The Malaysian Journal of Analytical Sciences Vol 12 No 3 (2008): 586 - 592

 

 

 

ELECTROCHEMICAL PREANODIZATION OF GLASSY CARBON ELECTRODE AND APPLICATION TO DETERMINE CHLORAMPHENICOL

 

Nguyen Minh Truc*, John Mortensen and Nguyen Ba Hoai Anh

 

Department of Anal. Chem., Faculty of Chemistry, Ho Chi Minh University of Natural Sciences,

HCMC, Viet Nam.

 

*Corresponding author: nmtruc@hcmuns.edu.vn

 

Abstract

This paper suggested a method to enhance the performance of carbon electrodes for the determination of chloramphenicol (CAP). The sensitivity and  the reproducibility of the carbon electrodes could be  enhanced easily by electrochemical pretreatment. Some kinds of carbon material were studied including glassy carbon, graphite carbon and pyrolytic carbon. Numerous kinds of supporting electrolyte  have been tried. For glassy carbon electrode, the acidic solution, H2SO4   5mM, resulted in best performance at pretreated voltage of +2.1V (vs. Ag/AgCl) in duration of 250 second. However, for graphite and pyrolytic carbon electrodes, the phosphate buffer solution pH 6.0 gave the best performance at +1.7V (vs. Ag/AgCl) in duration of 20 seconds. The detection limit could be at very low concentration of CAP: 0.8ng/ml for glassy carbon electrode, 3.5ng/ml for graphite carbon electrode. The method was successful applied to aqua-agriculture water  sample and milk sample with simple extraction as well as direct ointment sample analysis.

 

Keywords : Chloramphenicol, electrochemical pretreatment, voltammetry, glassy carbon electrode

 

References

1.      A.  Dekanski,  J.  StevanovIc,  R.  StevanovIc,  B.  Ž.  NikolIc,  V.  M.  JovanovIc  (2001),  Glassy  carbon electrodes I. Characterization and electrochemical activation, Carbon 39, 1195-1205.

2.     A. L. Beilby, H. Y. Stem (1995), Electrochemical Pretreatment of Carbon Electrodes as a  Function of Potential, pH, and Time, Anal. Chem. 67, 976-980.

3.     D. Jurgen, E. Steckhan (1992), Influence of the supporting electrolyte and the pH on the electrooxidative activation of glassy carbon electrodes, J. Electroanal. Chem., 333, 177-193.

4.     D.  T. Fagan, I. Hu, and T. Kuwana (1985), Vacuum Heat Treatment for Activation of Glassy  Carbon Electrodes, Anal. Chem. 57, 2759-2763.

5.     E. Hershenhart, R. L. McCreery, R. D. Knight (1984), In situ cleaning and activation of solid  electrode surfaces by pulsed laser light, Anal. Chem. 56, 2256-2257.

6.      European  Commission  Decision  200216571EC   of  12  August  2002  implementing  Council   Directive 96/23/EC   concerning   the   performance   of   analytical   methods   and   the   interpretation   of   results (2002/657/EC) L221/8 (2002).

7.     G. Ilangovan, K. Chandrasekara Pillai (1999), Machenism of activation of glassy carbon  electrodes by cathodic pretreatment, J Solid State Electrochem. 3, 357-360.

8.     Hao-Yu Shen, Hai-Liang Jiang (2005), Screening, determination and confirmation of chloramphenicol in seafood, meat and  honey using ELISA, HPLC—UVD, GC—ECD,  GC—MS—EI—SIM  and GCMS—NCI—SIM methods, Anal. Chim. Acta 535 33-41.

9.     J.J. V. Der Lee, W. P. Van Bennekom, H. J. De Jong (1980), Determination of chloramphenicol at ultra-trace levels by high-performance differential polarography. Application to milk and meat,  Anal.  Chim. Acta, 117, 171-182.

10.  K. J. Stutts, P. M. Kovach, W.G. Kuhr, R. M. Wightman (1983), Enhanced electrochemical reversibility at heat-treated glassy carbon electrodes, Anal. Chem. 55; 1632-1634.

11. L.    AguI,    A.Guzmán,    P.Yáflez-Sedeflo,   J.M.Pingarrón    (2002),    Voltammetric    determination    of chloramphenicol in milk at electrochemically activated carbon fibre microelectrodes, Anal.  Chim. Acta 461 65-73.

12.  L. J. Kepley, A. J. Bard (1988),  Ellipsometric, Electrochemical, and Elemental Characterization  of the Surface Phase Produced on Glassy Carbon Electrodes by Electrochemical Activation, Anal.  Chem. 60, 1459-1467.

13.  M. Feng, D. Long, Y. Fang (1998), Parallel incident spectroelectrochemistry study of  chloramphenicol, Anal. Chim. Acta. 363: 67-73

14.  Maciej  J.  Bogusz,  Huda  Hassan,  Eid  Al-Enazi,  Zuhour  Ibrahim,  Mohammed  Al-Tufail  (2004),  Rapid determination  of  chloramphenicol  and  its  glucuronide  in  food  products  by  liquid  chromatography— electrospray negative ionization tandem mass spectrometry, J. Chromatography B, 807 343—356.

15.  Nguyen Minh Truc, John Mortensen, Nguyen Ba Hoai Anh (2005), Proceedings of The second national conference on Analytical Sciences, Hanoi, Viet Nam, 222-225.

16.  R.  C.  Engstrom  (1982),  Electrochemical  Pretreatment  of  Glassy  Carbon  Electrodes,  Anal.  Chem.  54, 2310-2314.

17.  R. C. Engstrom, V. A. Strasser (1984), Characterization of Electrochemically Pretreated Glassy  Carbon Electrodes , Anal. Chem. 56, 136-141.

18.  R. J. Taylor, A. A. Humffray (1973), Electrochemical studies on glassy carbon electrodes: I.  Electron transfer kinetics J. Electroanal. Chem. 42, 347.

19. Sandra Impens, Wim Reybroeck, Jan Vercammenc, Dirk Courtheyn, Sigrid Oogheb, Katia De Wasch, Walter Smedts, Hubert De Brabander, (2003) Screening and confirmation of chloramphenicol in shrimp tissue using ELISA in combination with GC—MS and LC—MS, Anal. Chim. Acta 483 153—163.

20.  Santos,  Lucia;  Barbosa,  Jorge;  Castilho,  M.  Conceicao;  Ramos,  Fernando;  Ribeiro,  Carlos  A.  Fontes; Noronha da Silveira, M. Irene (2005).  Determination of chloramphenicol residues in rainbow trouts by gas chromatography-mass spectrometry and liquid chromatography-tandem mass  spectrometry. Anal. Chim. Acta, 529, 249-256.

21.  T. Nagaoka, T. Yoshino (1986), Surface Properties of Electrochemically Pretreated Glassy Carbon, Anal.Chem. 58, 1037-1042.

 




Previous                    Content                    Next