and low autocorrelation side lobes.

2.3.2 Optical CDMA System Characteristics

To implement entire optical CDMA communication systems in the optical domain, there have been numerous researches and attempts to grasp the full advantages and benefits of fiber optic signal processing techniques. Yin, and Richardson (2007) presented these advantages as following:
a. Employing optical processing to accomplish particular network applications such as addressing, directing and routing. Therefore, optical CDMA can perform high-speed transmission, switching and add/drop of data by employing all-optical signal processing, and consequently it can realize all-optical communication and all-optical networking and overwhelm the effect of the electronic bottleneck that exists in the electronic interchange in the conventional network.

b. Authorized users can access the network randomly with a high capability of data throughput. Therefore, the optical CMDA networks have the soft capacity and the pattern of networking is remarkably adaptable.

c. Optical CDMA has a low delay access that is appropriate to bursty local area network traffic and doesn’t need buffering in a queue.

d. In optical CDMA systems the network topology, traffic and protocol are transparent. They can support variable bit-rate traffic and bursty traffic and carry out differential QoS according to demand with effective allocation of bandwidth responding to the requirement. Optical CDMA networks can be easily improved and extended due to the flexibility of the network architecture.

e. Optical CDMA networks need high speed coding and decoding process with fewer devices than WDM networks. The implementing cost of optical CDMA networks is low because of the asynchronous data transmission that simplifies network planning, management and control. On the other hand, DWDM networks need precise wavelength control and conversion. Moreover, optical CDMA is extremely suitable with DWDM and TDM.

f. Optical CDMA networks are considered, to a certain extent, to be secure and cryptic for the transmission of valuable information. Furthermore, these networks employ distributed management, which is simple, and it is accessible to locate network failure and secure and improve.
Because of the advantages mentioned above, optical CDMA can support multimedia including voice, data, video, including IP traffic, video-on-demand, streaming media, interactive applications, etc. And it also supports many types of QoS and differential degrees of security fitting to different services and user’s requirements. At the same time, it can overcome the defects of asymmetric uplink and downlink in current access networks and supports FTTH of the peer-to-peer traffic (Yin & Richardson 2007). Therefore, the advantages of asynchronous transmission and the capability of multiple accesses in a bursty situation make optical CDMA attractive for LAN applications.

2.3.3 Optical CDMA Systems Classifications

Many types of optical CDMA systems have been proposed as the result of intensive research on optical CDMA in the past 20 years (Prucnal 2006; Yin & Richardson 2007).

If we classify them in terms of the nature of the superposition of the optical signal, they can be divided into coherent optical CDMA systems and incoherent optical CDMA systems as shown in Figure 2.6. The coherent optical CDMA system makes use of the coherent property of light and implements bipolar encoding of the optical signal, i.e., encoding the phase of optical signals, with the phase of light detected at the receiving terminals. The form of signal addition is the superposition of light signal amplitudes. This kind of optical CDMA system needs to use ultrashort broadband light pulse sources (Jiang et al. 2005). The incoherent optical CDMA system employs the presence of light signal or absence of light signal to represent the binary “1” and “0” respectively, which is unipolar encoding, where the light signals are detected with the square-law devices at the receiving terminals. This form of signal addition is the superposition of light powers. This kind of optical CDMA system may use incoherent light sources, such as amplified spontaneous emission (ASE), light-emitting diode (LED), etc (Papannareddy & Weiner 1999; Zaccarin & Kavehrad 1993).
If we categorize them depending on the differences of coding approaches for optical signals, there are six kinds of optical CDMA systems (Yin & Richardson 2007):

a. direct-sequence or temporal encoding optical CDMA systems, also known as spread-spectrum encoding optical CDMA systems;

b. spectral amplitude encoding Optical CDMA systems;

c. spectral phase encoding optical CDMA systems;

d. temporal phase encoding optical CDMA systems;

e. two-dimensional spatial encoding optical CDMA systems, also known as spread space encoding;

f. Hybrid encoding optical CDMA systems. This kind of system uses a combination of the encoding approaches mentioned above. We can acquire two-dimensional encoding, for instance, wavelength-hopping/time-spread (WH/TS) encoding, through using the combination of spectrum encoding with temporal encoding. If space encoding is combined with WH/TS encoding again, space-spread/wavelength hopping/time-spreading encoding (SS/WH/TS) (Sangin et al. 2000) can be obtained and the other options may be deduced by analogy.
If we categorize them depending on the amount of resources of time, wavelength, space and polarization used, there are three kinds of optical CDMA systems. They can be divided into one-dimensional systems, two-dimensional systems and three-dimensional systems (Yin & Richardson 2007).

Since the mid-1980s, the encoding theory and encoding technology of optical CDMA have been studied and developed thoroughly and many research accomplishments have been made (Prucnal 2006). The encoding approaches of optical CDMA can be divided into several categories based on the choice of different light sources (e.g., coherent vs. incoherent, narrowband vs. broadband), different detection schemes (e.g., coherent vs. incoherent), encoding approaches (e.g., time vs. wavelength, amplitude vs. phase) and encoding dimensions, which are shown in Figure 2.6.

2.4 TYPES OF OPTICAL CDMA CODES

Optical CDMA systems can generally be classified into two major types according to the mechanism in which the optical signal is encoded and detected. Coherent optical CDMA systems often use ultrashort wideband light pulse sources and manipulate the phase of the signal field in the encoding and decoding processes. In contrast, incoherent optical CDMA systems utilize incoherent light source and employ amplitude-modulated code where the decoding of signal is based on the power summation of optical pulses.

2.4.1 Coherent Optical CDMA Systems

In the coherent optical CDMA system, phase is important in its encoding/decoding design and properties. In the transmitter part of the coherent optical CDMA system, a specified user’s code is mostly applied via phase coding of the optical signal field, which is generally obtained from a highly coherent wideband source, such as a mode-locked laser. While in the receiver section, the coherent optical CDMA system depends on a coherent restoration of the signal field to decode and recover the user’s
data. Advantages and disadvantages of the coherent optical CDMA schemes are explained in Table 2.1.

Based on the way in which phase coding is applied to the optical signal field, this category of coherent optical CDMA systems are classified to two possible types.

- Spectral Phase Coded Optical CDMA (SPC-optical CDMA)
- Temporal Phase Coded Optical CDMA (TPC-optical CDMA)

a. Spectral Phase Coded Optical CDMA (SPC-optical CDMA)

In this category, the optical phase can be controlled in the frequency domain. The system block diagram of the spectral phase coded optical CDMA design is demonstrated in Figure 2.7. The SPC-OCDMA system needs a broadband multi-wavelength source of light that is highly coherent from a frequency domain perspective, such as that available from a mode-locked laser that produces at its output a stream of short optical pulses in the time domain. These stream pulses are then modulated with the user’s data. The data modulation, which occurs in the time domain, could be either simple on-off-keying (OOK), where optical pulses are simply turned on or off depending up whether the user’s data bit is a “1” or “0,” respectively, or one of the more advanced modulation techniques such as the phase shift keying (PSK) (Alfiad et al. 2009) or differential phase shift keying (DPSK) (Xu et al. 2004).

![Figure 2.7 Block diagram of (SPC-OCDMA) system architecture](image_url)
Following data modulation, the modulated signal is inserted into a spectral phase encoder, which assigns a specific optical CDMA phase code to the spectrum. Each user is assigned one of a set of L components spectral phase codes. The spectral phase encoders separate the modulated spectrum into spectral bins and assign a different phase shift to each bin. The phase elements could be simple binary codes, such as 0 or \(\pi\), or more advanced multilevel phase. The encoded signal can be passively combined or multiplexed with other optical CDMA signals by using an optical combiner. Each of these combined signals will have its own unique spectral phase code but intersection definitely in the frequency domain.

At the receiver part, a spectral phase decoder is first employed to recover the exact optical CDMA network user’s signal, which is approximately matching with the spectral phase encoder placed at the transmitter, but it has a conjugate spectral phase mask. After the decoding process, it is necessary to eliminate the multiuser interference (MUI) noise that resulting from unwanted optical CDMA users. Then, the wanted user’s data signal can be recovered through data demodulation and detection. Based on the frequency resolution of each spectral phase component, spectral phase coded optical CDMA systems can be classified into wideband SPC-optical CDMA (referred to as ultrashort or femtosecond pulse optical CDMA) (Salehi et al. 1990; Weiner et al. 1988) and narrowband SPC-optical CDMA (Shahab et al. 2004).

b. Temporal Phase Coded Optical CDMA (TPC-optical CDMA)

In this category, the optical phase can be controlled in the time domain and called the temporal phase coded optical CDMA system as shown in Figure 2.8 (Sotobayashi et al. 2001). For this scheme, it is simply required to consider the development of signal waveforms in the time domain to realize its operation. Both the TPC-optical CDMA and the SPC-optical CDMA have several similarities in terms of system architectures. For example, the light source in the TPC-optical CDMA system is also frequently a mode-locked laser. However, in this case, it is not the multi-wavelength spectral characteristics of the mode-locked laser that are employed as was the case for SPC-optical CDMA, but rather its short pulse capabilities. In addition to that, the same
modulation formats used for the SPC-optical CDMA can be employed for the TPC-optical CDMA systems.

Figure 2.8 Block diagram of (TPC-optical CDMA) system architecture

Following modulation, a temporal phase encoder is used to produce L pulse duplicates, each of which delayed hence that they lie on an equally separated time grid. The spacing between pulses is described as the temporal chip interval. In addition to the coarse time delay between pulse copies, there is also a fine relative phase shift. Every encoded pulse is determined to a particular corresponding phase shift based on the specific user’s allocated optical CDMA code. Similar to SPC-optical CDMA methods, the individual phase elements could be built from simple binary codes, such as 0 or π, or further advanced multilevel phase codes. The encoded signal can be passively combined or multiplexed with other optical CDMA signals into a single transmission medium, such as a common single-mode optical fiber. Each of these combined signals will have its own unique temporal phase codes.

At the receiver section, a matched filtering process, which can be best described as a time domain operation, is occupied to detect a specific TPC-OCDMA user’s data stream. This temporal phase decoder is similar to the transmitter’s temporal phase encoder, but set to the conjugate of the desired transmitter’s encoder. Then, the elimination of the multiuser interference (MUI) noise that resulting from
unwanted optical CDMA users is required by using technologies, such as optical time
gating and optical thresholding. Then, the wanted user’s data signal can be recovered
through data demodulation and detection.

2.4.2 Incoherent Optical CDMA Systems

Despite the strengths of the coherent optical systems, the usage of these systems is
complicated, and they are very expensive as they require a phase control and laser
source which act as local oscillator at the optical frequency. Incoherent schemes use
the simpler, more standard techniques of intensity modulation with direct detection
while coherent schemes are based on the modulation and detection of optical phase
(Lam 2000). Advantages and disadvantages of incoherent optical CDMA schemes
explained in table 2.1. The most common approaches to incoherent optical CDMA are
based on, temporal (time) spreading, spatial coding, two-dimensional (2D)
wavelength-hopping time-spreading (WHTS), and spectral amplitude coding (SAC).
In this section, we will provide a brief overview of all these approaches and we will
focus, particularly, on spectral amplitude coding (SAC) that is under this transmission
security analysis.

Mostly, in incoherent optical CDMA systems that employ OOK modulation
format, each user is allocated with a specific code sequence: a coded transmission is
sent to represent a data bit 1, and a null is used to represent a bit 0. The signals are
unipolar because there are no negative signal components. Other modulation
techniques have been proposed to avoid loss of code confidentiality and increase
spectral efficiency. These schemes have been modified to assign two codes per user; a
1 being represented by a code and a 0 being represented by another (Hui 1985;

a. Temporal Spreading

In the past, the temporal spreading scheme was considered to be one of the first
optical CDMA schemes that have already been implemented (Prucnal, Santoro & Ting
1986). In this scheme, each bit period is divided into N_T smaller time intervals (N_T
is code length), called chips as shown in Figure 2.9. Optical codes are formed by insertion of short optical pulses (the number of short pulses used per bit is called the code weight, W) at different temporal positions. Implementations of temporal spreading optical CDMA has employed different code families such as prime codes, optical orthogonal codes (OOCs), gold codes, etc. However, this approach has been limited due to its requirement of short optical pulses and long code lengths for good correlation properties (Maric et al. 1993; Salehi 1989).

Figure 2.9 Representations of two code sequences for temporal spreading optical CDMA

These codes have small code spaces of the same order as the square root of the time-spreading factor, they are not large enough to avoid the brute-force searching techniques (Shake, T. H. 2005). On the other hand, they have a tendency to work well in an asynchronous network (Prucnal 2006).

b. Spatial Coding

Encoding the incoherent optical CDMA in the spatial domain has been proposed in different forms. (Kitayama 1994) proposed this approach for parallel transmission and simultaneous access of 2D images using “multicore” fibers. Multiple-fiber systems based on fiber tapped delay lines for decoding was proposed by (Hui 1985). In 1995 spatial CDMA, based on encoding specific speckle pattern, has been used as spatial techniques using a 2D spatial mask (Hassan et al. 1995). These schemes involve several network implementation limitations, such as the requirement of equal optical path lengths from each distribution star to the en/decoder (Park et al. 1992) which could be solved by using fiber ribbons (Sangin et al. 2000).
c. **Two-Dimensional (2D) Wavelength-Hopping Time-Spreading (WH-TS)**

Wavelength-hopping time-spreading (WHTS) system is a two-dimensional (2D) coding approach that spreads the codes in both the wavelength and time domains at the same time (Tancevski et al. 1994), achieving increased code design flexibility as well as code performance. Zero autocorrelation side-lobes can be obtained with low cross correlations and higher cardinality at reduced code lengths.

In the temporal spreading optical CDMA, the short pulses are placed in different chips across the bit period, while in WHTS the pulses in dissimilar chips also are of different wavelengths; therefore, follow a wavelength-hopping pattern. Thus, WHTS codes can be represented as code matrices with time and wavelength as its two axes; the wavelength domain is divided into N_w wavelength channels and the time domain is divided into N_T chips (Deng et al. 2008). The 2D illustration of two code sequences is set in Figure 2.10. The W pulses are then placed within that matrix (Yang et al. 1996; Yim et al. 2002).

These WHTS codes can be constructed to have a very much larger code space size than the one-dimensional temporal spreading codes. The resulting code space sizes can be large enough to prevent a brute force code space search from being successful in any reasonable amount of time (Tancevski et al. 1995).

![Figure 2.10 Representations of two code sequences for wavelength-hopping time-spreading (WHTS) optical CDMA](image)

Figure 2.10 Representations of two code sequences for wavelength-hopping time-spreading (WHTS) optical CDMA
Figure 2.11 shows the general schematic of a WHTS optical CDMA network. Each user may assign with a code sequence corresponding to the constructed WHTS code matrices. It is obvious from Figure 2.11 that both the transmitter and receiver have two main elements. The transmitter consists of the source and the encoder while the receiver consists of the decoder and the receiver electronics. Subsystems for reducing interference from other users can be optionally built into the receiver. In addition to that, WHTS is an incoherent scheme where the transmission of a user’s data signal is modulated with OOK modulation format (Baby et al. 2005; Tancevski & Andonovic 1994).

In the transmitter part, several optical sources may be employed, ranging from an array of lasers each operating at a fixed wavelength to spectrally slicing a broadband source generated by a super-continuum (Baby et al. 2005). As shown in Figure 2.11, the encoding of the modulated signal takes place at the WHTS encoder whereby the signal is passed through a filter such as arrayed waveguide gratings or thin film filters that separates each N wavelength components into different channels according to their central wavelengths (Kwong et al. 2005). Each wavelength is individually delayed relative to each other according to a specific code. The resulting signal is then combined and transmitted to the network (Deng et al. 2008).

At the receiver end, the received signal, which includes signals from all users on the network, is decoded by a matched decoder, which is similar to the setup of the
encoder but incorporates the complementary set of delay lines. When the user’s code matches with a sequence of time chips, the encoded wavelengths are de-spread into the same timeslot producing an autocorrelation peak while the chip patterns of other users appear as low intensity multiple access interference (MAI). The MAI noise contributed from other users’ transmission can be removed by using optical time gating systems such as a terahertz optical asymmetric demultiplexer (TOAD) (Sokoloff et al. 1993), which has been used for both all-optical gating and thresholding to extract the desired autocorrelation peak.

d. Spectral Amplitude Coding (SAC)

Spectral amplitude coding (SAC), which was first anticipated by Zaccarin and Kavehrad (Kavehrad & Zaccarin 1995), is carried out by spectrally decomposing a broadband light source followed by an optical component that can modulate the intensity of the different spectral components before again merging them. Both grating elements with spatial amplitude masks as illustrated in Figure 2.12, (Zaccarin & Kavehrad 1993). For blocking or passing these different spectral components, filters with periodic spectral transfer functions have been used (Pfeiffer et al. 1999). Typical broadband sources used include light emitting diodes (LEDs), superluminescence diodes (SLDs) and erbium doped fiber sources. Demonstrations have shown the capability to provide high speed (155 Mb/sec) access network connections without wavelength stabilization and spectral control (Pfeiffer et al. 1999).

![Figure 2.12 Spectral amplitude coding (SAC) using diffraction gratings and spatial masks](image)

Figure 2.12 Spectral amplitude coding (SAC) using diffraction gratings and spatial masks
Spectral amplitude coding depends on code sequences with specific properties to maintain an acceptable degree of orthogonality between different users’ coded signals (Kavehrad & Zaccarin 1995). Figure 2.13 illustrates the block diagram of encoding/decoding for SAC optical CDMA system. The optical broadband light source produces the optical signal which is modulated in OOK modulation format with the binary data before the encoding of the signal.

![Block diagram of encoding/decoding for SAC optical CDMA system](image)

Figure 2.13 Block diagram of encoding/decoding for SAC optical CDMA system

Source: Kavehrad et al. 1995

This SAC optical CDMA scheme uses a complementary detection technique (sometimes called balanced receiver), comprising two photo-detectors as a part of its receiver who acts to screen the signals with the same spectral amplitude filter also known as the direct filter, which functions both at the transmitter and an additional filter. These two photo-detectors, linked and attached in a balanced way, detect the outputs from the complementary filters. In this process, half of the transmitted spectral components in an unmatched transmitter will match the direct filter, and the remaining half will match the complementary filter. On the other hand, the unmatched channels will be cancelled in the balanced receiver, and the matched channel is demodulated, since the output is the representation of the difference between the two photo-detector outputs (Kavehrad & Zaccarin 1995; Zaccarin & Kavehrad 1993, 1994a, 1994b).
<table>
<thead>
<tr>
<th>Optical CDMA Schemes</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coherent optical CDMA</td>
<td>a. Allows the manipulation of the optical field it could provide better suppression of multi-access interference</td>
<td>e. Requires advanced femtosecond technology, therefore it is still a research challenge.</td>
</tr>
<tr>
<td></td>
<td>b. Mode-locked lasers are expected to allow better system performance than LED</td>
<td>a. Due to coherence multiplexing, the system performance degrades if more users are needed.</td>
</tr>
<tr>
<td></td>
<td>c. Using spectral phase coding of coherent, ultrashort pulses predicted that throughput could in principle exceed 100 Gb/s</td>
<td>b. Environmental influence and the polarization drift, rendering the coherent approach difficult to implement</td>
</tr>
<tr>
<td></td>
<td>d. Longer code lengths offers a significant throughput advantage and a fundamentally better scaling behavior with the number of users</td>
<td>c. The beat noise is the dominant noise source and main limit on system performance.</td>
</tr>
<tr>
<td>Incoherent optical CDMA</td>
<td>a. Fewer stability requirements for optical encoder/decoders</td>
<td>a. The correlation is based on optical power summation</td>
</tr>
<tr>
<td></td>
<td>b. Need only sources with a small coherence time</td>
<td>b. Usually support fewer simultaneous active users, which is severely limited by the size of the code set</td>
</tr>
<tr>
<td></td>
<td>c. The use of LED may reduce the cost of system significantly</td>
<td>c. Incoherent light source might suffer from optical beat noise</td>
</tr>
<tr>
<td></td>
<td>d. The use of coherence multiplexing and spectral amplitude coding, offer a simpler technology</td>
<td>d. Limited to throughputs of 10-50 Gb/s</td>
</tr>
<tr>
<td></td>
<td>e. Free of beat noise</td>
<td>e. PIIN and MAI are the dominant noise source</td>
</tr>
</tbody>
</table>
2.5 SAC OPTICAL CDMA CODES

The signals in the optical CDMA systems have been encoded using various types of implemented codes. Each data bit interval is encoded with a sequence of short pulse chips that indicate the targeted position of the signal. Therefore, there have been numerous researches done in the incoherent optical CDMA schemes that give the first spark to the creation of several major code groups such as the optical orthogonal codes (OOC) (Salehi 1989; Salehi & Brackett 1989) and the prime sequence codes (Kwong et al. 1991; Walle & Killat 1995). These codes are well-organized in the optical delay line networks and have been designed with very long code lengths and small code weights to reduce crosstalk, and lower the temporal overlap between the pulses from various users at the intensity correlator output (Prucal, Santoro & Ting 1986). These code systems could provide codes with code length that is just equal to the square of the number of codes.

The optical CDMA systems with delay line loops are found to be spectrally inefficient because of the small code weight and the long code length used. Therefore, a sub-picoseconds-pulsed optical source, with a pulse width much smaller than the bit duration, is needed. Co-channel user interference that is caused by the non-orthogonality leads to a very poor performance penalty even when the codes are carefully designed. Both (Gagliardi et al. 1993) and (Park et al. 1992) has suggested that the bit error rate (BER) is commonly rather high and with a limited number co-active users allowable.

Therefore, (Griffin et al. 1992, 1995; Sampson et al. 1994) proposed the use of a cascaded ladder encoder to reduce the splitting loss due to encoding and decoding process. According to (Yang 1995; Yang & Jaw 1994) the proposed codes to date are designed based on the modification of prime codes. Nevertheless, the modified Prime codes offer lesser codes as compared to the original prime codes, which directly causes the number of network subscribers to be further limited. This clearly indicates that in term of the allowed number of users, the ladder network-based systems perform even worse than many other systems which employ the use of delay line encoders.
(Meghavoryan & Baghdasaryan 2001) has stated that the Hadamard codes are more suitable to be used because the density of “1”s and “0”s is more homogeneous, while at the same time, every user has almost the same average power. (Lam et al. 1998) has revealed that one of the disadvantages of these codes is that they do not support many channels in a single transmission. In addition to that, (Aljunid et al. 2004) stated that the bit error rate is rather high and that only two co-active users are allowed at a time.

From the above brief review, it can be deduced that these codes have different limitations in many ways. Among these limitations, the construction of the codes are either complicated as in the OOC and modified frequency hopping (MFH) codes (Zou & Ghafouri-Shiraz 2002a, 2002c), the cross-correlation are not ideal, as in the Hadamard and prime codes (Holmes & Syms 1992), or the length of the code length is too long as in the OOC and prime codes. Due to the preference and requirement for either very wide band sources or very narrow filter bandwidths, long code lengths are regarded as a drawback in its implementation.

To overcome the previous mentioned limitations, many researchers have proposed new code families and modified versions of the old SAC optical CDMA codes. Therefore, many codes have been proposed and applied to be used for incoherent optical CDMA networks implementations. New sequence code families such as modified prime code (PMR) (Kwong et al. 1991), modified congruence code (MQC) (Wei et al. 2001), modified frequency hopping (MFH) (Zou & Ghafouri-Shiraz 2002a, 2002c), Hadamard code, and maximal length sequences (m-sequences) (Peterson et al. 1995) have been proposed, of which their performance is analyzed based on the number of users and bit error rate (BER) (Smith et al. 1998; Wei et al. 2001). Other new code families based on a mapping technique, such as double weight (DW), modified double weight (MDW) (Aljunid et al. 2004) and enhanced double weight (EDW) (Hasoon et al. 2007) have been proposed and implemented. It has been shown that these codes have much better performance in comparison with Hadamard and MFH codes (Abdullah et al. 2008; Aljunid et al. 2004).
Optical CDMA technology has obvious superiority for constructing the local area networks (LANs) and access networks in contrast to other multiplexing techniques. The need for transmission security in the developing of optical CDMA networks at the physical layer is becoming increasingly important. Spectral amplitude coding (SAC) is an encoding approach to implement optical CDMA networks. Although the system performance of SAC optical CDMA has been presented by many researchers, its security show has not presented widely. Therefore, there is a need to investigate the transmission security that can be provided by SAC optical CDMA. Therefore, this section includes a discussion of some codes of the SAC optical CDMA systems.

2.5.1 Optical Orthogonal Codes

In 1989, the optical orthogonal codes have been introduced by (Salehi et al. 1989) and (Chung et al. 1989) as a way to acquire simultaneous transmissions amongst asynchronous users in incoherent optical CDMA systems. These codes, which have the notation of codeword \(C(n, w, \lambda_a, \lambda_c) \) is a set of \((0, 1)\) sequences of length \(n \) and weight \(w \), the weight is referred to as the number of “1”s in the codeword (number of wavelengths). The fact that the auto correlation side lobes lesser than the auto correlation \(\lambda_a \), and the cross correlation is lesser than cross correlation constrain \(\lambda_c \), is satisfying. In addition, the auto correlation function peak is \(w \) due to the fact that the weight of the individual code in the optical orthogonal codes is \(w \). The size of the OOC which is also called the cardinality of the OOC is the sequence number or the codeword in the family denoted by \(|C| \). The code is therefore defined as \((n, w, \lambda)\) when the correlation constrains are the same, i.e., \(\lambda_a = \lambda_c \).

Due to the fact that the number of codes represent the number of users in the OCDMA network, it is desirable to have the biggest possible size of an OOC for a given set of values for \((n, w, \lambda_a, \lambda_c)\). The optimal OOC refers to the OOC with the maximum possible size. According to Chung et al. (1989), for \((n, w, l, l)\), the maximum size of the OOC is given from the algebraic coding theory by
\((n-1)/\lceil w(w-1) \rceil\); of which \(n\) is odd, and \((n-2)/\lceil w(w-1) \rceil\) if \(n\) is even.

The construction of the optical orthogonal can be done in three distinguished ways. First, an iterative method with the use of an existing code; second, the OOC using a “greedy” algorithm that is useful in various computational problems, is constructed; and third, the use of the cross correlation and auto correlation properties of the OOC is better than the earlier codes as they are constructed in order to produce lesser correlation constrains. In spite of this, the construction of these codes is not an easy process as they are very long. Hence, the correlation constrains can be relaxed to a value of two in order to shorten the code length (Maric 1993; Maric et al. 1995; Maric et al. 1993). However, the construction of the codes remains a very challenging process.

2.5.2 Prime Codes

These codes are the orthogonal codes of length \(P^2\) derived from the prime sequences of the length \(P\) obtained from the Galois field \(GF(P)\), where \(P\) is the prime number (Holmes et al. 1992; Yang et al. 1995). They are developed as follows: using the \(GF(P) = \{0,1,2,\ldots,j,\ldots p-1\}\), a prime sequence \(S_x = \{s_{x_0},s_{x_1},\ldots,s_{x_j},\ldots,s_{x(P-1)}\}\) is derived from \(GF(P)\) by multiplying every element \(j\) of \(GF(P)\) by an element \(x\) of \(GF(P)\) modulo-\(P\). The \(P\) prime sequences can therefore be achieved. In addition, these sequences are later mapped into a sequence of binary code \(C_c = \{c_{x_0},c_{x_1},\ldots,c_{x(P^2-1)}\}\) by putting ones in the positions of \(s_{x_j} + jP\), \(j = 0,1,\ldots,P-1\), and zeros in the rest of the places.

Due to the fact that the number of coincidences of one’s is at the most two, the maximum cross correlation of the prime code is bounded to two. Nevertheless, the auto correlation function side lobes do not exceed one, but the auto correlation function peak is equal to the prime number \(P\).
2.5.3 Hadamard Code

(Zou & Ghafouri-Shiraz 2002a, 2002b; Zou, Ghafouri-Shiraz et al. 2001; Zou, Shalaby et al. 2001) that the Hadamard codes can be used in various ways in digital signal processing and Code Division Multiple Access (CDMA) communication systems. In these codes, a Z-element Hadamard code is a row from the $Z \times Z$ orthogonal Hadamard matrix, consisting of (1,-1) valued binary entries. The $Z \times Z$ Hadamard matrix H_M where $Z = 2^M$ is generated by the core matrix, such as the following:

$$H_M = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

(2.1)

For $M=2$, the Hadamard matrix is generated as below:

$$H_2 = \begin{bmatrix} H_1 & H_1 \\ H_1 & -H_1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix}$$

(2.2)

Unipolar Hadamard matrix H_M has the following properties:

a. M should be greater than 2
b. Code length $N = 2^M$
c. Code Weight $W = 2^{M-1}$
d. User $K = 2^M - 1$ (The case $K = 1$ has been excluded as the row of the unipolar Hadamard matrix is all ones)
e. The ratio of $\frac{W}{\lambda} = 2$ (i.e., λ is cross-correlation properties)

The fact that an $(Z \times Z)$ Hadamard matrix of 1’s and -1’s reveal that it has the property that any row differs from any other rows in exactly $Z/2$ positions. Therefore, all the rows except for one contains $Z/2$ (-1)’s and $Z/2$ (1)’s, usually in the wavelength
domain where the –1 can be replaced with 0. Thus, the sequence (1, 0) is a unipolar Hadamard code, as in $Z = 4$.

$$\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1
\end{bmatrix}$$ (2.3)

The Hadamard code is capable of supporting 2^{M-1} number of users. For instance, if only 20 users are required, M has to be at least equivalent to 5 in order to support up to 31 users, rendering 11 codes to be unused. This explains that the Hadamard code is an inefficient code as the construction of the sequence cannot be done according to the exact number of users, i.e., the Hadamard code has an increasing value of cross-correlation when the number of users increases. Similarly, this code also requires more number of filters for every code when the number of users increases.

2.5.4 Modified Quadratic Congruence Code (MQC)

Modified quadratic congruence (MQC) code is a SAC incoherent optical CDMA that defined by an odd prime number p. The establishment of MQC code was proposed by Z. Wei et al (Wei et al. 2001). According to (Wei et al. 2001), MQC code families can be constructed in two steps as following:

a. Step 1:
Let $GF(P)$ represents a finite field of p elements. A number sequence $y_{\alpha, \beta}(k)$ is assembled with elements of $GF(P)$ over an odd prime by using the following expression:

$$y_{\alpha, \beta}(k) = \begin{cases}
\frac{d((k+\alpha)^2 + \beta)(\text{mod} \ p), k = 0, 1, \ldots, p-1}{} \\
\frac{(a+b)(\text{mod} \ p), k = p}{}
\end{cases}$$ (2.4)

where $d \in \{0, 1, 2, \ldots, p-1\}$ and $\alpha, \beta \in \{0, 1, 2, \ldots, p-1\}$.
b. Step 2:
A sequence of binary numbers $s_{\alpha,\beta}(i)$ is constructed based on each generated number sequence $y_{\alpha,\beta}(k)$ by using the following mapping method:

$$s_{\alpha,\beta}(i) = \begin{cases} 1, & \text{if } i = k p + y_{\alpha,\beta}(k) \\ 0, & \text{otherwise} \end{cases}$$

(2.5)

where $i = 0, 1, 2, \ldots, p^2+p-1$, $k = \lfloor i/p \rfloor$. Here, $\lfloor x \rfloor$ defines the floor function of x.

The proposed code families with the odd prime number $p > 1$ and represented by $(p^2+p, p+1, 1)$, have the following properties:

a. there are p^2 sequences.

b. each code sequence has $N = (p^2+p)$ chip component that can be splitted into $w = (p+1)$ sets, and each set consists of one “1” and $(p-1)$ “0s”.

c. between any two sequences cross correlation λ is exactly equal to 1.

2.5.5 Maximal Length Sequences (M-Sequences)

Generally, the pseudo-random spreading code adapted from CDMA techniques, is an important component of any spread spectrum system. Maximal length sequences, or m-sequences (Peterson et al. 1995), are pseudo-random spreading code, simple to generate with linear feedback shift register circuits. Therefore, it is called the maximal linear feedback-shift-register sequence. The period of an m-sequence is not only associated with the number of stages of shift-registers, but is also related to the linear feedback logic. When an r-stage shift-register is employed, the period of the m-sequence generated is $n = 2^r - 1$. The linear feedback logic is determined by a primitive polynomial of degree r, (Yin & Richardson 2007):

$$f(x) = \sum_{i=0}^{r} c_i x^i$$

(2.6)
The m-sequences schemes have the following many properties (Ziemer 2007):

a. An m-sequence contains one more 1 than 0.

b. The modulo-2 sum of an m-sequence and any phase shift of the same m-sequence is another phase of the same m-sequence (a phase of the sequence is a cyclic shift).

c. If a window of width r is slid along an m-sequence for N shifts, each r-tuple except the all-zeros r-tuple will appear exactly once.

d. Define a run as a subsequence of identical symbols within the m-sequence.

Then, for any m-sequence, there are

- One run of ones of length r.
- One run of zeros of length $r-1$.
- One run of ones and one run of zeros of length $r-2$.
- Two runs of ones and two runs of zeros of length $r-3$.
- Four runs of ones and four runs of zeros of length $r-4$.
 - \ldots
 - $2r-3$ runs of ones and $2r-3$ runs of zeros of length 1.

Therefore, due to the simplicity of these codes generation they are relatively easy to intercept and regenerate by an eavesdropper receiver. The four stage maximal length linear feedback shift register is shown in Figure 2.14 (Yin & Richardson 2007). Suppose that the initial state of the shift-register is 1000. Then, under the action of shift-clock, after $n = 2^4 - 1 = 15$ clock times the shift-register can produce the maximal length linear shift-register sequence with the period of 15 at its output, 111101011001000 (Yin & Richardson 2007).

![Figure 2.14 Four stage maximal length linear feedback shift-register](attachment:image.png)
Although m-sequences have ideal the autocorrelation property, it is difficult to find a general method to predict their cross-correlation functions. It has been shown by investigation that only very small sets of m-sequences can have good cross-correlation properties and large sets of m-sequences generally have quite poor cross-correlation properties (Dixon 1976). In (Chao-Chin et al. 2004), an arrayed waveguide grating (AWG) router-based optical network codec pair propose has been proposed to implement SAC optical CDMA network (Chao-Chin et al. 2004).

2.5.6 Double Weight (DW) Codes

These codes have been inspired from Hadamard codes that can be represented by the this notation \((N,W,\lambda_c)\), where \(N\) is the code length of the code sequence, \(W\) is code weight and \(\lambda_c\) represents the maximum cross correlation value between any two code sequences. According to (Aljunid et al. 2004), the DW code can be constructed using the following steps:

a. Step 1:

The DW code can be represented by using a \(K \times N\) matrix notation. In DW code structure, the matrix \(K\) rows and \(N\) columns represent the number of users and the minimum code length respectively. A basic DW code is given by a 2 x 3 matrix, as shown below:

\[
H_{M=1} = \begin{bmatrix}
1 & 2 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{bmatrix}
\]

(2.7)

Notice that \(H_{M=1}\) has a chips combination sequence of 1, 2, 1 for the three columns. Sequence combination chips are defined by the summation of the values of the corresponding elements in every two rows (i.e. 0+1, 1+1, 1+0). The purpose of 1, 2, 1 combination is to maintain the cross correlation value of one; only one overlap between two chips will be allowed.
b. Step 2:

A simple mapping technique is used to increase the number of codes is shown as follows:-

\[
H_{M=2} = \begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & H_1 \\
H_1 & 0
\end{bmatrix}
\] (2.8)

The purpose of this mapping technique is to increase the number of user K. In every mapping, the number of rows and columns will be double. For example \(H_{M=1} = 2 \times 3\) and \(H_{M=2} = 4 \times 6\). The relation between the mapping process (M) and K and N is given by:

\[
K = 2^M
\] (2.9)

\[
N = 2^M + 2^{M-1}
\] (2.10)

Note that as the number of users, K increases, the minimum code length required, N also increases. The relationship between the two parameters, K and N is given by:

\[
N = \begin{cases}
\frac{1}{2}K, & \text{when } K \text{ is even} \\
\frac{1}{2}K + \frac{1}{2}, & \text{when } K \text{ is odd}
\end{cases}
\] (2.11)

In general, the equation can be re-written as in Equation (2.11) for both odd and even numbers.

\[
N = \frac{3K}{2} + 1 \left[\sin \left(\frac{K \pi}{2} \right) \right]^2
\] (2.12)
From the code construction explained previously, the properties of DW codes can be summarized as follows:

a. Each code sequence has a fixed weight of 2.
b. Cross correlation λ_c is always equal to 1.
c. The weighted chips are always in pairs.
d. The chips combination is maintained 1, 2, 1 for every three columns for consecutive pairs of codes.
e. The relation between number of users (K) and code length (N) is represented by Equation 2.12.

2.5.7 Modified Double Weight (MDW) Codes

MDW is the modified version of DW code whereby the number of weight can be any number greater than 2. The code weight has a direct effect on the performance of an optical CDMA system. Generally, increased weight results in better SNR (Aljunid et al. 2004; Zou & Ghafouri-Shiraz 2002a, 2002c). This is because by increasing the code weight necessarily increases the signal power of the user, hence increasing the signal-to-noise ratio. MDW codes can also be represented by using the K x N matrix. In addition to that, the basic matrix for MDW can be developed by using the same mapping technique that used to achieve the DW code (Aljunid et al. 2004). There are two basic components in the basic matrix of MDW codes, which are:

\[
N_B = 3 \sum_{j=1}^{w} j
\]

(2.13)

and,

\[
K_B = \frac{w}{2} + 1
\]

(2.14)

where basic code length N_B represents the basic code’s column size and basic number of user K_B is the basic code’s row size. The MDW matrix is thus can be simply represented in the form of a $K_B \times N_B$ matrix. Therefore, for $W = 4$, from Equation (2.13), the basic number of user or the column size is:
\[N_B = 3 \sum_{j=1}^{\hat{W}} j = 9 \]

(2.15)

And from Equation (2.14), the basic row size is:

\[K_B = \frac{W}{2} + 1 = 3 \]

(2.16)

Therefore, the basic matrix for MDW 4 consists of a 3 x 9 matrix. The element in each section depends on the value of \(n \), for \(W = 4, n =2 \). The elements in the basic matrix for MDW at \(W = 4 \) are thus:

a. \([A]\) consists of a \(1 \times 3 \sum_{j=1}^{\hat{W}} j \) matrix of zeros, where \([A] = [X_1] = [0 \ 0 \ 0] \)

b. \([B]\) consists of a \(1 \times 3n \) matrix which is \(n \) repetition of \([X_2]\) or in other words, \([B] = [[X_2],[X_2]] = [0 \ 1 \ 1 \ 0 \ 1 \ 1] \)

c. \([C]\) consists of MDW basic matrix for the next smaller value of \(W \) (i.e. \(W = 2(n-1) =2 \)). The basic matrix for \(W=2 \) is, \([H_2] = \begin{bmatrix} 011 \\ 110 \end{bmatrix} = [H] \) (refer Equation (2.7)).

d. \([D]\) is a matrix of \(n \times n \) consisting of matrices of \([X_3]\),

\[
[D] = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
\]

(2.17)

MDW codes posses the following properties:-

a. Maximum cross-correlation is equal to 1. Note that certain combination of simultaneous transmission of codes may result in zero cross correlation.
b. MDW code weight can be any even number that is greater than 2 (multiple of 2).
c. The weight-pair structure is maintained.
d. The chips combination is maintained 1, 2, 1 for every three columns for every consecutive pairs of codes.
e. The relation between the Number of users (K) and code length (N) at weight of 4 is given by:

\[N = 3K + \frac{8}{3} \left[\sin \left(\frac{K\pi}{3} \right) \right]^2 \]

(2.18)

The basic MDW code denoted by (9, 4, 1) or alternatively [H4] is therefore given by:

\[
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

(2.19)

2.5.8 Enhanced Double Weight (EDW) Codes

EDW is an enhanced version of DW, whereby the number of weight can be any odd number greater than one, as opposed to even weights in the latter (Hasoon et al. 2007). The EDW code can be represented using a \(K \times N \) matrix. In an EDW code structure, the matrix \(K \) rows and \(N \) columns represent the number of users and the minimum code length, respectively. In addition to that, the basic matrix for EDW can be developed by using the same mapping technique that used to achieve both the DW and MDW codes (Aljunid et al. 2004).

The basic matrix for the EDW codes also consists of a \(K \times N \) matrix, depending on the value of the code weight. The general form of the basic matrix of an EDW code with weight, \(W \) is shown in Equation 2.20; where all the component
matrices \([A_1], [A_2], \text{ and } [A_w]\) depend on \(W\).

\[
[H] = \begin{bmatrix}
\vdots & \vdots & \vdots \\
A_1 & A_2 & \cdots & A_w \\
\vdots & \vdots & & \vdots \\
\vdots & \vdots & & \vdots
\end{bmatrix}
\tag{2.20}
\]

In Equation 2.20, the elements in each section are defined as:

a. The number of element matrices \(N_e: [A_1], [A_2], \ldots, \text{ and } [A_w]\) depend on \(W\). (i.e. if \(W=5\), so the number of matrices is 5).

\[N_e = W \tag{2.21}\]

b. The size of each matrix consist of \(K_a \times N_a\)

where,

\[K_a = W \tag{2.22}\]

\[N_a = \sum_{j=1}^{w} j \frac{1}{W} \tag{2.23}\]

c. Each matrix has a combination sequence of 1, 2, 2, \ldots, 2 for the columns. The combination sequence is depended on \(W\) and the number of resultant 2, \(N_{r_2}\) is given by:

\[N_{r_2} = \frac{W - 1}{2} \tag{2.24}\]

(i.e. if \(W=5\), so the combination sequence is 2,2,1)
d. The column number of the end codes for each user is given by:

\[
C = \text{INT} \left(2K + \frac{3}{2} \sin \left(\frac{K\pi}{3} \right)^2 \right) + \left(\frac{4}{3} \sin \left(\frac{(K+1)\pi}{3} \right)^2 \right) \times \left(\frac{4}{3} \sin \left(\frac{(K+3)\pi}{3} \right)^2 \right)
\]

(2.25)

where,

C: is the column number of the codes, representing the spectral position of the chip where C is 1, 2, 3,…..N.

K: is the user number

Therefore, the basic matrix for EDW 3 consists of a 3×6 matrix. The component matrices are [A1], [A2], and [A3]. The size of matrix [A] is 3×2, after using Equations 2.22 and 2.23. The combination sequence for each matrix is 2, 1. The basic EDW code denoted by (6, 3, 1) is shown below:

\[
\begin{bmatrix}
 C_6 & C_5 & C_4 & C_3 & C_2 & C_1 \\
 0 & 0 & 1 & 1 & 0 & 1 \\
 0 & 1 & 0 & 0 & 1 & 1 \\
 1 & 1 & 0 & 1 & 0 & 0 \\
\end{bmatrix}
\]

(2.26)

The basic matrix consists of a chip-combination sequence of 1,2,1,2… (alternating 1’s and 2’s) for the columns. A chip combination is defined as the summation of the spectral chips (1’s and 0’s) for all users (or rows) in the same column with each code sequence allowed to overlap at most, once with every other sequence in the columns of the matrix.
2.6 OVERVIEW OF THE VULNERABILITIES IN OPTICAL COMMUNICATION NETWORKS

Even though fiber optical cables are exponentially more secure than standard wiring or wireless medium communications systems, there are still ways that adversaries can tap into and intercept confidential information that travelling across optical networks (Shaneman & Gray 2004). In other words, fiber optical cable is just vulnerable to simple technical attacks.

Usually, interceptors to networks frequently count on finding a single weak link in the optical network structural design which will then allow them access to the rest of the network. Network security measures must account for this, as well as other complexities, in an attempt to maintain the security of the network information and resources (Fisch & White 2000).

Being optical communications, its network security should be still designed to meet the security objectives of providing confidentiality, availability, integrity and usage for authorized users of the network resources. Nowadays, optical communications are important issues in modern information technology and service based economies such as global commerce which is dependent upon the significant communications infrastructure and relies on the above mentioned security objectives (Oyster Optics 2008).

Unfortunately, the entire private and public network suppliers and their respective customers are absolutely susceptible and vulnerable to one or more of security threats resulting into tapping and stealing of their significant communications and information. When optical networks are considered in the local and access loops, their security transmissions are vulnerable for attacks where eavesdroppers have sufficient opportunity to access fiber. In the local and access loops speeds and network topology are relatively simple to control, therefore equipments required, by eavesdropper, for optical tapping are less expensive and simple.

Compared with incoherent optical CDMA systems, coherent optical CDMA systems often have the advantage of lower MUI due to the possibility of a destructive interference at the receiver (Hernandez et al. 2007). The following chapters will focus
on security performance that is related to the spectral amplitude coding optical CDMA systems. Table 2.2 illustrates the properties of several SAC optical CDMA systems, which are required to investigate the transmission security. For each particular code we have considered the number of users (K), code length (N), code weight (W), and signal to noise ratio (SNR). Since the intensity noise dominates in the SAC optical CDMA systems, and increasing the received optical power cannot alleviate its effect, the signal to noise ratio (SNR) limit due to this noise is considered in table 2.2.

<table>
<thead>
<tr>
<th>SAC Code</th>
<th>Existence</th>
<th>Number of users (K)</th>
<th>Code Length (N)</th>
<th>Weight (W)</th>
<th>Cross correlation (λ)</th>
<th>SNR_{PN}</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-sequencr</td>
<td>r</td>
<td>2^r−1</td>
<td>2^r−1</td>
<td>\frac{N+1}{2}</td>
<td>\frac{N+1}{4}</td>
<td>\frac{3}{2}Nβκ(K+1)</td>
</tr>
<tr>
<td>EDW</td>
<td>n</td>
<td>K = n</td>
<td>Refer to Equation (2.25)</td>
<td>W = 3</td>
<td>λ = 1</td>
<td>\frac{2W−\frac{Nβκ}{2}}{BRW[2K−4W+4]}</td>
</tr>
<tr>
<td>MDW</td>
<td>n</td>
<td>K = n</td>
<td>Refer to Equation (2.18)</td>
<td>W = 4</td>
<td>λ = 1</td>
<td>\frac{2W−\frac{Nβκ}{2}}{BK[\frac{K−1}{2}+W−2]}</td>
</tr>
<tr>
<td>MQC</td>
<td>p</td>
<td>p^2</td>
<td>p^2+p</td>
<td>p + 1</td>
<td>λ = 1</td>
<td>\frac{2Np^{2}}{BK(p^2+p+K+K−1)}</td>
</tr>
</tbody>
</table>

2.7 SUMMARY

In terms of the superposition behavior of optical signals, optical CDMA can be categorized as either incoherent optical CDMA or coherent optical CDMA. The coherent optical CDMA is mainly classified into spectral phase encoding optical CDMA and temporal phase encoding optical CDMA and so on. Furthermore, incoherent optical CDMA is mostly divided into one-dimensional temporally encoding optical CDMA, spectral amplitude encoding optical CDMA and two-dimensional wavelength-hopping/time-spreading encoding optical CDMA, etc. Some of the well-known optical CDMA codes and their properties are discussed, especially
those related to spectral amplitude code schemes that are under security analysis study in this thesis. We have considered the M-sequence, MDW, EDW, and MQC code schemes to investigate the security transmission for this SAC optical CDMA.
CHAPTER III

SECURITY IN OPTICAL COMMUNICATION NETWORKS

3.1 INTRODUCTION

In many literatures, optical CDMA technologies and theories have been introduced and investigated broadly. Both information and transmission security are considered to be the most intrinsic advantages for optical CDMA networks (Iversen & Hampicke 1995; Karafolas & Uttamchandani 1996; Sampson et al. 1997; Tancevski et al. 1995; Torres et al. 2002). In this chapter, firstly, we have given a brief overview of the security definitions and network security issues. Then, the eavesdropper strategies for tapping and detecting optical signals from optical CDMA systems have been introduced. The eavesdropper interceptor receiver has been implemented to intercept encoded spectral chip bandwidth form SAC optical CDMA transmission. The eavesdropper transmission security performance has been investigated based on the probability of correct detection of the intercept encoded spectral chip bandwidth pulses.

3.2 NETWORK SECURITY ISSUES

3.2.1 Security Definitions

Security, as a term, has different common definitions (Tipton & Krause 2007):

a. Freedom from unwanted actions, such as malicious and unintentional abuse; how well a system defends against penetrations by strangers and abuse by insiders.
b. The safety of system properties from accidental or malicious access, employ, alteration, destruction, or disclosure.

c. The protection of resources from damage and the protection of data against accidental or intentional disclosure to unauthorized persons or unauthorized modifications or destruction.

3.2.2 Network Security

In communications networks, networking is the provision of access to information resources which may be secure or not, whereas network security can be thought of as the provision of consistent, appropriate access to information and the assurance that information confidentiality, availability, integrity and usage are appropriately maintained (Tipton & Krause 2007). It involves the efforts of every level of an organization and the technologies and the processes that they employ to design, construct, manage, and control a secure network.

3.2.3 Network Fundamentals

The standard model of layered network architecture is the 7-layer International Standards Organization (ISO) Open Systems Interconnection (OSI) Reference Model (Tanenbaum 1989). This model, including what is known as the communication subnet, is depicted in Figure 3.1 (Stallings 1995).

3.2.4 Network Topology Implications

A fundamental knowledge and familiarity of network organization are required for any network security assessment. In most communication networks, service providers and customers are connected together in a network for many reasons including resource sharing, communication, reliability, and increased processing power (Fisch & White 2000). Therefore, it is important to realize the effect of individual attacks on the communication networks structural design and services they provide.
Communication between authorized users in a network can be implemented by two approaches; point-to-point and broadcast. In the point-to-point approach each user transmits to another specific one whereas in a broadcast approach users transmit in common to the medium accessible to all other users. Figure 3.2 shows a common topology found in point-to-point networks. Figure 3.3 shows two topologies established in broadcast networks.
3.2.5 Security Service Objectives

Network security is so important to satisfy the means we need to secure the information on the network. The security services of a network have four fundamental objectives designed to secure the information and the network’s resources (Fisch & White 2000). These objectives are:

a. Confidentiality: certifying that an eavesdropper does not get access to information contained on a resource of the network.

b. Availability: ensuring that network resources are normally allowed and available to authorized users.
c. Integrity: ensuring that eavesdroppers could not be able to change secured information. Related to this is authenticity which is concerned with the unauthorized creation of data.

d. Usage: guaranteeing that the network service resources are reserved, in a suitable approach without denial, for authorized users only.

The priority of these security characteristics must be decided by the organization that is involved in the security networks. When an organization is making resource provision decisions, many security characteristics may be measured at the same priority altitude.

3.2.6 Security Threats

Contrasting with these network security objectives there are number of security threats. These threats or attacks can be illustrated in terms of how they involve in the information normal flow in the network. There are four basic models of attacks for these threats, which are illustrated in Figure 3.4 (Stallings 1995).

Firstly, in the denial of service threat, the flow of information is entirely blocked. This occurs when the information transmission medium is affected and the data must travel though the affected resource host itself where the requested network services reside.

The second model of attack is modification where the information content is modified before it is received by the destination user. The third model of attack is interception where information flow is not affected, but additional flow is created. There are two types of this attack that include: (1) Eavesdropping where unauthorized user gets access to the information during network transmission and (2) Traffic analysis where some service information such as type, destination, and volume of traffic are obtained by observation without knowing the information contents. The fourth attack model is a creation in which new data traffic is created and introduced onto the network, and generally concealed as data from another authorized user, and resource host.
Mostly, both traditional copper wire and fiber optic cable are not secure. In the security context, it is well known that sophisticated eavesdroppers have excellent skills in the technology. Therefore, they may easily tap optical fibers and intercept data streams that contain valuable information. There are two main methods for tapping these optical fibers that is, touching method and non touching method.

The first method requires a physical interruption into the light path which involves cutting and splicing the cable at suitable position and adding a splitter or coupler. The second method does not require a physical intrusion; however, a moderately simple interrupt involves inserting a bend coupler on the fiber to be

3.3 TAPPING AND DETECTING OPTICAL SIGNALS

Figure 3.4 Models of network attacks

Source: Stallings 1995
tapped. This bending, with a certain radius, allows a small amount of the transmitted light to escape as shown in Figure 3.5, (Oyster Optics 2003). Sensitive photodetectors can be placed at the point of the light leakage which intercepts the transmitted information. A loss of light intensity up to 1 dB or more may be achieved by these bend couplers.

![Figure 3.5 Simple optical fiber tap by bending that allows the leaking of light](image)

Source: Oyster Optics 2003

Figure 3.6 shows commercially available optical signal tapping devices that use bending optical fiber to a certain radius.

![Figure 3.6 (a) micro-bend clamping tapping device, and (b) macro-bend tapping device](image)

Source: Oyster Optics 2003

There are many types of intruders. One of them is seeking intelligence by stealing corporate, financial, governmental, or military secrets. Another one attempts to jam or create network havoc by injecting data into a fiber cable. Denial of service
attacks can be made via an optical signal injection. Table 3.1 summarizes these attacks.

<table>
<thead>
<tr>
<th>Attack method</th>
<th>Realizes</th>
<th>Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Band Jamming</td>
<td>Service Disruption</td>
<td>An attacker injects a signal designed to reduce the ability of the receiver to interpret correctly the transmitted data</td>
</tr>
<tr>
<td>Out-of-Band Jamming</td>
<td>Service Disruption</td>
<td>An attacker reduces communication signal component by exploiting leaky components or cross-modulation effects</td>
</tr>
<tr>
<td>Unauthorized Observation</td>
<td>Eavesdropping</td>
<td>An attacker listens to the crosstalk leaking from an adjacent signal through a shared resource in order to gain information from the adjacent signal, the collection of signals by an attacker for whom they were not intended.</td>
</tr>
</tbody>
</table>

3.4 EAVESDROPPER CODE PULSE DETECTOR

The design of a communication link, wireless or optical networks, to have low probability of intercept (LPI) capability is based on the requirement for it to work in an aggressive environment where the adversary attempts to attack this communication connection and detect the presence of the information’s transmission. Over the past period, a huge amount of effort has been spent on the subject of the performance, configurations, properties and implementation of intercept detectors as well as many reports and papers are available which describe basic detector topology and optimum configurations and methods for performance analysis (Dillard 1979; Glenn 1983;
The results produced lay the required basics and provide bounding criteria for detectability as a function of the main parameters: detection SNR, data bit rate, and spread spectrum bandwidth (Simon et al. 2002).

In wireless communication, a classical situation might consist of a surface vehicle (the communicator) attempting to correspond with a satellite (the receiver) via transmission of a data, and an adversary search aircraft (the interceptor) whose mission it is to detect the presence of RF energy corresponding to this communicated information (Simon et al. 2002). It is obvious that the interceptor’s performance is considered by his ability to detect that the energy corresponding to the transmission has been initiated and not by location of the communicator or decoding of the data.

In most security contexts, the adversaries are assumed to be normally familiar with such intended user information such as his frequency band, modulation format, and those spread spectrum modulation characteristics such as bandwidth and code chip rate, which are still insufficient by themselves to allow for decoding of the desired data codes (Ferguson & Schneier 2003; Stinson 2002). Therefore, in the absence of information related to the secure codes used to generate the spread spectrum modulation, the interceptor’s detection strategy is limited to employing some form of energy detector.

The previous mentioned assumptions also can be applied to the analysis of eavesdropping form optical CDMA networks with some different aspects. In this case, these assumptions include that eavesdropping at locations shown in Figure 3.7 carried out with proper tools that are simple to realize using commercially available technologies and components, and attackers (eavesdroppers) are technologically intelligent with knowledge about signals being transmitted in optical CDMA networks (i.e. architecture of networks, types of signals, data rates, type of encoding, structure of codes, synchronization, ...etc). According to the well-known Kerckhoffs' principle in cryptography (Ferguson & Schneier 2003; Stinson 2002), one should assume that eavesdropper knows everything about cryptographic algorithm except for the key.
Figure 3.7 Places for an eavesdropper to attack and tap optical CDMA encoded pulses

3.5 EAVESDROPPER STRATEGY

The eavesdropper’s target is to detect the presence of the authorized user’s transmission and attempt to recognize his encoded spectral chip of the code word. Figure 3.7 shows the potential places to tap the transmitted signal from the intended user who communicated in an optical CDMA environment. There is large amount of literature focusing primarily on the subject of interceptor detection techniques and performance.

However, when only one user is active in the network, optical CDMA scheme cannot guarantee physical layer security any more. In this case, an eavesdropper may intercept and extract information data simply by applying a receiver interceptor, which is similar to that shown in Figure 3.8. This simple receiver structure has an optical matched filter, envelope detector, low pass filter and a threshold detector circuitry, without the detailed knowledge of the code. The envelope detector integrates energy within a bit period and converts noise-like optical CDMA waveforms into clean data signals. Even in a multi-user active optical CDMA network, there can be a single user link as reported in recent systemic theoretical analyses (Shake 2005a,2005b).
3.6 EAVESDROPPER’S PROBABILITY OF CORRECT DETECTION

Mostly, in the environment of spread spectrum communication, protection against eavesdropping and jamming has been considered to be one of the inherent advantages. Protection against eavesdropping has two approaches: encoding approach and cryptography. The first one is concerned with the ability to mask the existence of the transmission information in the spreading noise like waveforms. The other one is encryption provided by the applying of the key.

The attackers here are assumed to be potentially smart and have high-technical resources to grab the valuable information. According to Kerckhoff’s principle, it is assumed that the eavesdropper knows everything about cryptographic algorithm expect for the key that each user employs (Ferguson & Schneier 2003; Stinson 2002). Therefore, the eavesdropper may have knowledge of some information about optical CDMA categories being used, such as, data rate, network architecture and type of encoding, but not the individual user code sequence (Prucnal 2006).

Figure 3.7 shows the possible positions, within the network, to tap a signal from the user. Therefore, when just a single user is active, optical CDMA system cannot guarantee physical layer security any more. In certain time, this situation can exist even in a multiuser active optical CDMA network as reported in current theoretical analyses (Shake 2005a, 2005b). An eavesdropper can employ an interceptor receiver device, as shown in Figure 3.8, to detect an intended user code word. The eavesdropper will have free access to the authorized user’s data until the user’s code is changed.
The eavesdropper receiver filters the received signal with direct spectral chip decoder, such as pass band filter, which is spectrally matched with that of the authorized encoded spectral chip. The output from this decoder is detected by a photodetector where the received intensity is converted and processed electrically by decision circuit. The eavesdropper’s receiver performance can be determined based on signal detection theory (Trees 2001). The photodetector determines the encoded pulse intensity and the threshold detector is a binary decision that outputs as shown in Table 3.2. The desired decisions are detection and no false alarm. The eavesdropper will desire to detect encoded pulses when they are present and he doesn’t want to detect noise when they are not present.

<table>
<thead>
<tr>
<th>Event</th>
<th>Threshold</th>
<th>decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal plus noise</td>
<td>≥</td>
<td>detection</td>
</tr>
<tr>
<td></td>
<td><</td>
<td>miss detection</td>
</tr>
<tr>
<td>Noise</td>
<td>≥</td>
<td>false alarm</td>
</tr>
<tr>
<td></td>
<td><</td>
<td>no false alarm</td>
</tr>
</tbody>
</table>

Preferably, the eavesdropper would like to choose the threshold so that he may have small values of false alarm nearly $P_F = 0$, and high values of probability of detection nearly $P_D = 1$, as shown in Figure 3.9. However, this is not possible and eavesdropper usually needs to choose the optimum threshold value as there are tradeoffs between these probabilities. In fact, the eavesdropper is assumed to be able to set the detection threshold to its optimum value to achieve certain P_F and get further means of increasing P_D. This can be done by fixing a given SNR and all other parameters such as W and N. Then, assuming different values of detection threshold and choose the one which gives the best result for each SNR.
The probability that the eavesdropper can detect the authorized user’s entire code word pulses with no errors will depend on the type of detection scheme and on the amount of time the eavesdropper observes the user’s signal for each pulse detection. Based on classical detection analysis (Trees 2001), this probability can be calculated from two quantities the probability of missing a transmitted pulse in a given time bin, P_M, and the probability of falsely detecting a pulse in a bin where none was transmitted, P_F.

Terming P_M for the probability of miss detection, the probability of detection is $P_D = (1 - P_M)$. Also, letting P_F as the probability false alarm, the probability of no false is alarm $P_{NF} = (1 - P_F)$.

In fact, the interceptor desires a reasonably high probability that such code pulse will be detected. Therefore, the detection probability P_D should be close to unity. Alternatively, the interceptor does not desire his receiver to specify a state of

Figure 3.9 Probability of detection versus encoded pulse SNR, for several P_F values

Source: Mahafza & Elsherbeni 2003
signal detection when no real signal is present. Such a state of false alarm caused by
system noise should have a very low probability P_F of occurrence. Typical values of
P_D and P_F might be $P_D = 0.9$ and $P_F = 10^{-6}$.

Certainly the simplest and easiest way to implement detector, by the
eavesdropper, is the band-limited energy detector or a tuned bandwidth filter which
can be matched to particular spectral chip bandwidths that are corresponding to the
optical CDMA code pulses. Figure 3.8 shows one of these simple eavesdropper code
interceptors structure which consists of a band pass filter (BPF) of center wavelength
λ_0 and matched to spectral chip code bandwidth $\delta\nu$, a photodetector operating as a
square-law envelope detector to detect the output of the matched BPF, a low pass
filter with a cut off electrical bandwidth approximately equal to 75% of the user data
bit rate and a comparator that evaluate the integrator output against a threshold value
in order to decide if a signal is received for each spectral chip code pulse.

An eavesdropper can implement an attack device to detect an intended user
code word as shown in Figure 3.8. Once a user’s code word is detected by the
eavesdropper, the eavesdropper has free access to the user’s data until the user’s code
is changed.

If the code interceptor makes a code word decision based on observing the
transmitted signal for an encoded spectral amplitude coding (SAC) optical CDMA
data bit interval, the overall probability of error-free code word detection is given by:

$$P_{\text{correct}} = (1 - P_M)^W (1 - P_F)^{(N-W)}$$

(3.1)

$$P_F = \exp\left(-\frac{\gamma}{N_o}\right)$$

(3.2)

(γ is the detection threshold and N_o is the noise power spectral density).
Since, P_M is the probability of missing a transmitted pulse in a given time bin, then the probability of not missing a transmitted pulse is denoted as P_D, sometimes referred as the probability of detection.

\[
P_D = (1 - P_M)
\] \hspace{1cm} (3.3)

\[
P_D = Q\left(\sqrt{2E/N_o}, \sqrt{-2 \ln P_F}\right)
\] \hspace{1cm} (3.4)

(E refers here to the energy in an individual code pulse not the energy received during an entire data bit). Q is a function commonly called Marcum’s Q function (Trees 2001).

\[
Q(\alpha, \beta) \approx \int_{\beta}^{\infty} z \exp\left(-\frac{z^2 + \alpha^2}{2}\right) I_0(\alpha z) dz
\] \hspace{1cm} (3.5)

Eq. (3.1) can be written as:

\[
P_{\text{correct}} = \left[Q\left(\sqrt{2E/N_o}, \sqrt{(2\gamma/N_o)}\right)\right]^{\left(\gamma/W\right)} \left[1 - \exp\left(-\gamma/N_o\right)\right]^{\left(W-N\right)}
\] \hspace{1cm} (3.6)

where, E/N_o is the single pulse signal to noise ratio and γ is detection threshold. W and N represents code weight and code length of a spectral amplitude code OCDMA, respectively.

The intruder can choose the optimum threshold value. He can use different values of optimum threshold and choose the one which gives the best results for each SNR. To get optimum threshold, we need to fix a given SNR and all other parameters. We search for the optimum threshold that maximizes P_{correct}. This is the corresponding value for that given SNR. Then we repeat the process for another SNR point and so on. Searching can be done by letting optimum threshold equals a very small value and increase it in steps (every time we calculate P_{correct}), we will notice that P_{correct} increases then at a certain point of optimum threshold P_{correct} will start to decrease.
Then the maximizing optimum threshold is the one before last (i.e., the one that gives \(\max P_{\text{correct}} \)).

3.7 SIMULATION SOFTWARE AND PARAMETERS USED

On an almost daily basis, optical communication systems are increasing in complexity. Therefore, simulation of optical communication systems has become an essential requirement due to the complex interactions within and between optical components, and the need for rapid design cycles using the latest technologies. The design and analysis of these systems, which normally include nonlinear devices and non-Gaussian noise sources, are highly complex and extremely time-intensive. Therefore, these tasks can now only be carried out efficiently and effectively with the assist of advanced simulation software tools.

Parts of this work have been carried out using simulation software, OptiSystem 6.0 and 7.0 from Optiwave. OptiSystem is a pioneering optical communication system simulation package that designs, tests, and optimizes virtually any type of optical link in the physical layer of a broad spectrum of optical networks, from analog video broadcasting systems to intercontinental backbones.

The extensive library of active and passive components includes realistic, wavelength-dependent parameters. Parameter sweep function allows the user to investigate the effect of particular device specifications on system performance. OptiSystem evaluates the signals by performing suitable algorithms related to the required simulation accuracy and efficiency. In order to predict the system performance, OptiSystem calculates parameters such as BER and Q-Factor using numerical analysis or semi-analytical techniques for systems limited by inter symbol interference and noise.

The simulation analysis has been carried out for various SAC optical CDMA systems under transmission security investigation based on the scope of the study in
Figure 1.1. Therefore, each stage has been implemented and tested by introducing the suitable sets of design parameter based on the SAC code type. The performance of each system is measured by using different visual analyzers such as optical spectrum analyzer (OSA), optical power meter, and BER analyzer. The design parameters are the layout system parameters that we can vary or change in order to investigate their effect on the transmission security performance. The design parameters used are bit rate, transmit power and encoded spectral chip bandwidth.

3.8 TAPPING ENCODED SPECTRAL CHIP BANDWIDTH (ESCB) FROM SAC OPTICAL CDMA SYSTEMS

Optical CDMA is a multiplexing method modified from the successful realization in wireless networks. It has become a promising technology to employ all optical communication and networking that use optical signal processing directly combining the advantages of electrical CDMA with the bandwidth predominance of fiber optic and optical signal processing devices (Yin & Richardson 2007).

In 1995, Kavehrad and Zaccarin (Kavehrad & Zaccarin 1995) proposed the first SAC optical CDMA system. Their technique involves dispersing the frequency content of a broadband source signal followed by spatial filtering with an amplitude mask. A code is represented by \((N, w, \lambda)\) where \(N, w, \text{ and } \lambda\) are code length, code weight, and in-phase cross correlation, respectively. Spectral amplitude coding optical CDMA systems using codes, which have the code property with low in-phase cross correlation, can eliminate the interference signals, such as M-sequence (Peterson et al. 1995), Hadamard (Zou, Ghafouri-Shiraz et al. 2001), modified double weight (MDW) (Aljunid et al. 2004), and modified quadratic congruence (MQC) (Zou, Shalaby et al. 2001) codes. However, as broad-band thermal source are used in such system, the phase-induced intensity noise (PIIN) that is due to the intensity fluctuation of thermal source severely affects the system performance (Smith et al. 1998).

Employing the basic MDW code as shown in Table 3.3, Figure 3.10 is obtained, which shows the eavesdropper probability of correct detection as a function of signal to noise ratio for a single detected code pulse. For probability of correct detection of 0.5, an eavesdropper receiver would need to detect SNR of 8 dB. As the
The figure shows the difference in performance of the optical matched filter with envelope detection is getting small, especially at higher SNRs. For this particular MDW code dimension, the eavesdropper would have the ability to detect the code pulses without errors with a probability of virtually one at SNR higher than 14 dB.

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
<th>C7</th>
<th>C8</th>
<th>C9</th>
</tr>
</thead>
<tbody>
<tr>
<td>User1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>User2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>User3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3.3 The basic MDW code denoted by (9, 4, 1)

Figure 3.10 Code intercepting detector performances using optical matched filter with envelope detection

Eavesdropping is possible at several points within the optical CDMA network with star topology as shown in Figure 3.11, which is implemented using simulation software, OptiSystem Version 7.0. Spectral encoding optical CDMA possibly can use a simple incoherent broadband light source instead of a coherent short pulse laser and not required temporal synchronization to reduce multiple access interference noise.
MDW codes of length $N = 9$ and weight $W = 4$ are used to encode a light emitting diode (LED) broadband source. Each chip has a spectral width of 0.4 nm. Table 3.3 shows the basic MDW code denoted by $(9, 4, 1)$ where C_1 to C_9 represents spectral chips that should be covered by the broadband spectral bandwidth.

![Simulation setup for MDW optical CDMA system with eavesdropping from user 1](image)

Figure 3.11 Simulation setup for MDW optical CDMA system with eavesdropping from user 1

Each user is modulated by data of 622 MBit/s bit rate before multiplexing and transmitted on 20 km single mode fiber SMF. All the attenuation (i.e., 0.25 dB/km), dispersion (i.e., 18 ps/nm km), and nonlinear effects were activated and specified according to the typical industry values to simulate the real environment as close as possible.

In the receiver part, the authorized user uses a complementary detection receiver to properly decode the signal. The incoming signal splits into two parts, one to the decoder that has an identical filter structure with the encoder and the other to the decoder that has the complementary filter structure. A subtracter is then used to subtract the overlapping data from the intended code. The eavesdropper’s receiver
structure has a band pass filter with 20 GHz bandwidth, a photodetector and low pass filter with electrical bandwidth of 0.75 times bit rate. Its performance is based on measuring a single spectral chip signal and then calculate signal to noise ratio (SNR).

An eavesdropper may intercept and extract information data by tuning a narrow band pass filter across the entire wavelength range and select one spectral chip as shown in Figure 12(a). In this case, an eavesdropper had the information about the spectral bandwidth of one spectral chip and the type of the encoding system being used and did not know the code word itself.

When only one user is active in the network, OCDMA scheme cannot guarantee physical layer security any more. Even in a multi-user OCDMA network, there can be a single user link active. Figure 3.12(b) shows the encoded spectrum of the transmitted signal for three users measured by a spectrum analyzer with resolution of 0.01 nm. The effective power of the broadband source at the eavesdropper photodetector is measured to be -33 dBm for each single spectral chip pulse.

![Figure 3.12](image)

Figure 3.12 Encoded spectrum detected by eavesdropper with 20 % tapping efficiency
Figure 3.13 shows the performance of eavesdropper as function of tapping efficiency. When there is only one user active, the eavesdropper would need to tap 20% of the transmitted signal without affecting authorized performance. The intended user performance is degraded when there are two users active, because the eavesdropper would need to tap more than 20% of the transmitted signal. The eavesdropper ability will be reduced if more users are active due to the multiple access interference MAI, which will force him to tap sufficient power.

Figure 3.13 Eavesdropper-tapping performance

3.9 SECURITY AND PERFORMANCE TRADEOFFS

In security environments, it is believed that inherent tradeoffs between networks performance and security are existed which lead many network designers to seek a balance between both of them. Depending on the confidentiality measurement required between communicating networks, different sets of optimizations can be considered (Jin-Hee & Ing-Ray 2005). In (Wolter & Reinecke 2010), the relationship of performance and security has been investigated in model-based evaluation. Their
approach is illustrated based on the idea that there are significant similarities between security and reliability.

The combination of security and performance poses interesting tradeoffs that have high relevance especially in modern systems that are subject to requirements in areas, performance and security. In this work, ensuring confidentiality against eavesdropper interception strategies for optical CDMA is considered to investigate limitations and tradeoffs between security and performance.

Using the modelling approximations of (Shake 2005b), per signature chip SNR of the eavesdropper is related to the per data bit signal-to-noise ratio (SNR) of the user by the following relationship:

\[
\frac{E_{ed}}{N_{ed}} = \sigma \left(\frac{1}{W} \right) \left(\frac{1}{1 - \frac{M_d}{M_T}} \right) \left(\frac{E_u}{N_{0u}} \right)_{\text{spec}}
\]

\[(3.7)\]

\(W\) is the code weight of the code being used, \(M_T\) is the maximum theoretical number of simultaneous users at a specified maximum BER, \(E_u / N_{0u}\) is the required user SNR (per data bit) to maintain the specified BER, \(M_d\) is the actual number of simultaneous users supported, and \(E_{ed} / E_{ed}\) is the eavesdropper’s effective SNR per code chip. Where \(\sigma\) represents several system design parameters as following:

\[
\sigma = \left(\frac{e, n_u}{\alpha_{ed} e_u} \right)
\]

\[(3.8)\]

In this equation, \(e_i\) is the eavesdropper’s fiber tapping efficiency, \(n_u\) is the number of taps in the broadcast star coupler that distributes user signals, \(\alpha_{ed}\) is the ratio of the eavesdropper’s receiver noise density to the authorized user’s receiver noise density, \(e_u\) is the authorized user receiver’s multichip energy combining efficiency. Figure 3.14 shows the effect of combining multiple code pulses for both coherent and incoherent detection schemes. The eavesdropper is assumed to use a receiver that is equal in sensitivity to the authorized user’s receiver (\(\alpha_{ed} = 1\)). It is
assumed that the total number of taps in the star coupler, shown in Figure 3.7, is $n_u = 100$ with a tapping efficiency of $e_u = 0.01$. Since, e_u is equal to one and between zero and one for coherent and incoherent detection respectively (Mahafza & Elsherbeni 2003), coherent detection with combining signals shows better confidentiality than the incoherent one.

![Figure 3.14](image)

Figure 3.14 Effect of combining multiple code pulses for both coherent and incoherent detection schemes

The per code chip eavesdropper’s SNRs as a function of the theoretical system capacity are shown Figure 3.15. If the authorized users transmit sufficient power so that 50%, 65% and 75% of the theoretical system capacity is attained for code weights W of 4, 6 and 8 respectively, the eavesdropper has SNR of 15 dB. An optical matched filter receiver followed by envelope detection theoretically requires a (peak) SNR of approximately 15 dB to produce the required raw detector BER of 10^{-4}. Error correction codes used in commercial high-rate optical telecommunication equipment can produce the maximum acceptable system BER 10^{-9}.
The Figure above shows a contradiction between network system performance and security. Increasing the network system capacity will lead the eavesdropper to detect high SNRs. Another limitation can be shown in Figure 3.16, where high specified SNRs will increase the eavesdropper possibility of attacks.
Thus, for secure firms, a network designer should take these limitations under consideration. If 50% of the system capacity is provided, specified authorized SNRs between 10 dB to 15 dB are suitable for eavesdropper to get encoded pulse SNRs between 10 dB and 15 dB, respectively. Their corresponding bit error rates BERs are nearly 10^{-2} and 10^{-5}, respectively as shown in Figure 3.17.

![Figure 3.17 BERs as a function of theoretical system capacity for different specified authorized SNRs](image)

The eavesdropper performance of detecting spectral encoding chip bandwidth pulses forms spectral amplitude optical CDMA code word, which has been investigated in this work. The basic Modified Double Weight (MDW) code denoted by (9, 4, 1), has been considered to demonstrate the performance for both authorized user and eavesdropper.

Wide bandwidth enhances SNRs for both authorized user and eavesdropper, which increases the possibility of eavesdropping. Therefore, from the security viewpoint, one should minimize the eavesdropper ability to detect code word pulses by controlling the authorized performance to reasonable throughput. This leads to
security impact over system performance as shown in Figure 3.18. The dashed and solid lines represent theoretical results for authorized user and eavesdropper, respectively. Whereas, triangle and rectangle symbols represent simulation results for authorized user and eavesdropper, respectively.

![Figure 3.18 Security impact over system performance for spectral amplitude optical CDMA based on MDW code systems](image)

Thus, to improve the degree of security, we have to reduce the bandwidth of the encoding chip bandwidth pulses. This reduction should not affect the system performance. For example, if a spectral chip is reduced from 50 GHz to 25 GHz, the authorized user and eavesdropper could obtain SNRs of 22 dB and 16 dB respectively. These values are corresponding to bit error rate BERs of nearly 10^{-12} and 10^{-5} respectively. The maximum acceptable system BER is assumed to be 10^{-9}. Decreasing spectral chip, below than 25 GHz, will affect the authorized performance forcing him to use error correction codes techniques used in commercial optical communications.

In communication systems, there is a tradeoff between data bit rate and the provided system number of channels. Data bit rate x sequence code length = encoded chip rate. Generally, in optical CDMA analysis, in order to reduce the MAI
limitations, the data bit rate should be reduced. Figure 3.19 shows the impact of data bit rates on the eavesdropper performance. Increasing the bit rate will decrease the eavesdropper SNR, making the signal to be more sensitive to fiber dispersion and receiver circuitry noise.

![Eavesdropper SNR vs bit rates](image)

Figure 3.19: Eavesdropper SNR vs bit rates

3.10 SUMMARY

This chapter describes the transmission security performance analysis of SAC optical CDMA. A brief overview of the security definitions and network security issues is given with concentration on the interception attack. The eavesdropper interception strategy is based on isolating the authorized user, and this situation could also be possible even in the multi user active optical CDMA network, there can be a single user link. The eavesdropper performance is investigated based on calculating the probability of correct detection P_{correct} of the encoded spectral chip bandwidth pulses. In this calculation, the eavesdropper is required to know or estimate such parameters as the code weight W, code length N, eavesdropper SNR and detection threshold. In addition to that, limitations and tradeoffs between security and performance are given.
CHAPTER IV

SECURITY PERFORMANCE FOR SPECTRAL AMPLITUDE CODE OPTICAL CDMA

4.1 INTRODUCTION

Security is an increasingly important issue for many communication applications. For practical optical network systems, it may be desirable to transmit confidential information over public or private networks. While various algorithms can be applied to electronically encrypt data, implementation may lead to an electronic bottleneck for high speed data transmission. In contrast, the optical coding schemes potentially provide high levels of security, but are effectively transparent, since the encryption is performed optically, and hence are suitable for high bit-rate applications (Stavroulakis 2006).

In this chapter, we have presented the eavesdropper performance results based on the methodology that has been discussed in Chapter III. We have applied both modified double weight (MDW) (Aljunid et al. 2004) and modified quadratic congruence (MQC) (Zou et al. 2001) to investigate the eavesdropper probability of correct detection. In addition to that, the effect of the encoded spectral chip bandwidth on transmission security performance is included. Shot, thermal, and phase induced intensity noise (PIIN) are considered to be the main noise contribution in our analysis. Furthermore, we have simulated SAC optical CDMA systems using Optisystem software version 7 to present eavesdropper performance.
4.2 PROBABILITY OF THE EAVESDROPPER ENCODED PULSES CORRECT DETECTION

In (Shake 2005), the relationship between the per chip eavesdropper’s SNR and the authorized ones has been derived with emphasizing on MUI noise influence as the dominant BER performance limited. The analysis of this relationship shows quantitative tradeoffs between security performance and system capacity. The eavesdropper’s receiver is assumed to produce additive white Gaussian thermal noise and have an equivalent receiver spectral density noise to the authorized receiver. Although this analysis has been applied to time-spreading/wavelength-hopping and spectral-phase encoded optical CDMA systems, the same procedure can be valid for other optical CDMA such as spectral amplitude coding (SAC) schemes with different system design factors.

If the eavesdropper could use a receiver that is similar to that shown in Figure 3.8 (Chapter III), and make a decision based on Table 3.2, the overall probability of error-free code word detection for the encoded pulses of the SAC optical CDMA data bit interval is given by Eq. (3.6):

Modified Double Weight (MDW) (Aljunid et al. 2004), a spectral amplitude coding optical CDMA system, with different code lengths N and code weights W MDW (N, W) has been applied. Figure 4.1 is obtained which shows the eavesdropper probability of correct detection as a function of signal to noise ratio for a single detected code pulse. For probability of correct detection of 0.5, an eavesdropper receiver would need to detect SNRs of 8, 9.3 and 10 dB for MDW (9, 4), MDW (18, 6) and MDW (30, 8) respectively. As the figure shows, the difference in performance of the optical matched filter with envelope detection is getting small, especially at higher SNRs. For these particular MDW code dimensions, the eavesdropper would have the ability to detect the code without errors with a probability of virtually one at SNRs higher than 14 dB.
The solid line in Figure 4.1 represents the eavesdropper performance in the case of using two dimensions optical CDMA encoding system such as wavelength hopping-time spreading WH-TS \((n_t, n_r, W) \) (Deng et al. 2008), where \(n_t, n_r \) and \(W \) are time slots, wavelengths and code weight, respectively. WH-TS \((8, 8, 4) \) has better security than MDW \((9, 4) \) even though they have the same code weight. It is clear that MDW with code weight \(W = 8 \) has slightly the same security performance as WH-TS \((8, 8, 4) \). The higher the code space size, the better the security performance available from SAC optical CDMA encoding.

Furthermore, employing the MQC (Zou et al. 2001) codes with different prime numbers, Figure 4.2 is obtained, which shows the eavesdropper probability of correct detection as a function of signal to noise ratio for a single detected code pulse. For probability of correct detection of 0.5, an eavesdropper receiver would need to detect SNRs of 8.3 dB, 10.3 dB, 11.1 dB, and 11.4 dB for MQC codes with prime numbers of 3, 7, 11, and 13 respectively. As the figure shows, the difference in performance is getting small, especially at higher SNRs. For these particular MQC code dimensions, the eavesdropper would have the ability to detect the code pulses without errors with a
probability of virtually one at SNR higher than 14 dB. On the other hand, this difference becomes slightly big at low SNRs especially for those codes with small p values.

![Figure 4.2 MQC eavesdropper performance](image)

Figure 4.2 MQC eavesdropper performance

From Figures 4.1 and 4.2, it is clear that the MQC codes have slightly better security performance than the MDW codes. For example, this comparison is done based on the similarity of their code dimensions. Particularly, MDW (9, 4) and MQC with p=3 have similar code weight because MQC with p=3 has a code weight of 4 (p+1=4), but they have different code length, 9 and 12 for MDW and MQC respectively. Therefore, MQC (12, 4) has 0.3 dB preference over MDW (9, 4).

4.3 EAVESDROPPER SNR: A SPECTRALLY ENCODED PULSE BANDWIDTH EFFECTS

The attackers here are assumed to be potentially intelligent and have high-technical resources to commandeer the valuable information. According to Kerckhoff’s principle which assumes that eavesdropper knows everything about cryptographic algorithm except for the key that each user employs (Ferguson & Schneier 2003; Stinson 2002). Therefore, the eavesdropper may know some information about types
of optical CDMA being used, such as, data rate, network architecture and type of encoding, but not the individual user code sequence.

4.3.1 Eavesdropper Receiver and Noise Considerations

In a communication system, realizing and understanding the sources of noise is essential for a receiver performance to be accurately characterized. The quantity of noise that can exist in a receiver will be the main element that determines the receiver’s sensitivity (Alexander 1997).

In practical transmission system, noise is defined as any unwanted signal present in the receiver other than the desired signal. The noise sources, usually noticed in an optical receiver, including that of optical and electronics origin, can be categorized into a few classes. The first are intrinsic noise sources originating from the fundamental natural effects of the system design itself, especially in the opto-electronic and electronic devices used to construct the receiver. Another noises originating from optical sources, such as broadband sources used to implement the transmission section, may degrade the system performance. Examples of the intrinsic noises are thermal noise, dark current noise, electronic shot noise, relative intensity noise (RIN), and phase induced intensity noise (PIIN). The second are coupled noise sources that originate from interactions between the receiver circuitry and the surrounding environment. They can be found in solar, nearby electrical transmission lines, power supplies, etc.

The linear relationship between the received optical power and the photocurrent generated in the photodetector is considered to be the distinguishing characteristic in optical transmission system. This is the result of the square-law photodetection operation, converting the optical intensity into current intensity. Subsequently, the electrical signal amplitude (current or voltage) is then proportional to the received optical power. Generally, the data bit is represented by the photodiode photocurrent which is sampled at the decision circuit and is affected by all noise contributions. The obtained sample then represents the sum of the exact signal involved and several noise terms.
In spectral amplitude coding optical CDMA, most noise contributions result from thermal noise, shot noise and PIIN (Smith et al. 1998; Wei et al. 2001). Dark current noise, RIN and the coupled noise have been ignored. A simple schematic block diagram of spectral amplitude code optical CDMA system consisting of K users is illustrated in Figure 4.3.

![Figure 4.3](image)

The system architecture of spectral amplitude code optical CDMA system network

4.3.2 Eavesdropper SNR Analysis

Theoretical analysis is presented for the eavesdropper encoded pulses detection based on Spectral Amplitude Coding (SAC) optical CDMA systems. We have applied the Modified Quadratic Congruence (MQC) code to investigate the effect of the encoded spectral chip on security performance. Further information of MQC can be found in (Zou et al. 2001). Given a prime number p, the MQC code has the following properties: code length is \((p^2 + p)\), its weight is \((p+1)\), and a total number of users \(p^2\).

To investigate eavesdropper SNR, we need to use the same analysis proposed by (Zou et al. 2001). His analysis was based on the complimentary detection for the occupied code length of an authorized user, where the multiple access interference (MAI) effect has been reduced to minimum. The eavesdropper receiver filters the
received signal with pass band filter (direct single spectral chip decoder) which is spectrally matched with that of the authorized decoder spectral chip bandwidth. The output from this decoder is detected by a photodetector where the received intensity is converted and processed electrically by decision circuit.

As mentioned before, shot, thermal, and PIIN noises are considered to be the main noise contribution in our analysis. It has been shown that the photocurrent variance due to the complementary detection of an ideally unpolarized thermal light source is proposed by (Zou et al. 2001), which is used for SAC optical CDMA encoding systems, the eavesdropper photocurrent variance resulting from the use of photodetector as shown in Figure 3.8 (Chapter III) can be expressed as:

\[
\langle I^2 \rangle = \langle I^2_i \rangle + \langle I^2_z \rangle + \langle I^2_{\text{th}} \rangle
\]
\[\text{(4.1)}\]

where, \(I^2\) is the total noise power, \(I^2_i\) is the shot noise, \(I^2_z\) is the Phase Induced Intensity Noise (PIIN), and \(I^2_{\text{th}}\) is the thermal noise.

Coherent time of thermal source \(\tau_c\) is given by (Smith et al. 1998):

\[
\tau_c = \frac{\int_0^\infty G^2(v)dv}{\left[\int_0^\infty G(v)dv\right]^2}
\]
\[\text{(4.2)}\]

where \(G(v)\) is the power spectral density (PSD) of the received optical pulses which follow Gaussian approximation (Zou et al. 2001):

\[
r(v) = \frac{P_v}{\Delta v} \sum_{k=1}^{K} \sum_{i=1}^{N} c_k(i) \left[u\left[v - v_o - \frac{\Delta v}{2N} (-N + 2i - 2) \right] - u\left[v - v_o - \frac{\Delta v}{2N} (-N + 2i) \right] \right]
\]
\[\text{(4.3)}\]
where P_{sr} is the effective power of a broadband source at the receiver, Δv is optical source bandwidth, K is the active users and N is the MQC code length, d_k is the data bit value of the K^{th} user that is “1” or “0”, and $u(v)$ is the unit step function expressed as:

$$u(v) = \begin{cases}
1, & v \geq 0 \\
0, & v < 0
\end{cases} \quad (4.4)$$

Therefore, the PSD of the eavesdropper photodiode detector, during single data bit period, can be expressed written as:

$$G(v) = \frac{P_{sr}}{\Delta v} \sum_{K=1}^{K} d_{k} \sum_{i=1}^{N} c_{K}(i)c_{I}(i) \cdot \left\{ u\left[v - v_o - \frac{\Delta v}{2N} (-N + 2i - 2)\right] - u\left[v - v_o - \frac{\Delta v}{2N} (-N + 2i)\right] \right\} \quad (4.5)$$

$$G(v) = \frac{P_{sr}}{\Delta v} \sum_{K=1}^{K} d_{k} \sum_{i=1}^{N} c_{K}(i)c_{I}(i) \left\{ u\left[\frac{\Delta v}{N}\right] \right\} \quad (4.6)$$

The incident optical power on the eavesdropper photodetector:

$$\int_{0}^{\infty} G(v) dv = \int_{0}^{\infty} \left[\frac{P_{sr}}{\Delta v} \sum_{K=1}^{K} d_{k} \sum_{i=1}^{N} c_{K}(i)c_{I}(i) \left\{ u\left[\frac{\Delta v}{N}\right]\right\} \right] dv \quad (4.7)$$

The MQC code properties required for eavesdropper direct detection scheme that employing the receiver structure as shown in Figure 3.8:
\[
\sum_{i=1}^{N} c_k(i)c_j(i) = \begin{cases}
1, & K = l \\
p + 1, & K \neq l
\end{cases}
\] (4.8)

Using equation (8) in equation (7) we get:

\[
\int_0^\infty G(v)dv = \frac{P_{sr}(p+1)}{N}dl + \frac{P_{sr}}{N} \sum_{K \neq l}^{K} d_k
\] (4.9)

Then, the total power incident can be obtained by integrating the power spectral density at eavesdropper PD:

\[
\int_0^\infty G(v)dv = \frac{P_{sr}}{N}[p + K]
\] (4.10)

Consequently, the photocurrent can be expressed:

\[
I = \Re \int_0^\infty G(v)dv
\] (4.11)

where \(\Re \) is the photodiode responsively given by \(\Re = \eta e/h \nu_c \). Here, \(\eta \) is the quantum efficiency, \(e \) is the electron’s charge, \(h \) is the Planck’s constant, and \(\nu_c \) is the central frequency of the original broad-band optical pulse. Figure 4.4 represents the PSD of the received signal pulses where \(a(i) \) represents the amplitude of the spectral chip of the \(i^{th} \) spectral slots width of \(\frac{\Delta \nu}{N} \).
Figure 4.4 The PSD of the received signal $r(v)$

Source: Zou et al. 2001

The integral of $G^2(v)$ can be expressed as:

$$\int_{0}^{\infty} G^2(v) dv = \frac{\Delta v}{N} \sum_{i=1}^{N} A^2(i) \quad (4.12)$$

Therefore,

$$\int_{0}^{\infty} G^2(v) dv = \frac{P^2}{N \Delta v} \sum_{i=1}^{N} \left\{ c_i(i) \cdot \left[\sum_{k=1}^{K} d_k c_k(i) \right] \cdot \left[\sum_{m=1}^{K} d_m c_m(i) \right] \right\} \quad (4.13)$$

To calculate the photocurrent noise power is by substituting equation (4.9) in equation (4.13):

$$\int_{0}^{\infty} G^2(v) dv = \Re \left[\frac{P}{N} \right] \cdot [p + K] \quad (4.14)$$

Therefore equation (4.1) can be rewritten:

$$\langle I^2 \rangle = 2eB \Re \left[\int_{0}^{\infty} G(v) dv \right] + B \Re \left[\int_{0}^{\infty} G^2(v) dv \right] + \frac{4K T_s B}{R_L} \quad (4.15)$$
From equation (4.14) and equation (4.16), the average SNR can be obtained as:

\[
SNR = \frac{I^2_{\text{Data}}}{I^2_{\text{Noise}}} \tag{4.17}
\]

Using Gaussian approximation, the Bit Error Rate (BER) can be expressed as:

\[
BER = P_e = \frac{1}{2} \text{erfc} \left(\sqrt{\frac{SNR}{8}} \right) \tag{4.19}
\]

where, \(\text{erfc} (.) \) is the complementary error function:

\[
\text{erfc} (x) = \left(2 / \sqrt{\pi} \right) \int_x^\infty e^{-u^2} du \tag{4.20}
\]

Since the above analysis can be applied to any incoherent SAC optical CDMA, the same process can be applied to the MDW code system. Here, we need to determine the MDW code properties that are required for eavesdropper direct detection scheme which is given by:

\[
\sum_{i=1}^{N} c_x(i)c_i = \begin{cases} W, & K = l \\ 1, & K \neq l \end{cases} \tag{4.21}
\]
In most SAC optical CDMA systems, when the data bit is “1,” a spectrally encoded pulse is sent, while nothing is sent for data bit “0”. Noises that exist in such a system include incoherent intensity noise, shot noise, as well as thermal noise. The overall SNR of such systems is given in (Aljunid et al. 2004) as following:

\[
SNR = \frac{R^2P^2\nu^2}{eBRP_{\nu}} \left(\frac{W + (\lambda + 1)(K-1)}{N} \right) + \frac{BR^2P^2\nu K}{2N^2\Delta\nu} \left(\frac{K-1}{W-\lambda} + W + \lambda(w - 1) \right) + \left(\frac{4K_{e}\nu T_{B}}{R_{L}} \right)
\]

(4.22)

where \(R \) is the photodiode responsively, \(P_{\nu} \) is the effective power of a broad-band source at the receiver, \(e \) is an electron charge, \(B \) is the electrical equivalent noise band-width of the receiver, \(K_{B} \) is the Boltzmann’s constant, \(T_{r} \) the absolute temperature of receiver noise, \(R_{L} \) the load resistance, \(\Delta\nu \) the optical source bandwidth, \(K \) the number of users, \(N \) the code length, \(W \) the weight, and \(\lambda \) the cross-correlation.

Because intensity noise dominates and increasing the received optical power cannot alleviate its effect, the signal to noise ratio (SNR) limit due to this noise is considered in this analysis and can be expressed as:

\[
SNR = \frac{2\left(\frac{W}{\lambda} - 1 \right)\Delta\nu}{BK \left[\frac{K}{2} + \frac{K}{\lambda} - 2 \right]}
\]

(4.23)

Therefore, for a given value of spectral width \(\Delta\nu \), \(B \) and \(K \), the SNR depends on \(\frac{W}{\lambda} \) only. However, for DW and MDW codes, the cross correlation \(\lambda \) is always minimized at \(\lambda = 1 \), thus, the performance of DW and MDW codes depends on code weight only, which is much easier to control. For example, if \(W = 4 \), the SNR will be

\[
SNR = \frac{12\Delta\nu}{BK(K + 4)}
\]

(4.24)
Using Gaussian approximation, the bit error rate (BER) can be expressed as

\[
BER = P_e = \frac{1}{2} \text{erfc} \left(\sqrt{\frac{SNR}{8}} \right)
\]

(4.25)

4.3.3 Eavesdropper Performance Analysis

The representation of the noise contributions versus the received optical power in eavesdropper receiver is illustrated in Figure 4.5. At relatively low received optical power levels, the dominant noise term comes from the thermal noise which is constant. In fact, in the low power range, signal-dependent contributions are almost negligible, and the total noise remains almost constant. Increasing the optical power, both PIIN and shot noise contributions become the main limiting factors which degrade the eavesdropper performance. It is shown that PIIN noise becomes the dominant term as the received power reaches high levels (more than -10 dBm), due to the received optical power quadratic dependence compared to the linear dependence in the shot noise term.

![Figure 4.5 Noise contributions versus the received optical power in eavesdropper receiver](image-url)
In the spectral amplitude encoding incoherent optical CDMA system, since the effect of the phase-induced intensity noise (PIIN) on the system performance which results from the intensity fluctuation of broadband light source, is proportional to the square of photocurrent, system performance cannot be improved by simply increasing the received optical power (Zou et al. 2001).

Figure 4.6 shows the effect of spectral bandwidth on both authorized and eavesdropper performances based on MQC with basic code matrix \(p = 3, N = 12, W = 4, \lambda = 1 \). Each user is modulated by data of 622 Mbps before multiplexing and transmitted on 20 km single mode fiber SMF. In the receiver part, the authorized user uses a complementary detection receiver to properly decode the signal. The eavesdropper’s receiver structure has a band pass filter with 20 GHz bandwidth, a photodetector and low pass filter with electrical bandwidth of 0.75 times bit rate.

![Figure 4.6](image-url)

Figure 4.6 Eavesdropper performance with variation of encoded spectral chip bandwidth
At encoded spectral chip of 20 GHz the detected SNRs are 22 dB and 12 dB for authorized user and eavesdropper, respectively. These values are corresponding to bit error rate BERs of nearly 10^{-11} and 10^{-3}, respectively, as shown in Figure 4.7. In optical communication systems, the maximum acceptable system BER is assumed to be 10^{-9}. Further decreasing in spectral chip bandwidth would force the authorized user to use error correction codes used in commercial high-rate optical telecommunication equipment that can maintain the acceptable BER.

Further security enhancement can be obtained by increasing the code dimension as shown in Figure 4.8. With large value of prime number p, the main parameter to construct MQC codes, the eavesdropper ability to detect single encoded pulses becomes difficult even with wideband spectral chip. The eavesdropper BER will be higher than 10^{-3}.

Figure 4.7 Authorized user and eavesdropper BER performance
The results show that using unipolar optical CDMA codes schemes based on MQC and Modified Double Weight MDW (Aljunid et al. 2004) code system enhances the security with a low cost implementation in comparison to the bipolar ones based on modified pseudorandom noise (PN) code (Chung et al. 2008), Figure 4.9. MQC (12, 4, 1) code has more than 5 dB security preferences over PN (7, 4, 2) code. It is clear that all codes, introduced in this comparison, have similar code weight. For the authorized users, bipolar codes would show high performance in comparison to unipolar codes because the bipolar signalling has a 3-dB signal-to-noise ratio (SNR) advantage over the on-off keying system with high cost implementation because each transmitter sends energy for both “0” and “1” bit (Nguyen et al. 1995). From the security viewpoint, one should minimize the eavesdropper ability to detect code word pulses by controlling the authorized performance to reasonable throughput.

Figure 4.8 Code dimension effects on eavesdropper performance
Figure 4.9 Eavesdropper performances for unipolar and bipolar optical CDMA codes

4.4 SIMULATION OF TRANSMISSION SECURITY PERFORMANCE FOR SAC OPTICAL CDMA SYSTEMS

Generally, the design and analysis of optical communication systems are growing in complexity due to the usually contained non-Gaussian noise sources and nonlinear devices. These systems are highly complicated and highly time-intensive. Therefore, many computer softwares are commercially available to analyze the behaviour of a present or proposed optical communication system. As a result, such systems can now be carried out effectively and efficiently with the help of these modern computer software tools.

In this work, we have used a powerful simulation software, OptiSystem Version 7.0 from Optiwave (Optiwave 2007), to analyze the performance of the eavesdropper for SAC optical CDMA systems in the physical layer. OptiSystem enables the design automation of almost any type of optical link in the physical layer, and the analysis of a broad spectrum of optical networks, from long-haul systems to MANs and LANs (Optiwave 2007).
4.4.1 Simulation Set Up

Eavesdropping is possible at several points within the optical CDMA network with star topology as shown in Figure 3.7. Figure 4.3 is implemented using simulation software, OptiSystem Version 7.0 from Optiwave (Optiwave 2007) as shown in Figure 4.10. Spectral amplitude coding optical CDMA possibly can use a simple incoherent broadband light source instead of a coherent short pulse laser and does not require temporal synchronization to reduce multiple access interference noise. MDW codes of length $N_D = 9$ and weight $W = 4$ are used to encode a light emitting diode (LED) broadband source. Each chip has a spectral width of 0.2 nm.

![Simulation setup for MDW optical CDMA system with eavesdropping from user 1](image)

Each user is modulated by data of 622 Mbps before multiplexing and transmitted on 20 km single mode fiber SMF. All the attenuation (i.e., 0.25 dB/km), dispersion (i.e., 18 ps/nm km), and nonlinear effects were activated and specified according to the typical industry values to simulate the real environment as close as possible. In the receiver part, the authorized user uses a complementary detection receiver to properly decode the signal. The incoming signal splits into two parts, one to the decoder that has an identical filter structure with the encoder and the other to the
decoder that has the complementary filter structure. A subtractor is then used to subtract the overlapping data from the intended code.

The eavesdropper’s receiver structure has a band pass filter with 20 GHz bandwidth, a photodetector and low pass filter with electrical bandwidth of 0.75 times bit rate. Its performance is based on measuring the intensity for each intercepted SEC B signal and then calculate signal to noise ratio (SNR).

Furthermore, the simulation setup of the SAC optical CDMA based on MQC code scheme is shown in Figure 4.11. Since the basic MQC codes can be defined by an odd prime number $p=3$, then the code dimensions used to build the encoding system layout are code length $N=12$, code weight $W=4$, and in phase cross correlation $\lambda=1$. This system layout will support 9 simultaneous users that can share the overall source bandwidth and the star coupler including the same single mode fiber SMF of length 20 km with attenuation of 0.22 dB/km, dispersion of 4.46 ps/nm/km and dispersion slope of 0.09 ps/nm2/km operating within the performance limit at 1200 nm to 1700 nm. Nonlinear effects were activated and specified according to the typical industry values to simulate the real environment as close as possible.

At the transmission part, the broadband optical source bandwidth is spectrally encoded and then each user will be assigned a code sequence according to Table 3.3. Each user is externally modulated by data of 622 Mbps before multiplexing and transmitted.

The eavesdropper’s receiver has the same structure as that of Figure 3.8. A band pass filter with 20 GHz bandwidth, a photodetector and low pass filter with electrical bandwidth of 0.75 times bit rate. Its performance is based on measuring the intensity for each intercepted encoded pulse signal and then calculate signal to noise ratio (SNR).
4.4.2 Eavesdropper Simulation Results

When only one user is active in the network, optical CDMA scheme cannot guarantee physical layer security any more. Even in a multi-user optical CDMA network, there can be a single user link active. Figure 4.12 shows the encoded spectrum of the transmitted signal for three users measured by a spectrum analyzer with resolution of 0.01 nm.
An eavesdropper may intercept and extract information data by tuning a narrow band pass filter across the entire wavelength range and select one spectral chip as shown in Figure 3.8. In this case, an eavesdropper has the information about the spectral bandwidth of one spectral chip and the type of the encoding system being used and does not know the code word itself.

![Figure 4.13 All users encoded spectrum detected by eavesdropper](image)

Each detected pulse represents a double weight spectral intensity; so, Figure 4.13 indicates there are 6 of them in the entire spectral bandwidth used for this particular transmission. Figure 4.14 shows the spectral chips, detected by the eavesdropper, for an isolated user (user 1) when the others are not active. Each pulse has a double weight chip which is satisfied with the code dimension MDW (9, 4, 1) being used in this analysis. The effective power of the broadband source at the eavesdropper photodetector is measured to be -33 dBm for each single spectral chip pulse.

![Figure 4.15 Effects of ESCB on authorized user and eavesdropper receiver](image)

Figure 4.15 shows the effects of ESCB on authorized user and eavesdropper receiver represented by dashed and solid lines respectively. Their corresponding simulation results are given by the triangle and rectangle symbols respectively. The
analytical results and simulation results agree well with each other. In the case of the authorized user, there is a slight difference because the intensity noise is the only noise being considered in these analytical results obtained by Eq. (4.23).

Figure 4.14 Isolated user spectral chips for user 1

Figure 4.15 Effects of single spectral chip bandwidth on eavesdropper
The cross and circle symbols represent the authorized user and eavesdropper performance, using a bipolar optical CDMA scheme (Chung et al. 2008; Nguyen et al. 1995), respectively. For the authorized users, bipolar codes show high performance in comparison to unipolar MDW codes because the bipolar signalling has a 3-dB signal-to-noise ratio (SNR) advantage over the on-off keying system with high cost implementation because each transmitter sends energy for both “0” and “1” bit, besides the difference in code dimension being used.

From the security viewpoint, one should minimize the eavesdropper ability to detect code word pulses by controlling the authorized performance to reasonable throughput. Wide bandwidth in a single spectral chip enhances SNR not only for authorized user but also for eavesdropper, which increases the possibility of eavesdropping. Thus, to improve the degree of security, we have to reduce the bandwidth of a ESCB. This reduction should not affect the system performance. For example, if a spectral chip is reduced from 50 GHz to 25 GHz, the authorized user and eavesdropper could obtain SNRs of 22 dB and 16 dB respectively. These values are corresponding to bit error rate BERs of nearly 10^{-12} and 10^{-5} respectively. The maximum acceptable system BER is assumed to be 10^{-9}. In this case; the eavesdropper may need to use error correction codes used in commercial high-rate optical telecommunication equipment that can produce this BER with a raw detector BER of approximately 10^{-4}. Our results show that using unipolar optical CDMA code schemes based on MDW code system enhances the security with a low cost implementation in comparison to the bipolar ones.

Based on simulation layout of Figure 4.11, when only one user is active in the network, optical CDMA scheme cannot guarantee physical layer security any more. Even in a multi user optical CDMA network, there can be a single user link active. Figure 4.16 shows the encoded spectrum of the transmitted signal for all users, user 1, user 5, and user 9 respectively measured by a spectrum analyzer with resolution of 0.01 nm.
An eavesdropper may intercept and extract information data by tuning a band pass filter across the entire wavelength range and select one spectral chip. In this case, an eavesdropper had the information about the spectral bandwidth of one spectral chip and the type of the encoding system being used and didn’t know the code word itself. Figure 4.17 shows the encoded spectral chips, detected by the eavesdropper, for an isolated user (user 1) when the others are not active, which is matching the code sequence for user 1 (Zou et al. 2001). The effective power of the broadband source at the front of eavesdropper photodetector is measured to be -30 dBm for each single spectral chip pulse and its corresponding average SNR is calculated to be nearly 10 dB. This SNR value gives the eavesdropper capability to intercept encoded pulse chip with a probability of correct detection of 0.7 as shown in Figure 4.2. In fact this is only true for MQC codes when $p = 3$. For other code dimensions, $p = 7, 11, \text{and } 13$, 10 dB would be only enough to intercept code pulses with probability of correct detection $= 0.4, 0.2, \text{and } 0.1$ respectively. Thus, increasing code size will force eavesdropper to get low code pulse SNRs with low probability of correct detection.
Another degree security gain can be achieved by decreasing the encoded spectral bandwidth for the MQC codes. Figure 4.18 shows the consequence of single encoded chip bandwidth on eavesdropper performance where both analytical and simulation results are close to each other. From the security viewpoint, a network designer should minimize the eavesdropper ability to detect code word pulses by controlling the authorized performance to reasonable throughput. Thus, to improve the degree of security, we have to reduce the encoded spectral bandwidth and this reduction should not affect the system performance.
4.5 SUMMARY

This chapter presented and discussed the transmission security performance results of SAC optical CDMA. We have applied MDW and MQC codes to demonstrate the eavesdropper performance. The results showed that increasing the code size will force eavesdropper to acquire encode code pulses with low SNRs. Therefore, a low probability of correct detection is achieved. Moreover, wide bandwidth in a single spectral chip enhances the achieved SNR, not only for authorized user but also for an eavesdropper, which increases the possibility of eavesdropping. Thus, to improve the degree of security, we have to reduce the encoding spectral chip bandwidth (ESCB). From the security viewpoint, one should minimize the eavesdropper ability to detect code word pulses by controlling the authorized performance to reasonable throughput.

Our results showed that using unipolar optical CDMA codes schemes based on MQC and MDW code systems enhanced the security with a low cost implementation in comparison to the bipolar ones based on modified pseudorandom noise (PN) code. Furthermore, both analytical and simulation results are close to each other.
CHAPTER V

SECURITY ENHANCEMENT OF SAC OPTICAL CDMA USING HYBRID ENCODING SYSTEMS

5.1 INTRODUCTION

Optical CDMA is a technology of multiplexing and networking for optical communication systems and networks. Optical CDMA is a multiplexing method modified from the successful realization in wireless networks. It has become a promising technology to employ all optical communication and networking that use optical signal processing directly combining the advantages of electrical CDMA with the bandwidth predominance of fiber optic and optical signal processing devices (Yin & Richardson 2007). Therefore, due to the intensive researches on optical communication in the past 20 years, numerous types of optical CDMA systems have been proposed. Categorizing them based on differences of coding approaches for optical signals, there are five main types of optical CDMA systems: direct-sequence or temporal encoding, spectral amplitude encoding, spectral phase encoding, temporal phase encoding, and two-dimensional spatial encoding. The multiplexing and routing of optical signals are performed by encoding/decoding data employing passively optical components with low cost, not requiring any optical logic components, and it is simple to be implemented.

In a great deal of literature where optical CDMA technologies and theories are proposed and analyzed, enhanced transmission security and confidentiality on information transmissions is considered as one of the intrinsic advantages of optical CDMA networks (Karafolas & Uttamchandani 1996; Sampson et al. 1997). Meanwhile, optical CDMA can provide data confidentiality to some degree so that the
private requirements of routine and business services from different subscribers can be satisfied.

The quantitative analysis of data confidentiality has been performed for optical CDMA techniques that employ 2-D wavelength-hopping/time-spreading encoding (Shake 2005b) and spectral phase encoding (Shake 2005a). Furthermore, the degree of confidentiality provided is highly dependent on system design and implementation parameters, such as code space size, data modulation approach (Leaird et al. 2005; Qin et al. 2008), system signal-to-noise ratio, fraction of total available system capacity and so on.

In this chapter, we have presented security enhancement for spectral amplitude coding (SAC) optical CDMA using hybrid SAC schemes. One dimension hybrid (ODH) EDW/m-sequence and two dimensions (2D) EDW/m-sequence code systems have been implemented to provide a degree of transmission security for SAC optical CDMA. Each user will assign a hybrid code signature based on combining and integrating the properties for both m-sequence and EDW codes. The eavesdropper here will employ the same strategy that has been discussed in Chapter III. The eavesdropper’s target is to detect the presence of the authorized user’s transmission and attempt to recognize his encoded spectral chip of the code word. Therefore, the eavesdropper will tap a coded transmission of a particular user and performs the necessary calculations to derive the transmitter’s code word from these transmissions. Furthermore, we have simulated these hybrid SAC optical CDMA systems using Optisystem software version 7 to present eavesdropper performance.

5.2 CONVENTIONAL SPECTRAL AMPLITUDE CODING OPTICAL CDMA SYSTEMS

Many types of optical CDMA systems have been proposed as the result of intensive research on optical CDMA in the past 20 years. If we classify them in terms of the nature of the superposition of the optical signal, they can be divided into coherent optical CDMA systems and incoherent optical CDMA systems (Yin & Richardson 2007).
The coherent optical CDMA system makes use of the coherent property of light and implements bipolar encoding of the optical signal, i.e., encoding the phase of optical signals, with the phase of light detected at the receiving terminals. The form of signal addition is the superposition of light signal amplitudes. These bipolar codes encompass m-sequences, Gold codes, and Walsh-Hadamard codes (Cao & Qian 1992; Prucnal 2006). This kind of Optical CDMA systems need to use ultra short broadband light pulse sources.

The incoherent optical CDMA system employs the presence of light signal or absence of light signal to represent the binary “1” and “0” respectively, which is unipolar encoding, where the light signals are detected with the square-law devices at the receiving terminals. This form of signal addition is the superposition of light powers. This kind of optical CDMA system may use incoherent light sources, such as amplified spontaneous emission (ASE) or light-emitting diode (LED) (Salehi 1989; Zou et al. 2001).

In recent years, spectral-amplitude coding (SAC) scheme has become more noticeable in the research of incoherent optical CDMA network systems because of its unique ability for the cancellation of multiple-access interference (MAI). A code that can be used in such kind of network system is denoted as \((N, W, \lambda)\), where \(N\) is code length, \(W\) is code weight, and \(\lambda\) is the correlation bound of the code.

5.2.1 M-sequence Codes

The most common spreading sequences used in wireless communications are known as maximal length sequences (m-sequence). It is a pseudorandom sequence which can be simply generated by the feedback-shift-registers and has the maximal period (Peterson et al. 1995). Therefore, it is called the maximal linear feedback-shift-register sequence. The period of m-sequence code is not only associated with the number of stages of shift-registers, but is also related to the linear feedback logic. A linear feedback shift register of length \(r\) produces an m-sequence if and only if the corresponding generated polynomial of degree \(r\) is primitive (Schulze & Lueders 2005). Therefore, when \(r\) stage shift-register is employed, the period of the m-
sequence generated code is $N = 2^r - 1$. The sequences have good randomness properties and are very easy to generate. An m-sequence consists of a pattern of zeros and ones which are applied in optical CDMA system (Chao-Chin et al. 2004; Kavehrad & Zaccarin 1995).

Let $G_m = [G_m(1), G_m(2), \ldots, G_m(N)]$ be the m^{th} m-sequence codeword, where $m = 1, 2, \ldots, N$ ($N = 2^r - 1$, r is an integer). For $r = 2$ the following basic m-sequence code words can be obtained:

$$
\begin{align*}
1 & \quad 1 & \quad 0 \\
0 & \quad 1 & \quad 1 \\
1 & \quad 0 & \quad 1
\end{align*}
$$

For $r = 3$ the following m-sequence code words can be obtained:

$$
\begin{align*}
1 & \quad 1 & \quad 1 & \quad 0 & \quad 1 & \quad 0 & \quad 0 \\
0 & \quad 1 & \quad 1 & \quad 1 & \quad 0 & \quad 1 & \quad 0 \\
0 & \quad 0 & \quad 1 & \quad 1 & \quad 1 & \quad 0 & \quad 1 \\
1 & \quad 0 & \quad 0 & \quad 1 & \quad 1 & \quad 1 & \quad 0 \\
0 & \quad 1 & \quad 0 & \quad 0 & \quad 1 & \quad 1 & \quad 1 \\
1 & \quad 0 & \quad 1 & \quad 0 & \quad 0 & \quad 1 & \quad 1 \\
1 & \quad 1 & \quad 0 & \quad 1 & \quad 0 & \quad 0 & \quad 1
\end{align*}
$$

Some of the main properties of the m-sequence codes are: the length of the code sequence is $N = 2^r - 1$ and any m-sequence code word contains one more 1 than 0. In other words, there are $\frac{N+1}{2}$ ones and $\frac{N+1}{2} - 1$ zeros in each code sequence. Besides, any circular shift of the code sequence added to itself (modulo-2) is another m-sequence code sequence. The cyclic auto-correlation of the sequence with itself is $\theta(k) = N$ for $k = lN$ and $\theta(k) = (N+1)/4$ for $k \neq lN$, where l is an
integer. The cross-correlation for arbitrary two code sequences in the same family is
\[
\frac{(N + 1)}{4}
\]

5.2.2 Enhanced Double Weight (EDW)

Enhanced Double Weight EDW (Hasoon et al. 2007a) is the enhanced version of Double Weight (DW) (Aljunid et al. 2004) code. The MDW code weight can be any even number that is greater than two while the enhanced double weight EDW code weight can be any odd number greater than one. Both complementary and direct detection techniques have been implemented for authorized user detection (Abdullah et al. 2008; Hasoon et al. 2007b). The spectral direct detection (SDD) technique has shown better performance in comparison with the complementary one. In this chapter, the EDW with the weight of three is used as an example.

EDW code can be represented by using \(K \times N \) matrix. In EDW codes structures, the matrix \(K \) rows and \(N \) columns represent the number of users and the minimum code length respectively. A basic EDW code is given by a 3 x 6 matrix, as shown in Table 5.1.

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>User1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>User2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>User3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

From the basic matrix, a larger number of \(K \) can be achieved by using a mapping technique. EDW codes have the following properties: ideal maximum cross-correlation \(\lambda_{\text{max}} \), EDW code weight, which can be any odd number greater than one, the weight pair structure maintained, the chip combination is maintained 1, 2, 1 for every consecutive pairs of codes, and the relation between the number of users \(K \) and code length \(N \) at weight of 3 is given by:
\[N = 2K + \frac{4}{3} \sin \left(\frac{K \pi}{3} \right)^2 \sin \left(\frac{(K+1)\pi}{3} \right)^2 + \frac{4}{3} \sin \left(\frac{(K+2)\pi}{3} \right)^2 \] (5.1)

5.3 2-D HYBRID EDW/M-SEQUENCE

Hybrid encoding approach, based on SAC optical CDMA systems, is introduced. This type of encoding scheme uses a combination of the encoding approaches mentioned in Chapter II. Therefore, combining and integrating the above mentioned properties for both m-sequence and EDW codes, a hybrid code scheme can be obtained. The 2-D hybrid scheme is based on spatial and frequency encoding and decoding process. Each user will assign a hybrid code signature where, first the optical pulses will be encoded in the frequency domain using EDW scheme and then spatially encoded using m-sequence scheme.

5.3.1 Code Design

The encoding scheme is based on spatial and frequency encoding and decoding process. The hybrid EDW/m-sequence codes are constructed as follow. Let \(X_i = [x_i(1), x_i(2), \ldots, x_i(E)] \) be the \(i^{th} \) EDW code word used in the spectral domain, where \(E \) represents the code length; and \(Y_j = [y_j(1), y_j(2), \ldots, y_j(N)] \) be the \(j^{th} \) m-sequence codeword used in the spatial domain, where \(j = 1, 2, \ldots, N \) (where \(N = 2^{r-1}, r \) is an integer). Therefore, the optical hybrid EDW/m-sequence code assigned to user \((i, j)\) in the spectral/spatial optical CDMA system can be obtained from these two code words by \(H_{i,j} = X_i \cdot Y_j \) (Yang et al. 2007). Thus, there are totally \(E \times N \) code matrices supported by the hybrid system as illustrated in Figure 5.1.

The 2D hybrid EDW/m-sequence optical CDMA block diagram is shown in Figure 5.2. The network includes \(C \) encoders, \(C \) decoders, and \(N \) \(C \times C \) star couplers. User \((i, j)\) is assigned with a specific hybrid EDW/m-sequence codeword \(H_{i,j} \). The incoming information bits of each user are encoded optically with the corresponding matrix \(H_{i,j} \) by the associated encoder and distributed to each decoder through the star couplers. Each user in the receiver end uses a decoder to recover the desired information bits.
These hybrid codes are expected to increase the degree of security compared to one dimensional code because the code size will increase. Besides, the complexity for encoding and decoding will make the eavesdropper ability more difficult to physically tap and intercept the correct code.

In spectral amplitude coding optical CDMA schemes, most contribution of noise comes from thermal noise, shot noise and PIIN (Smith et al. 1998; Wei et al.
The eavesdropper photocurrent variance resulting from the use of a band limited photodetector as shown in Figure 3.8 (Chapter III) can be expressed as:

$$\langle I^2 \rangle = 2\Delta B \Re \left(\frac{P}{N} (W + 2(K - 2)) + \Re \left(\frac{P_K W}{2\Delta V N^2} (W + 2(K - 2)) \right) \right) + \frac{4K_T B}{R_i}$$ (5.2)

Applying the code properties for these codes, the signal to noise ratio (SNR) limit due to incoherent intensity noise (Smith et al. 1998), is considered. Figure 5.3 shows the bit-error rate (BER) versus number of users when M.sequence, EDW and hybrid EDW/m-sequence codes are used. In this figure we have used the following parameters: optical bandwidth $\Delta \nu = 3.75$ THz, receiver electrical bandwidth $B=311$MHz (for bit rate 622Mbps) at the operation wavelength of 1550nm. It clearly shows that this hybrid EDW/m-sequence code can support more users.

![Figure 5.3 BER versus active users](image-url)

5.3.2 Security Performance

An intelligent eavesdropper can design a listening device to detect this code word as shown in Figure 5.4. Once a user’s code word is detected by the eavesdropper, the eavesdropper has free access to the user’s data until the user’s code is changed.

![Figure 5.4 Eavesdropper code interceptor structure](image)

If the code interceptor makes a code word decision based on observing the transmitted signal for encoded spectral amplitude coding optical CDMA data bit interval, the overall probability of correct code pulse detection is given by Eq. (3.1) from Chapter III:

\[P_{\text{correct}} = (1 - P_M)^W (1 - P_o)^{(N-W)} \] \hspace{1cm} (5.3)

Then, applying the code properties of the 2D hybrid EDW/m-sequence in equation (5.3) we get:

\[
P_{\text{correct}} = \left[Q \left(\sqrt{2 \frac{E}{N_o}}, \sqrt{2 \frac{\gamma}{N_o}} \right) \right]^{\frac{N_{m-seq}+1}{2}W_{\text{edw}}} \ast \left[1 - \exp \left(-\frac{\gamma}{N_o} \right) \right]^{\left(\frac{N_{m-seq}+1}{2} \right)W_{\text{edw}} \ast} \left[1 - \exp \left(-\frac{\gamma}{N_o} \right) \right]^{\left(\frac{N_{m-seq}+1}{2} \right)N_{m-seq} - W_{\text{edw}}} \ast (5.4)\]

where \(E / N_o \) is the single pulse signal to noise ratio and \(\gamma \) is detection threshold. \(W_{\text{edw}} \) and \(N_{edw} \) is EDW code weight and cod length respectively. \(N_{m-seq} \) represents m-sequence code length. These system design and operation parameters are the key points for the degree of security enhancement provided by optical CDMA. This
enhancement is greatly dependent on the intercepted encoded pulse SNR. Q is a function commonly called Marcum’s Q function:

$$Q(\alpha, \beta) \approx \int_{\beta}^{\infty} z \exp\left(-\frac{z^2 + \alpha^2}{2}\right) I_0(\alpha z) dz$$ (5.5)

If an eavesdropper could be forced to tap code pulses with low SNRs, a security enhancement can be obtained as shown in Figure 5.5. An eavesdropper would need SNR of 9.2 dB to correctly detect encoded pulses with a probability of 50% for the hybrid scheme, while he needs 4.2 dB and 6.8 dB for m-sequence and EDW schemes respectively. The hybrid scheme provides security improvement of approximately 50% and 75% for m-sequence and EDW schemes respectively. The difference in performance of the eavesdropper’s receiver with envelope detection is getting small, especially at higher SNRs. Approximately, at 14 dB; the eavesdropper could tap encoded pulses with a probability of virtually one.

Figure 5.5 Code intercepting detector performances using optical matched filter with envelope detection
5.4 ONE DIMENSION HYBRID (ODH) EDW/M-SEQUENCE SYSTEM

Another hybrid encoding approach, based on SAC optical CDMA systems, is established. This type of encoding scheme uses a combination of the encoding approaches mentioned in Chapter II. Once again, combining and integrating the above mentioned properties for both m-sequence and EDW codes, a one dimension hybrid (ODH) code scheme can be obtained. The hybrid code will add encoding complexity for special authorized users which will make the eavesdropper code word interception more complicated due to the code size expansion (Shake 2005b).

5.4.1 Code Design

Since the traditional generation method of m-sequence code is not systematic enough, we have proposed new method for generating m-sequence systematically. The new method will allow us to generate the code for any number of (r), which is considered important for increasing the security of the system by increasing the code space size. This new generation method will ease the construction of ODH mathematical model, and make it more convenient.

The main control parameters in m-sequence construction are number of stages (r), code length N, code weight (number of 1’s), number of 0’s, the code cross correlation. These main parameters will determine if the code sequence meet its properties or not. The following steps explain the algorithm design procedure used to generate the code systematically. These steps are divided into two parts, which are independent from each other, as stated below:

Part A: for \(r = 2, 3 \) we have the following steps:

1- The basic sequence is started by adding 1’s equal to number of stages (r). For \(r = 2 \), we have (11).

2- Match the number of 1’s with the code weight value, if equal then stop adding 1’s and start adding only 0’s.
3- For \(r = 3 \), in order to maintain cross correlation without change, we use \((01)\) sequences.

4- Since the first user sequence for \(r = 2 \) is \((110)\) and for \(r = 3 \) is \((1110100)\), the subsequent users are generated using a circular shift of the previous user sequence.

Part B: for \(r \geq 4 \)

1- For \(r = 4 \), we recall step 1 from part A, and we add the following sequence:
\[(01011001)\].

2- For the rest code sequences, we recall step 2 from part A. Therefore, the first user sequence is: \((1111011001000)\).

3- The subsequent users are generated using a circular shift of the previous user sequence.

4- For \(r > 4 \) codes, we use repeating of \(r = 4 \) first user sequence until we fulfill step 2 of part A condition. E.g. for \(r = 5 \) the first user sequence is:
\[(1111011001001111011011001000)\].

5- We repeat step 3 in order to generate the full code.

The mathematical representations to the above generation steps are: let \(r = \) number of stages \(\{2, 3, \ldots\} \), code length \(N = 2^r - 1 \), number of 1’s (code weight)
\[W = \frac{N + 1}{2},\] number of 0’s \(W_{0s} = \frac{N + 1}{2} - 1 \), and cross correlation \(\lambda = \frac{N + 1}{4} \).

Assuming Basic sequence (B)
\[B_{r=2} = 11, B_{r=3} = 111\]

\(Z = \) accumulation of zeros

if \(r = 2 \)

1’st user sequence [110]

If \(r = 3 \)

1’st user sequence [1110100]

for \(r = 4 \), we use \(E = [01011001] \)

1’st user [1111011011001000] (also used as reference code for larger \(r \)’s)

\(\text{No loop} = (2)^{(r-4)} \) for \(r \geq 4 \)
Where No\textsubscript{Loop} Determine the number of loops necessary to generate \(r > 4 \) codes.

Assuming that \(M \) is the basic code matrix for \(r \geq 4 \)

Therefore \(M = [111101011001000] \)

Let \(M_F \) is the final accumulated matrix of the code without \(Z \), therefore the accumulated repeat of the 1st user \(M \).sequence code for \(r \geq 4 \) can be given as below:

\[
\sum_{j=1}^{N_{\text{loop}}} (M_F + M) \tag{5.6}
\]

The final accumulated matrix of the code with \(Z \):

\[
Z = \sum_{j=1}^{r \geq 4} Z[j] = 0 \tag{5.7}
\]

The final 1st user matrix for \(r \geq 4 \) is:

\[
X = \sum_{j=1}^{N_{\text{loop}}} (M_F + M) + \sum_{j=1}^{r \geq 4} Z[j] = 0 \tag{5.8}
\]

Applying step 3 from Part B to generate the subsequent user matrices using circulate shift

By assuming R=X, Y=X

\[
R[1] = Y[N]
\]

Apply on previous user to generate subsequent user sequence using the Eq. Below:

\[
R = \sum_{i=1}^{N} R(i + 1) = Y(i) \tag{5.9}
\]

For full code generation we use the following steps:

Step 1:

First element substitution
\[\sum_{i=1}^{N} X (i, 1) = Y (i, N) \]

(5.10)

Step 2:

Making the row number constant.

\[k = i \]

Step 3:

Rest elements shift

\[\sum_{j=1}^{N-1} X (k, j + 1) = Y (k, j) \]

(5.11)

Step 4:

Go to step 1 until No. of users are achieved.

The ODH codes are constructed by multiplying the m-sequence code matrix with each of EDW matrix elements. (The EDW generation method) is shown below:

X = EDW matrix

S = W

Where W is the code weight

Assuming \(y = X \)

\[[\sum_{i=1}^{s} X (1, i)] = y (w, i), [M - seq.] \]

(5.12)

\[[\sum_{i=1}^{s} \sum_{j=1}^{j} X (j + 1, i)] = y (j, i), [M - seq.] \]

(5.13)

The hybrid EDW/m-sequence codes are constructed by substituting the m-sequence code matrix with each one of EDW code matrixes. When \(r = 2 \), the basic matrix for m-sequence can be rewritten as shown below.
\[M_{ij} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \quad (5.14) \]

Where, \(i\) and \(j\) represent the number of columns and rows respectively. When \(W = 3\), the first user for EDW code as shown below:

\[
\begin{bmatrix}
C_1 & C_2 & C_3 & C_4 & C_5 & C_6 \\
1 & 0 & 1 & 1 & 0 & 0 \\
\end{bmatrix}
\]

\[K_1 = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \end{bmatrix} \quad (5.15) \]

Where:

\(C\): is the column number of the codes, which also represents the spectral position of the chip where \(C\) is 1, 2, 3…\(N\) and \(K\) is the user number

The steps below containing the operation of substitution for the first user of ODH code:

1\(^{st}\) One = \(M_{11}\)

\[
\begin{array}{cccccccccccccccc}
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

2\(^{nd}\) One = \(M_{13}\)

\[
\begin{array}{cccccccccccccccc}
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
From equation (5.13) we will get the basic matrix of ODH code as shown below:

\[
ODH_1 = \begin{bmatrix}
M_{11} & 0 & M_{13} & M_{14} & 0 & 0 \\
M_{21} & M_{22} & 0 & 0 & M_{25} & 0 \\
0 & 0 & M_{33} & 0 & M_{35} & M_{36}
\end{bmatrix}
\] (5.16)

From the basic matrix, a larger value of \(K \) users can be achieved by using a mapping technique as shown in equation (5.16).

\[
ODH_i = \begin{bmatrix}
ODH_{1,1} & 0 & 0 \\
0 & ODH_{1,2} & 0 \\
0 & 0 & ODH_{1,i}
\end{bmatrix}
\] (5.17)

where \(i = 2, 3, \ldots \) is the mapping sequence of the matrix.

In order to generate the full basic code matrix, we apply equation (5.13) on the remaining user rows of EDW basic matrix in the same manner used above. The illustrations the final ODH code matrix constructed according to the steps explained earlier is shown in Figure 5.6.
Since the code is hybrid, then the properties of the new code is a combination between the two codes involved in the new code construction, where the code weight \(W_{ODH} = W_{EDW} \times N_{M-Seq} \) and code length \(N_{ODH} = N_{EDW} \times N_{M-Seq} \).

5.4.2 ODH Security Performance

In most network security services, there are four basic objectives considered to protect the information and the network’s resources (Fisch & White 2000). They are confidentiality, availability, integrity, and usage. Confidentiality, that is, by making sure that an interceptor eavesdropper does not make access to data contained on a source of the network. Availability: by ensuring that authorized user is not denied access or use of any network access for which he is usually permitted. Integrity is related to authenticity, which is by ensuring that data is not changed by eavesdroppers. Usage: making sure that the resources of the network are allowed for use only by official users in a suitable approach.

An eavesdropper can implement an attack device to detect an intended user code word as shown in Figure 5.4. Again, once a user’s code word is intercepted and
detected by the eavesdropper, the eavesdropper could have free access to the user’s data until the user’s code is changed.

The probability that the eavesdropper can determine the official user’s entire code word pulses with no errors will depend on the detection approach format and the amount of time the eavesdropper observes the user’s transmission signal for each detect. Based on classical detection analysis (Trees 2001), this probability can be calculated from two quantities. These include the probability of missing a transmitted pulse in a given time bin, \(P_M \), and the probability of falsely detecting a pulse in a bin where none was transmitted, \(P_F \).

If the code interceptor receiver creates a code word decision based on investigating and examining the transmitted signal for encoded spectral amplitude coding optical CDMA data bit interval, the overall probability of correct code pulse detection is expressed by equation (3.1) from Chapter III:

\[
P_{\text{correct}} = (1 - P_M)^W (1 - P_F)^{(N-W)}
\] \hspace{1cm} (5.18)

Then, applying the code properties of the ODH in equation (5.3) we get:

\[
P_{\text{correct}} = \left[Q\left(\sqrt{\frac{2E}{N_o}},\sqrt{(2\gamma/N_o)}\right)^{W_{\text{corr}}} \left[1 - \exp\left(-\gamma/N_o\right)\right]^{(N_{\text{corr}} - W_{\text{corr}})}\right]
\] \hspace{1cm} (5.19)

\(E \) refers here to the energy in an individual code pulse not the energy received during an entire data bit. \(\gamma \) is the detection threshold and \(N_o \) is the noise power spectral density). \(Q \) is a function commonly called Marcum’s \(Q \) function (Trees 2001).

\[
Q(\alpha, \beta) \approx \int_{\beta}^{\infty} z \exp\left(-\frac{z^2 + \alpha^2}{2}\right) I_0(\alpha z) \, dz
\] \hspace{1cm} (5.20)
Where, E / N_o is the single pulse signal to noise ratio and w_{cont} and n_{cont} represents code weight and code length of the ODH spectral amplitude code Optical CDMA, respectively.

Applying the ODH spectral amplitude code optical CDMA code is shown in Figure 5.6 and Figure 5.7 is achieved, which illustrates the eavesdropper probability of correct detection as a function of signal to noise ratio for a single detected code pulse. For probability of correct detection of 0.5, an eavesdropper receiver interceptor would need to detect SNR of 11 dB. ODH code shows remarkable security improvement compared with M. seq., EDW and 2D EDW/M. seq., respectively.

As the figure shows, at higher SNRs the difference in eavesdropper performances for the mentioned codes is getting small. For these particular code dimensions, an eavesdropper utilizing receiver interceptor similar to that shown in Figure 5.4, would have the ability to detect the code pulses without errors with a probability of almost one at SNRs higher than 14 dB.

![Figure 5.7](image_url)
Figure 5.7 Eavesdropper performance based on detection theory
The extent of optical CDMA confidentiality is dependent on an eavesdropper SNR and the eavesdropper SNR relies in turn on the parameters of a system design and implementation. Thus, the confidentiality degree of an optical CDMA system may be controlled by the system parameters.

In spectral amplitude coding optical CDMA schemes, most contribution of noise comes from thermal noise, shot noise and PIIN (Smith et al. 1998; Wei et al. 2001). The eavesdropper photocurrent variance resulting from the use of band limited photodetector as shown in Figure 5.4 can be expressed as:

$$I^2 = 2eB\mathcal{R}\frac{P}{N_{\alpha\alpha}}\left(W_{\alpha\alpha}+K-l\right)+B\mathcal{R}\frac{P^2K}{\Delta V N_{\alpha\alpha}(W_{\alpha\alpha}-l)}\left(W_{\alpha\alpha}+K-l\right)+\frac{4K_{\alpha}T_{\alpha}B}{R_L}$$ \hspace{1cm} (5.21)

The first, second, and third terms represent, shot, thermal, and PIIN noises respectively. Where e is an electron charge, B is the electrical equivalent noise bandwidth of the receiver, \mathcal{R} is the photodiode responsively, P is the effective power of a broad-band source at the receiver, K the number of users, $\Delta \nu$ the optical source bandwidth, K_b is the Boltzmann’s constant, T_{α} the absolute temperature of receiver noise, and R_L the load resistance.

Figure 5.8 shows the effect of encoded spectral chip on the detected SNR achieved by eavesdropper receiver with different average received optical powers. Wide bandwidth and high received optical powers would increase the eavesdropper possibility to detect encoded spectral pulses. At low received optical power, increasing spectral chip bandwidth has small affect on eavesdropper performance leading to security improvement. The eavesdropper SNR is less than 8 dB at average optical power of -30 dBm which is corresponding to BER of 10^{-3}.
5.4.3 Simulation

The security enhancement performance of this proposed code has been simulated by using commercial simulation software, OptiSystem Version 7.0. A simple schematic block diagram consisting of three users is illustrated in Figure 5.9. Each user is assigned with ODH code as indicated in Figure 5.6. In this simulation, user one is considered to be the intended user for security performance analysis. The tests were carried out with data bit rate of 622 Mbit/s for 20 km distance with the ITU-T G.652 standard single mode optical fiber. All the attenuation (i.e. 0.25 dB/km), dispersion (i.e. 18 ps/nm-km) and non-linear effects were activated and specified according to the typical industry values to simulate the real environment as close as possible. The broadband optical source with bandwidth of 15 nm is spectrally divided to perform each user encoder. Each user’s encoder is modulated using external mach zehnder
modulator before multiplexed in the single mode optical fiber. Both encoder and decoder configurations are shown in Figure 5.10 which are based on the basic matrix of both the EDW and m-sequence codes. Since the EDW code has code weight of three, each code pulse will have 3 m-sequence spectral chips. Each chip has a spectral width of 0.4 nm.

Figure 5.9 ODH system block diagram

Figure 5.11 shows the encoded spectrum of the transmitted signal intensity for each single user and after multiplexer. These results are measured by optical spectrum analyser (OSA) with resolution of 0.01 nm. These test measurements are taken to ensure that each user is assigned with its corresponding proposed ODH code as indicated in Figure 5.6. Figure 5.12 shows the encoded spectrum, measured by OSA, of the transmitted signal for all users and each two users after multiplexer.
Figure 5.10 (a) ODH encoder and (b) ODH direct detection decoder
Figure 5.11 OSA measurements for encoded spectral chips (a) all users (b) user 1, (c) user 2, and (d) user 3

Figure 5.12 OSA measurements for encoded spectral chips (a) all users (b) users 1 & 2, (c) users 1 & 3, and (d) users 2 & 3
At the receiver side of the system, direct detection techniques have been implemented for authorized user detection (Abdullah et al. 2008; Hasoon et al. 2007b). The spectral direct detection (SDD) technique has shown better performance in comparison with the complementary one. In this particular simulation the eavesdropper may tap encoded pulses corresponding to user one by using the same receiver structure as shown in Figure 5.4.

The system performance has been described by observing and measuring detected spectral chip SNRs and eye patterns. When only user one is active in the network, the eavesdropper could obtain encoded spectral pulses with SNR of nearly 10 dB as shown in Figure 5.13. Therefore, the eavesdropper probability of correct detection of nearly 0.25 is achieved as illustrated in Figure 5.7. This implies security improvement in comparison with conventional SAC optical CDMA such as m-sequence and EDW codes. In these conventional codes, eavesdropper could achieve a probability of correct detection of more than 0.8 when detecting encoded pulses with SNR of 10 dB.

Figure 5.13: Encoded spectral pulses after eavesdropping from user one in an isolated situation (only user one is active in the network)
The corresponding eye diagrams for both eavesdropper and authorized user are shown in Figure 5.14. Since the detected encoded pulses do not have equal signal intensities, two extreme eye patterns are chosen as minimum and maximum values for the eavesdropper receiver.

Figure 5.14 Eye patterns (a) minimum for eavesdropper, (b) maximum for eavesdropper and (c) authorized user

Figure 5.15 and Figure 5.16 show the encoded spectral chips that have been detected by eavesdropper when there are two active users and three active users respectively. From these two particular cases, it is clear that when the network has more than one active user, additional difficulties are added for the eavesdropper because of the multiple user interference (MUI) influence which is considered to be the main problem in most optical CDMA technology. However, according to (Shake 2005b), it is shown that the per chip eavesdropper SNR is increased with the increment of the system capacity, thereby leading to tradeoffs between security and system performance.
Figure 5.15 Encoded spectral pulses after eavesdropping from user one (when only two users are active in the network)

Figure 5.16 Encoded spectral pulses after eavesdropping from user one (when all users are active in the network)

Therefore, the results shown in Figure 5.15 and Figure 5.16 depict these tradeoffs within this simulated network. Since all users are sharing specified spectral chip bandwidths, this will give an advantage for the eavesdropper to detect some of the encoded pulses with higher SNRs. The corresponding eye diagrams, when only two users or three users are active, are shown in Figure 5.17 and Figure 5.18 respectively. Because the detected encoded pulses do not have identical signal intensities, two extreme eye patterns are selected as minimum and maximum values for the eavesdropper receiver.
Figure 5.17 Eye patterns when two users are active (a) minimum for eavesdropper, (b) maximum for eavesdropper and (c) authorized user

Figure 5.18 Eye patterns when all users are active (a) minimum for eavesdropper, (b) maximum for eavesdropper and (c) authorized user
Figure 5.19 illustrates the effect of encoded spectral chip bandwidth for the intended (user one) based on simulating Figure 5.9 in an isolated situation. In this particular simulation, the eavesdropper optical filter is matched at wavelength of 1550 nm with a bandwidth of 40 GHz. Increasing encoded spectral bandwidth will increase the performance for both authorized and eavesdropper. Therefore, to enhance security performance for the authorized user, encoded spectral narrow bandwidths are suitable to be implemented. So, reducing the spectral chip from 40 GHz to 20 GHz, the resulting SNRs that could be achieved are 19 dB and 11 dB for authorized user and eavesdropper respectively. These SNR values are sufficient to achieve BER of 10^{-12} and 10^{-4} respectively, as shown in Figure 5.20.
The enhancement of the transmission security has been presented and demonstrated in this chapter. The enhancement has been achieved by proposing hybrid SAC optical CDMA schemes. One dimension hybrid (ODH) EDW/M seq. and two dimensions (2D) EDW/M seq. code systems have been implemented to provide a degree of transmission security for SAC optical CDMA. ODH code shows remarkable security improvement compared with M. seq., EDW and 2D EDW/M. seq., respectively. The results showed that increasing the code size will force eavesdropper to acquire encoded code pulses with low SNRs due to the code complexity. Therefore, a low probability of correct detection is achieved in the case of hybrid schemes. In addition, increasing spectral chip bandwidth has small affect on eavesdropper performance, particularly at low received optical power that could lead to security improvement. The eavesdropper SNR is found to be less than 8 dB at average optical power of -30 dBm, which is corresponding to BER of 10^{-3}. Furthermore, we have simulated these hybrid SAC optical CDMA systems using Optisystem software version 7 to present eavesdropper performance. Based on ODH, we have shown that when only user one is active in the network, the eavesdropper could obtain encoded spectral pulses with SNR of nearly 10 dB, which could achieve probability of correct detection of 0.25.
CHAPTER VI

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

6.1 CONCLUSION

This thesis has introduced the concept of security performance for spectral amplitude coding system. We have theoretically analyzed the capability of the eavesdropper based on calculating the probability of correct detection. It has been shown that the eavesdropper has used simple interceptor receiver to detect spectral encoded pulses that belong to an intended authorized user. This correct detection probability depends on the type of eavesdropper detection scheme and on the amount of time the eavesdropper would need to observe the authorized user’s signal for each pulse detection.

The eavesdropper detection strategy was adapted from classical detection analysis. Therefore, two well known quantities from radar detection theory; probability of detection and probability of false alarm were considered to calculate the probability of correct detection in a given time-bin. The probability of correct detection investigation was presented by employing several SAC optical CDMA codes such as MQC, MDW, EDW and M-sequence codes. Our results showed that the eavesdropper performance was directly affected by the code dimension being used. So, codes that have large code size make the eavesdropper interception procedure difficult because the encoded pulse SNRs that are detected by the eavesdropper receiver would not be sufficient to obtain high values of probability of correct detection.
The performance analysis of the eavesdropper SNR is also investigated in this thesis. Based on modified quadratic congruence MQC, a SAC optical CDMA code system, the eavesdropper SNR equation is derived. The eavesdropper is assumed to have the ability to implement a receiver interceptor that has direct detection scheme. In addition, thermal noise, shot noise and phase induced intensity noise PIIN are considered to be the main noise contributions in this analysis. As we have shown, wide bandwidth of encoded spectral chip bandwidth (ESCB) improved the performance for both authorized user and eavesdropper receiver. Therefore, reducing encoding spectral bandwidth would force the eavesdropper to use other techniques such as commercial error correction systems used to maintain an acceptable BER, which will add another difficulty to the eavesdropper code interception process. This does not mean that it is impossible for eavesdropper to have such equipments, especially those intelligent adversaries. In addition, the same procedure has been applied to the MDW code scheme. Here, we have determined the MDW code properties that are required for eavesdropper direct detection scheme. Our results showed that the MQC codes have slightly better security performance than the MDW codes. Therefore, based on probability of correct detection, MQC (12, 4) has 0.3 dB preference over MDW (9, 4).

Particularly, employing SAC optical CDMA with nearly same code space size, our results demonstrated that using unipolar optical CDMA codes schemes based on MQC and modified double weight MDW code system enhanced the security with a low cost implementation in comparison to the bipolar ones based on modified pseudorandom noise (PN) code. From the security viewpoint, one should minimize the eavesdropper capability to detect code word pulses by controlling the authorized performance to acceptable throughput.

The powerful computer software, Optisystem version 7, has been used to implement SAC optical CDMA code systems. Mostly, the simulation layout project properties such as global specification, attenuation, dispersion and nonlinear effects were activated and specified according to the typical industry values to simulate the real optical communication networks environment as close as possible. The simulation results of eavesdropper agreed well with the theoretical analysis. For on-off keying
modulation system used in this simulation, optical CDMA scheme cannot ensure physical layer security any more if there is only one active user in the network. When all users were active the eavesdropper encountered multiple access interference due to the reception of other users code addresses. However, he may still have a chance to isolate that intended user.

We have proposed hybrid SAC optical CDMA systems to enhance security performance. One dimension hybrid (ODH) EDW/M-sequence and two dimensions (2D) EDW/M-sequence code systems have been implemented to provide a degree of transmission security for SAC optical CDMA. The hybrid schemes were implemented by combining the advantages of the code properties from unipolar code schemes such as M-sequence and EDW. The security enhancements were investigated based on calculating both the probability of correct detection and the detected eavesdropper SNRs for the encoded spectral chip bandwidth. The hybrid schemes showed remarkable security enhancement in comparison to the conventional SAC optical CDMA codes. For probability of correct detection of 0.5, an eavesdropper receiver interceptor would need to detect SNRs of 9.2 dB and 11 dB for (2D) EDW/M seq. and ODH schemes respectively.

The ODH code was simulated using Optisystem software. Three users SAC optical CDMA network were implemented where each user was assigned with an ODH code. In this simulation, user one was considered to be the intended user for security performance analysis. The simulation performance was presented by observing and measuring detected spectral chip SNRs and eye patterns. When only the intended user was active in the network, the eavesdropper achieved encoded spectral pulses with SNR of nearly 10 dB; this value is capable to obtain a probability of correct detection of nearly 0.25. This implies security improvement in comparison with conventional SAC optical CDMA. When there was more than one active user communicating simultaneously in the network, the eavesdropper encountered additional difficulties to achieve good performance to solve the intended user code address. This is because of the Multiple User Interference (MUI) influence which is considered to be the main problem in most optical CDMA technology.
In this thesis, we have shown the tradeoffs between network system and eavesdropper security performance. The theoretical and simulation analysis were presented based on several SAC optical CDMA codes.

6.2 SUGGESTIONS FOR FUTURE WORK

It has been shown that optical CDMA provides transmission security at the physical layer of an optical communication network. Therefore, the suitability of optical CDMA for providing these types of security remains an uncovered issue for investigation. The transmission security, based on confidentiality, is considered to be one of the best recognized features of network transmission security that has been published so far. In addition, there are many other types of security such as availability, integrity and authentication that have not been published widely based on optical CDMA networks. In other words, there are many issues related to security of optical CDMA networks, which remain an open area for further research that can offer security functions such as authentication, jamming resistance, and covertness.

Based on the investigation of the transmission security for optical CDMA, we have suggested several recommendations for future research. These recommendations should not be observed as being exhaustive. However, they can enhance practical and realistic application of optical CDMA systems.

With regard to the covertness, we suggest that SAC optical CDMA will create a covert communication channel in optical communication to transmit WDM signals. The overall system turns out to be a hybrid SAC optical CDMA/WDM superimposed scheme, which is performed by overlaying a covert signal onto a host signal in the optical fiber transmission channel. Therefore, any of the SAC optical CDMA schemes that has already been implemented in this analysis can be used, which will make the eavesdropper unable to decode the authorized information without knowing the exact code.

Since we have investigated transmission security based on SAC optical that has on-off keying modulation, other modulations approaches can be used such as
phase shift keying (PSK) or 2-code keying and even M-code keying. In the 2-code keying, each transmitted bit will require to have one code sequence for a “1” and a different code sequence for a “0”. This modulation will create more difficulties for the eavesdropper to correctly detect and decode the authorized user’s assigned code.

As mentioned before, more studies can be carried out to enhance transmission security for optical CDMA in general, which remain an open area for further research. Therefore, more security analysis in the physical layer can be done using two and three dimensional codes that already have been implemented. Wavelength-hopping time-spreading (WHTS) system is a two-dimensional (2-D) coding approach that spreads the codes in both the wavelength and time domains at the same time and achieving increased code design flexibility as well as code performance. We believe that three dimensional codes will enhance physical layer security due to the large code space size that can be provided. Their encoding can be carried out in phase, wavelength and time domains or in polarization, wavelength and time domains, which are obtained by adding another encoding dimension on the basis of 2-D code systems.
REFERENCES

CDMA. Proceeding IEEE 5th International Symposium on Spread Spectrum
Techniques and Applications: 323-331.

Prucnal, P. R. 2006. Optical code division multiple access: fundamentals and

Multiple Access Fiber Networks. IEEE Journal on Selected Areas in
Communications 4 (9): 1484-1493.

Prucnal, P., Santoro, M. & Ting, F. 1986. Spread spectrum fiber-optic local area
network using optical processing. Journal of Lightwave Technology 4 (5): 547-
554.

of an M-code keying OCDMA system. Photonic Network Communications 15

San Francisco: Morgan Kaufimann Publishers.

optical fiber networks. II. Systems performance analysis. IEEE Transactions
on Communications, 37 (8): 834-842.

I. Fundamental principles. IEEE Transactions on Communications, 37 (8):
824-833.

code-division multiple access communication systems. Journal of Lightwave
Technology, 8 (3): 478-491.

of ultrashort light pulse code-division multiple access communications
network. IEEE International Conference on Communications ICC 1989: 728-
733.

matched filtering using time-addressed coding in optical ladder networks.

multiple-access communications. Fiber and Integrated Optics 16 (2): 129 -
157.

Stavroulakis, P. 2006 *Chaos Applications in Telecommunications*. Boca Raton: Taylor & Francis Group, LLC.

APPENDIX A

LIST OF PUBLICATIONS

Journals

Bakarman, H.A.; Zahid, A.Z.G.; Hasoon, F.N.; Shaari, S.; Ismail, M.; Eavesdropper SNR Performance based on Spectral Amplitude Code Optical CDMA. *IET Communications* (under review)

Bakarman, H.A.; Zahid, A.Z.G.; Hasoon, F.N.; Shaari, S.; Ismail, M.; Simulation of Eavesdropper performance based on One Dimension Hybrid SAC Optical CDMA. *Photonic Network Communications* (Submitted)

Conference Proceedings

Book Chapter