The Malaysian Journal of Analytical Sciences Vol 13 No 1 (2008): 505 - 512

 

 

METALLATION OF PROTOPORPHYRINS USED AS FLUORESCENT CHEMOSENSOR FOR IMIDAZOLE RECOGNITION

 

Kornvalai Panpae*, Chaiwat Krikrutthee, Phumthan Porntaweethum,

Panya Weerachiwcharnchai and Aekapoj Chenwittayayos

 

Department of Chemistry, Faculty of Science, King’s Mongkut University of Technology Thonburi, Bangkok 10140, Thailand.

 

* Corresponding author:kornvalai.pan@kmutt.ac.th

 

 

Abstract

Metalloporphyrin Complexes  play significant roles in  many biological and catalytic  systems The  diversity  of their functions is due in part to the variety of metals that bind in the “pocket” of the porphyrin ring  system.   Two kinds of metalloporphyrin derivatives, Cu (II) and Zn (II) protoporphyrins (PP), were  microscale synthesized   ((1) and (2)) and characterized by spectroscopic methods anmagnetic measurements.   A PP ligand bound to each metal center in a tetradentate fashion including four amine nitrogen atoms in the equatorial planes.  These complexes were found to recognize imidazolyl groups of histidine and histamine derivatives as guest molecules by  coordination and additional non-covalent interactions.  These added analytes displace the selective fluorescent indicator, which when released to the solution displays its full fluorescence.  Thus, analyte recognition is signaled by the sharp appearance of the fluorescence of the indicators. The binding affinities of (1) and (2) to histidine and histamine were investigated and accounted for different complexation properties.  Moreover, we demonstrated that careful choice of a fluorescent indicator with tuned affinity toward the receptor can  provide  discrimination  in  sensing  of  a  desired  substrate  and  the  role  that  the  metal  coordination  plays  on  the hypsochromic shift and loss of fluorescence distincted characteristics of hypsoporphyrins were also discussed.

 

     

 



Keywords : Metallation, Imidazole recognition, Histidine, Histamine, Protoporphyrin, Fluorescent chemosensor.

 

References

1.     Chow, C-F., B.K.W. Chiu, M.H.W. lam and W.-Y. Wong, 2003. A trinuclear heterobimetallic Ru(II)/Pt(II) complex as a chemodosimeter selective for sulfhydryl-containing amino acids and peptides. J. Am. Chem. Soc. Chem. Commun. 125 : 7802-7803.

2.    Euriz, R.D and E.A. Jauregui, 1990. Study of the configurational isomerism of polar  groupspresent in histamine H2-receptor antagonists. J. Mol. Stuc. : THEOCHEM, 207 : 269-283.

3.    Hanaoka, K., K. Kikuchi, H. Kojima, Y. Urano and T. Nagano. 2004. Development of a zincion selective luminescent lanthanide chemosensor for biological application. J. Am.Chem. Soc. 126 : 12470 12476.

4.    Ho, H.A. and M. Leclerc. 2003, New colorimetric and fluorometric chemosensor based on  aCatiouic polythiophene derivative for iodide-specific detection. J. Am. Chem. Soc.  Chem.Commun.  125 : 4412 4413.

5.    Hortalá, L. Fabbrizzi, N. Marcotte, F. Stomeo and A. Taglietti. 2002. Designing the selectivity  of the fluorescent detection of amino acids : A chemosensing ensemble for histidine. J. Am. Chem. Soc. 125 : 20 21.

6.    Kojima,  T.,  H.  Kitaguchi,  Y.  Tachi,  M. Yasutake,  Y.  Naruta  and  Y.  Matsuda. 2005.  synthesis  and characterization  of  novel  Cu(II)-bipyridine complexex having  functional  groups  and  their  application toword molecular recognition. Inorg. Chim. Acta. 358 : 3592 3600.

7.    Marsh,  D.F.  and  L.M.  Mink.  1996.  Microscale  synthesis  and  electronic  absorption  spectroscopy  of tetraphenylporphyrin H2    (TPP) and metalloporphyrins Zn(II)(TPP) and  Ni(II)(TPP). J. Chem. Educ. 73 (12) : 1188 1190.

8.    Morel, A., M. Darmon and M. Dalaage. 1990. Recognition of imidazole and histamine  derivatives by monoclonal antibodies. Molec. Immun. 27 : 995 1000.

9.    Panpae,  K.,  T.  Rerkchanchai  and  T.  Wongsrichalalai.  2007.  Synthesis  of  Zn(II)-oxazoline/pyridine derivative complex as a molecular sensing ensemble for aspartate and histidine. Kasetsart J. : Natural Sci. 41 : 158 168.

10.  Saucodo, L. and L.M. Mink. 2005. Microscale synthesis and 1NMR analysis of Zn(II) and  Ni(II) tetraphenylporphyrins. J. Chem. Dduc. 82 (5) : 790 802.

11.  Tong, A., H. Dong and L. Li. 2002. Molecular imprinting-based fluorescent chemosensor for  histamine using zinc (II) – protoporphyrin as a functional monomer. Anal. Chim. Acta. 466 : 31 37.

12.  Zheng, Y., Q. Hua, P. Kele, F.M. Andreopoulos, S. M. Pham and R.M. Leblanc. 2001. A new fluorescent chemosensor for copper ions based on tripeptide glycyl histidyl lysine (GHK). Org. Lett. 3 : 3277 3280.

13.  Zheng. U., X. Cao, J. Orgulescu, V. Konka, F.M. Andreopoulos, S.M. Pham and R.M. Leblanc.  2003. Peptidyl fluorescent chemosensors for the detection of divalent copper .Anal. Chem. 75 : 1706 1712.

 




Previous                    Content                    Next