The Malaysian Journal of Analytical Sciences Vol 16 No 2 (2012): 117 – 133

 

 

 

UPTAKE OF HEAVY METAL IONS BY CHELATING ION-EXCHANGE RESIN DERIVED FROM  P-HYDROXYBENZOIC ACID-FORMALDEHYDE-RESORCINOL: SYNTHESIS, CHARACTERIZATION AND SORPTIONDYNAMICS

 

(Pengambilan Ion Logam Berat oleh Resin Penukar Ion Terbitan Asid p-Hidroksibenzoik-Formaldehid-Resorsinol: Sintesis, Pencirian dan Dinamik Erapan)

 

Riddhish R. Bhatt1, Bhavna A. Shah1* and Ajay V. Shah2

 

1Department of Chemistry,

Veer Narmad South Gujarat University, Surat-7, Guj., India.

2Department of Chemistry,

Polytechnic, Vidhyabharti Trust, Umrakh, Bardoli, Guj., India

 

*Corresponding author: rrbhatt_chem@yahoo.com

 

 

Abstract

Chelating ion-exchange resin (pHFR) has been synthesized by condensing p-hydroxybenzoic acid with formaldehyde employing resorcinol as cross linking agent at 80 ± 5 oC using DMF as a solvent. The resin was characterized by elemental analysis, FTIR, 1H-NMR and XRD. The thermal analysis (TGA, DTA and DTG) was done at the heating rate of 10 oC/min in N2 atmosphere. The morphology of the resin was studied by optical photographs and scanning electron micrographs (SEM) at different magnifications. The physico-chemical properties have been studied. The uptake behaviour of various metal ions viz. Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) towards pHFR resin have been studied depending on contact time, pH, metal ion concentration and temperature. The maximum uptake capacity for Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) are found 1.310, 2.304, 1.690, 1.591 and 2.020 mmol/g respectively. The selectivity order is: Cu(II)>Pb(II)>Zn(II)>Cd(II)>Ni(II). The intra-particle diffusion rate constant (Kid) and external diffusion rate constant (Ks) are calculated by Saphn-Schlunder and Weber-Morris models respectively. Equilibrium adsorption data were analyzed by Langmuir and Freundlich equations. The adsorption process follows first order kinetics and specific rate constant Kr was obtained by the application of Lagergan equation. Thermodynamic parameters viz. ∆Go, ∆So and ∆Ho have also been calculated for the metal-resin systems.

 

Keywords: Chelating resin, thermal study, SEM, Thermodynamics, optical photograph, kinetics

 

References

1.     R. C. DeGeiso, L. Donaruma, E. A. Tomic. 1962. Chelation ion-exchange properties of a salicylic acid-formaldehyde polymer. Anal. Chem, 34(7): 845-847.              

2.     M. M. Patel, Manavalan R (1983) Indian J Chem 22A: 117-119.

3.     M. M. Patel and  R. Manavalan. 1984. Synthesis and characterization of p-hydroxybenzoic  acid –thiourea-trioxane copolymer  J Indian Chem Soc, 61: 490-494.

4.     P. M. Shah, A. V. Shahl and B. A. Shah. 2008. Metal ions uptake by chelating resin derived  from o-substituted benzoic acid and its synthesis, characterization and properties.  Macromolecular Symposia. 274 (1), 81-90.

5.     B.  A. Shah1, A. V. Shah, and N. B. Patel. 2008. Benign Approach of Microwave Assisted synthesis  of Copolymeric Resin with Improved Thermal, spectral and Ion-exchange Properties. Iranian Polymer Journal. 17(1), 3-17.

6.    F. Vernon, H. Eccles. 1974. Chelating ion-exchangers containing salicylic acid. Anal Chim Acta, 72, 331-338.

7.     M. V. Vyas, R. N. Kapadia. 1980. Synthesis and physico-chemical studies of some new amphoteric ion-exchangers. Indian J Technol, 18, 411-415.

8.     M. V. Vyas, R. N. Kapadia. 1981. Synthesis and evaluation of chelating amphoteric ion exchanger. Indian J Technol, 19, 491-492.

9.     S. Amin and R. N. Kapadia. 1997. Synthesis and characterization of amphoteric ion-exchangers. Journal of Scientific and Industrial Research, 56, 540-544.

10.  M. Mubarak, F. Rimawi and F. Khalili. 2004. Chelating properties of some phenolic formaldehyde polymers towards some lanthanide ions. Solvent Extraction and Ion Exchange, 22, 721-725.

11.  S. Samal, R. Das and Day R. 2000. Synthesis, characterisation and metal on uptake of chelating resin derived from formaldehyde-condensed azodyes of aniline and 4,4’-diaminophenyl methane coupled with phenol/resorcinl. J Appl Polym Sci, 77, 3128-3132.

12.  I. Burgeson, B. Cook, D. Blandchard and D. Weier. 2006. Evaluation of elution parameters for cesium ion-exchange resin. Sep Sci Technol, 41, 2373-2390.

13.  S. Fiskum, D. Blandchard, K Thomas K, T. Trang-Le. 2006. Sep Sci Technol 41: 2461-2467.

14.  B. A. Shah, A. V. Shah and R. R Bhatt. 2007. Studies of chelation ion-exchange properties of copolymer resin derived from salicylic acid and its analytical application. Iranian polymer Journal, 16(3), 173-182.

15.  B. A. Shah, A. V. Shah and P. M. Shah. 2006. Synthesis, Characterization and analytical applications of o-substituted benzoic acid chelatiang resin. Iranian polymer Journal, 15(10), 809-819.

16.  A. I. Vogel. 1989. Quantitative Inorganic Analysis, 5th Ed., Longaman, London.

17.  A. Helfferich. 1962. Ion exchange, McGraw-Hills, NewYork.

18.  R. Kunnin. 1958. Ion exchange resin, Wiley, London.

19.  R. M. Silverstain, G. C. Bassler. 1991. Spectrometric Identification of Organic Compound. John Wiley and Sons Inc., New York.

20.  E. Pehlivan and T. Altum. 2006. The sstudy of various parameters affecting the ion-exchange of Cu2+, Zn2+, Ni2+, Cd2+ and Pb2+ from aqueous solution on Dowex 50W synthetic resin.  J Hazard Mater, B134, 149-156.

21.  A. Tager. 1978. Physical Chemistry of Polymer. Mir Publisher, Moscow.

22.  S. A. Johnson, E. S. Brighan, T. E. Mollouk. 1997. Effect of micropore on the structure and properties of zeolite polymer replica. Chem Mater. 9, 2448-2458.

23.  W. M. Jackson. 1964.  Thermal degradation of resins. J Appl Polym Sci.  8, 2873-2879.

24.  Charlls RG .1963. metal chelate polymers derived from tetraacetylethane J Poly Sci. A1(1), 267-276.    

25.  B. A. Shah, A. V. Shah, B. N. Bhandari and R. R. Bhatt. 2008. Synthesis, characterization and chelation ion-exchange studies of a resin copolymer derived from 8-hydroxyquinoline-formaldehyde-catechol. J Iranian Chem Soc, 5(2), 252-261.

26.  C. Peniche-Covas, L. W. Alvarez, W. Arguelles-Monal. 1992. The adsorption of mercuric ion by chitosan. J Appl Polym Sci, 46, 1147-1453.

27.  G. Karthikeyan, K. Anbalagan, N. M. Andal. 2004. Adsorpion dynamics and equilibrium studies of Zn(II) onto chitosan. J Chem Sci, 116(2), 119-127.

28.  H. H. Prasad, K M. Popat, P. S. Anand. 2002. Synthesis of crosslinked methacrylic acid-co ethyleneglycol dimethacrylate polymers for the removal of copper and nickel from water.  Indian J Chem Technol, 9, 385-393.

29.  A. Demirbas, E. Pehlivan. 2005. Adsorption of Cu(II), Zn(II), Ni(II), Pb(II) and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin. J Colloid Interf. Sci, 282, 20-26.

30.  I. S. Lima, C. Airoldi. 2004. A thermodynamic investigation on chitosan-divalent cation interaction. Thermochim. Acta, 421, 133-139.

31.  Baraka A, Hall PJ, Heslop MJ (2007) Melamine-formaldehyde-NTA chelating gel resin: synthesis, characterization and application for copper(II) ion removal from synthetic wastewater. J Hazard. Mater. 140: 86-94.

32.  D. K. Singh, M. Srivastava, 2006. Synthesis, characterization and analytical applications of a new chelating resin containing p-bromophenylhydroxamic acid. J Liq Chrom Related Technol. 29: 1433-1445.

33.  T. Vaughan, C. W. Seo, W. E. Marshall. 2001. Removal of selected metal ions from aqueous solution using modified corncobs. Biresor. Technol 78: 133-139.

34.  R. E. Treyabl. 1980. Mass transfer operations, McGraw Hill, New York.

35.  H. Spahn, U. Schlunder. 1975. The scale-up of the activated carbon column for water purification based on results from batch test-1: Theoretical and experimental determination of adsorption rates of single organic solutes in batch test. Chem Eng Sci, 30, 529-535.

36.  J. C. Morris, W. J. Weber. 1962. Advance in Water Pollution Research, Pergamon Press, New York.

 

Previous                    Content                    Next