RATIO OF 210Po AND 210Pb IN FRESH, BRACKISH AND SALINE WATER IN KUALA SELANGOR RIVER

Tan Chin Siang¹, Che Abd Rahim Mohamed*¹, Zaharuddin Ahmad²

Marine Ecosystem Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
¹Malaysian Institute of Nuclear Technology Bangi

*Corresponding author: carmohd@.ukm.my

Keywords: 210Po, 210Pb, marine radionuclide

Abstract

Sediment cores were carried out from Kuala Selangor river to marine sea water via coastal and brackish water ambient. Sample size fraction with saiz less than 125 µm was spicked with tracer 209Po (Polonium-209) and leached with mix concentrated nitric acid (HNO₃), perchloric acid (HClO₄), hydrogen peroxide (H₂O₂), hydrochloric acid (HCl), and mineralized with 50 ml of 0.5M HCl. The sample solution was used for spontaneously deposit polonium on a silver disk at 80 – 85 °C and measured with the Alpha Spectrometry. The distribution of two radionuclides especially 210Po, 210Pb and 210Po/210Pb were useful in identifying the origin of 210Po. Ratio values of 210Po/210Pb in the freshwater, brackish water and saline water were 3.3459, 5.8385 2.9831, respectively. From the high ratio of 210Po/210Pb, the widespread occurrence of excess 210Po in Kuala Selangor river water may came from the atmosphere sources such as stratospheric aerosols, sea spray, particle-reactive with varying affinities both in terms of efficiency and type of matter to which they associate. Such as primary production, geochronology, environmental science and degradation of particles. There are also particle-reactive with varying affinities both in terms of efficiency and type of matter to which they associate.

Introduction

210Po and 210Pb are non-conservative radionuclides in 238U (Uranium-238) decay series products through the disintegration of 222Rn (Radon-222). The main source of this both nuclides in environment which is comes from the earth’s crust in 238U decay series. These radionuclides are also intermediate members of the naturally occurring 238U decay series and are recognized as tracers for naturally processes in the atmosphere. The physical half life of 210Po is 138.4 days; 210Pb is 22.3 years, have a potential utility as tracer for biogeochemical processes such as primary production, geochronology, environmental science and degradation of particles. There are also particle-reactive with varying affinities both in terms of efficiency and type of matter to which they associate. 210Pb in surface water are coming from the atmospheric deposition and in situ production by decay of 222Rn, whereas the main source of 210Po is in situ production by 210Pb decay. These nuclides are deposit into the bottom sediment of river bed or sea bed and 210Po is more associated with biogenic particles than is 210Pb [1].

222Rn is a chemically inert noble gas in periodic table with a half life of only 3.8 days, formed through disintegration of 228Ra (Radium-226). Once in the atmosphere, after exhalation from soil, 222Rn decays through a series of short-lived products to 210Pb, which is particularly particle-reactive and largely associates with aerosols. In coastal areas (up to several hundreds of km offshore), residence times of 210Pb in the atmosphere are only of about 7–15 days [2, 3, 4]. Due to these short residence times, 210Po (produced by 210Pb disintegration via 210Bi concentrations in aerosols, and thus fluxes to the surface, are only about 10–20% that of 210Pb [5].

Earlier studies have concluded that 210Po behaves more like the nutrient elements. Several studies of oceanic 210Pb distribution have shown that scavenging from the water column is enhanced at the continental margins.
relative to the open ocean [6]. Extensive measurement on ^{210}Po and its parent ^{210}Pb in open-ocean surface waters have shown that the $^{210}\text{Po}/^{210}\text{Pb}$ activity ratio, although geographically variable, average about 0.5 in seawater [7]. Through this idea, the objectives of this study was done to investigate ratio $^{210}\text{Po}/^{210}\text{Pb}$ in core sediment and water from study location along the river to seawater region via estuary brackish water region.

Sampling and Analytical procedures

This study was carried out at Kuala Selangor River on 22 May 2005. Kuala Selangor river is a fishing village located 67 km southeast from Kuala Lumpur and it is well known with great potential for tourism industry for the firefly habitat, associated with red mangrove system along the river. Kuala Selangor River is one of the major river systems in Selangor state and it drains into Malacca Straits. The river is 500 m wide at the mouth and ~2.5 m deep at low water level. High tide level may going up to ~10 m high in water level from bottom sea bed and ~2 m high when low tide respectively. The coastal zone is characterized by semi diurnal, macro-tidal regime with the mean spring tidal range of about 4.0 m [8].

Sediment cores were obtained using the gravity sediment corer and the surface water samples were collected using the Van Dorn water sampler at those eight stations along the river to seashore (Fig. 1). The in-situ parameters also measured at each sampling station. Sediment core was sliced in 3 cm interval for each segment for all sediment cores. At the laboratory, about 2 g of sediment sample with grain size less than 125 μm were analyzed using the procedure proposed by Flynn [9]. About 15 L of water samples were filtered through the 45 μm of membrane filter for obtain the filtrate samples. Sediment and water samples were spiked with ^{209}Po and plated on the silver disk at 80 – 85 ºC in 80 ml of 0.5N HCl. ^{210}Po activity was corrected to the sampling date after analyzed using the Alpha Spectrometry (EG & G, ORTEC). Then the activity of ^{210}Pb was determined after six months due to the in-growth of ^{210}Po.

![Figure 1: Map showing the sampling stations at Kuala Selangor from sea to the river region.](image-url)
Results and Discussion

210Po and 210Pb were computed into ratio 210Po/210Pb showed in Figure 2. The water samples were slightly varied from range 4.27 to 4.42 (Fig.2). The minimum activity was in station 1 and maximum activity was in station 8 along to river region from sea region. The unusual 4 times activity of 210Po higher than 210Pb may fallout in particulate source from atmospheric 210Po flux during rainfall event [10].

Southwest monsoon at the west coast of Peninsular Malaysia is usually established in middle of May or early of June and end in September therefore it was affected at the sampling location. The rainwater will flow from upstream of river to estuary and it is maintain constantly in ratio 4 also when low tide. The same ratio value also published by Tee [9] with result above 1 and obtained ratio during this study was varied from 1.19 to 6.84 in surface water sampling in August 2001. The source of excess 210Po in surface air have been suggested to occur through the biomass burning [11], industrial emissions [12] and emission of bio-volatile 210Po from coastal seawater [13]. The relationship between the conductivity value in water was inversely with the ratio value of 210Po/210Pb, where the ratio gradually high with the conductivity values gradually decreased (Table 1) from seawater to the river water. Moreover, the haze problem also affected the air quality in west coast Peninsular Malaysia air environment due to the air pollution forest burning from the Sumatera, Indonesia during August to October every year since year 1997 [14].

The average activity ratio of 210Po/210Pb in sediment core showed in Table 2. Ratio of 210Po/210Pb obviously indicated greatly varied change from seawater to brackish water with the highest value of 5.84 to the lowest value of 2.98. Apart from the 210Po was formed by the decay of 210Pb containing in the atmospheric, additional amounts are emitted directly from the Earth as a result of forest burning [15, 16]. It was increased from estuary to inland river stations (Fig. 2)

![Figure 2: Ratio 210Po/210Pb of water samples and sediment core samples at Kuala Selangor from sea ambient (St 1-St 3) to river ambient (St 5-St 8).](image)

The highest value of 210Pb in the surface sediment found at St 4 about 3.98 ± 0.10 dpm/g was due to the boating activities. Furthermore, in the water column at St 1 has the highest ratio of 210Po/210Pb may correspond to the high contents of total dissolve solid (TDS) which is influenced by particulate tendency bury to the seabed. Dissolved and particulate samples ratio obtained during this study will be figure out the boundary scavenging intersected occur at the St 3 with a ratio 4.40, where the water mass coming in contact with this margin and affected the sediment acted to enhance the 210Pb sinking flux by supplying water with a high 210Pb concentration.

Conclusions

Ratio of 210Po/210Pb in surface water was consistent from seawater ambient to the inland river with value from 4.27 to 4.42. This related to the contents of suspended particle in the water column. The activity of 210Po was greater than the 210Pb in all the samples obtained during this study.
Tan Chin Siang et al.: RATIO OF 210Po AND 210Pb IN FRESH, BRACKISH AND SALINE WATER IN

Table 1: *In situ* water samples parameter and ratio 210Po/210Pb in Kuala Selangor River

<table>
<thead>
<tr>
<th>Station</th>
<th>Coordinate</th>
<th>Location</th>
<th>Temperature (°C)</th>
<th>Conductivity (mSv)</th>
<th>Salinity</th>
<th>TDS (ppm)</th>
<th>DO (%)</th>
<th>pH</th>
<th>Turbidity (NTU)</th>
<th>Ratio 210Po/210Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>03° 17' 28 N</td>
<td>101° 12' 52 E</td>
<td>29.97</td>
<td>53.571</td>
<td>31.81</td>
<td>31.80</td>
<td>79.70</td>
<td>7.99</td>
<td>124.40</td>
<td>4.2731</td>
</tr>
<tr>
<td>2</td>
<td>03° 18' 31 N</td>
<td>101° 13' 02 E</td>
<td>30.11</td>
<td>50.713</td>
<td>29.83</td>
<td>30.04</td>
<td>78.20</td>
<td>7.77</td>
<td>71.20</td>
<td>4.3154</td>
</tr>
<tr>
<td>3</td>
<td>03° 21' 10 N</td>
<td>101° 14' 10 E</td>
<td>30.94</td>
<td>52.954</td>
<td>30.77</td>
<td>30.77</td>
<td>92.00</td>
<td>7.76</td>
<td>197.90</td>
<td>4.3154</td>
</tr>
<tr>
<td>4</td>
<td>03° 20' 04 N</td>
<td>101° 15' 25 E</td>
<td>30.83</td>
<td>24.751</td>
<td>13.31</td>
<td>14.48</td>
<td>64.20</td>
<td>7.13</td>
<td>74.40</td>
<td>4.3154</td>
</tr>
<tr>
<td>5</td>
<td>03° 21' 09 N</td>
<td>101° 15' 23 E</td>
<td>30.82</td>
<td>1700</td>
<td>0.76</td>
<td>0.99</td>
<td>71.50</td>
<td>6.40</td>
<td>32.30</td>
<td>4.3154</td>
</tr>
<tr>
<td>6</td>
<td>03° 22' 02 N</td>
<td>101° 15' 47 E</td>
<td>30.58</td>
<td>510</td>
<td>0.24</td>
<td>0.34</td>
<td>63.10</td>
<td>6.23</td>
<td>354.10</td>
<td>4.4229</td>
</tr>
<tr>
<td>7</td>
<td>03° 23' 08 N</td>
<td>101° 16' 52 E</td>
<td>30.87</td>
<td>178</td>
<td>0.07</td>
<td>0.11</td>
<td>64.40</td>
<td>6.16</td>
<td>471.30</td>
<td>4.4229</td>
</tr>
<tr>
<td>8</td>
<td>03° 23' 16 N</td>
<td>101° 17' 46 E</td>
<td>31.20</td>
<td>138</td>
<td>0.06</td>
<td>0.08</td>
<td>66.40</td>
<td>6.14</td>
<td>286.30</td>
<td>4.4229</td>
</tr>
</tbody>
</table>

Table 2: Average activity 210Po, 210Pb and ratio 210Po/210Pb in sediment core at Kuala Selangor River

<table>
<thead>
<tr>
<th>Station</th>
<th>Average 210Po (dpm/g)</th>
<th>Uncertainty</th>
<th>Average 210Pb (dpm/g)</th>
<th>Uncertainty</th>
<th>Ratio 210Po/210Pb</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.10</td>
<td>± 0.43</td>
<td>1.22</td>
<td>± 0.07</td>
<td>5.84</td>
<td>± 0.51</td>
</tr>
<tr>
<td>2</td>
<td>8.14</td>
<td>± 0.27</td>
<td>1.43</td>
<td>± 0.05</td>
<td>5.69</td>
<td>± 0.27</td>
</tr>
<tr>
<td>3</td>
<td>7.98</td>
<td>± 0.54</td>
<td>1.94</td>
<td>± 0.13</td>
<td>4.12</td>
<td>± 0.40</td>
</tr>
<tr>
<td>4</td>
<td>11.86</td>
<td>± 0.30</td>
<td>3.98</td>
<td>± 0.10</td>
<td>2.98</td>
<td>± 0.10</td>
</tr>
<tr>
<td>5</td>
<td>13.58</td>
<td>± 0.65</td>
<td>3.37</td>
<td>± 0.16</td>
<td>4.03</td>
<td>± 0.28</td>
</tr>
<tr>
<td>6</td>
<td>14.32</td>
<td>± 0.47</td>
<td>3.39</td>
<td>± 0.11</td>
<td>4.22</td>
<td>± 0.20</td>
</tr>
<tr>
<td>7</td>
<td>11.09</td>
<td>± 0.64</td>
<td>2.83</td>
<td>± 0.16</td>
<td>3.92</td>
<td>± 0.32</td>
</tr>
<tr>
<td>8</td>
<td>12.63</td>
<td>± 0.63</td>
<td>3.75</td>
<td>± 0.19</td>
<td>3.35</td>
<td>± 0.25</td>
</tr>
</tbody>
</table>
Acknowledgement

The authors would like to thank all the Malaysian Institute of Nuclear Technology Research (MINT) staffs especially Mr. Kamarozaman Bin Ishak and Ms. Zal’Uyun for their technical support. Thanks also to all the Universiti Kebangsaan Malaysia (UKM) staffs for their support during sampling.

References