FABRICATION AND OPTICAL CHARACTERISATION OF RARE EARTH ACTIVE IONS DOPED TELLURITE GLASS SYSTEM

(Azman Kasim1, Azhan Hashim1, Syamsyir Akmal Senawi1, Mardhiah Andullah1, Noranizah Awang2, Nurbaisyatul Ermiza Suhaimi2, Siti Nasuha Mohd Rafien2)

1Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, 26400 Jengka, Pahang, Malaysia
2Faculty of Applied Sciences, Universiti Teknologi MARA, 40540 Shah Alam, Selangor, Malaysia

*Corresponding author: azman615@pahang.uitm.edu.my

Received: 23 November 2014; Accepted: 3 September 2015

Abstract

Five samples of tellurite glasses with the system of (78-x) TeO2-10PbO-10Li2O-2Nd2O3-xEr2O3 where x = 0.0, 0.5, 1.0, 1.5, 2.0 mol% have been prepared by using the conventional melt-quenching method. In this work, the optical properties by means of their up-conversion luminescence as well as the optical parameters related to Judd-Ofelt theory were measured. The result reveals that six distinctive up-converted bands contributed from Nd3+ ions are observed to be centered at 485 nm, 605 nm, 665 nm, 880 nm, 1062 nm and 1340 nm attributed from 3G4/2 → 1I15/2, 3G4/2 → 1I13/2, 3F4/2 → 1I11/2, 3F2/2 → 1I9/2 and 3F2/2 → 1I7/2 transitions whereas, three upconverted bands contributed from Er3+ ions to be centered at 493 nm, 524 nm and 550 nm are found originating from 4F7/2 → 4I15/2, 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions under the excitation at 585 nm. Meanwhile, the optical parameters according to Judd-Ofelt theory such as the radiative lifetime, \(\tau_R \), stimulated emission cross-section \(\sigma_{\text{eff}} \) and the non-radiative relaxation, \(W_{nr} \) of the glass were found ranging from 0.812 ms to 1.248 ms, 0.812 x 10^20 cm^2 to 1.248 x 10^20 cm^2 and from 0.144 ms\(^{-1}\) to 0.180 ms\(^{-1}\) respectively with respect to mol% of composition. Further analysis and discussion will be elaborated in brief.

Keywords: up-conversion, excitation, Judd-Ofelt, radiative, relaxation

Abstrak

Lima sampel kaca tellurite dengan sistem (78-x) TeO2-10PbO-10Li2O-2Nd2O3-xEr2O3 dimana x = 0.0, 0.5, 1.0, 1.5, 2.0 mol% telah disediakan menggunakan kaedah sepuh-lindup konvensional. Dalam kerja ini, sifat-sifat optikal seperti pendarkilau pertukaran atas serta parameter optikal yang berkaitan dengan teori Judd-Ofelt telah diukur. Keputusan menunjukkan bahawa enam jalur pertukaran atas tersendiri sumberan dari ion-ion Nd3+ telah dicerap berpusat di 485 nm, 605 nm, 665 nm, 880 nm, 1062 nm dan 1340 nm ditentukan dari transisi \(3G_{4/2} \rightarrow 1I_{15/2}, 3G_{4/2} \rightarrow 1I_{13/2}, 3G_{2/2} \rightarrow 1I_{11/2}, 3F_{4/2} \rightarrow 1I_{9/2} \), \(3F_{2/2} \rightarrow 1I_{7/2} \) dan \(3F_{2/2} \rightarrow 1I_{5/2} \) transisyon whereas, tiga jalur pertukaran atas dari ion-ion Er3+ dijumpai berpusat di 493 nm, 524 nm dan 550 nm hasil dari transisi \(4F_{7/2} \rightarrow 4I_{15/2}, 2H_{11/2} \rightarrow 4I_{15/2} \) dan \(4S_{3/2} \rightarrow 4I_{15/2} \) di bawah pengujaan 585 nm. Sementara itu, parameter optikal merujuk kepada teori Judd-Ofelt seperti jangkahayat radiasi, \(\tau_R \), keratan rentas penyinaran terang, \(\sigma_{\text{eff}} \) dan relaksasi tak bersinar, \(W_{nr} \), bagi kaca didapati dalam julat masing-masing dari 0.812 ms hingga 1.248 ms, 0.812 x 10^20 cm^2 hingga 1.248 x 10^20 cm^2 dan dari 0.144 ms\(^{-1}\) hingga 0.180 ms\(^{-1}\) terhadap mol% komposisi. Analisis lanjut dan pembincangan akan dihura dengan lebih lanjut.

Kata kunci: pertukaran-atas, pengujaan, Judd-Ofelt, penyinaran, relaksasi
Introduction

Incorporation of rare earth into various glass oxides has been a key to the development of many optical devices such as infrared lasers, IR-visible upconverters, fibre and waveguide amplifiers for optical transmission network [1, 2]. A great deal of recent interest for lasing transition in the near infrared (NIR) region of Nd$^{3+}$(1.06μm) and Er$^{3+}$(1.53μm) doped glass are most suited for optical devices and laser technology [3, 4]. Therefore, the rare-earth doped borotellurite glasses have been the subject of several spectroscopic investigation due to their potential applications in various area like optical sensing, telecommunications, or biochemical studies [3, 4]. A study of upconversion in single as well as multi-ions doped glasses has been found increased vigorously in recent years. To study the VIS-NIR lasing transition, tellurium has been identified to be appropriate glass host in a development of laser glasses for the laser application since the strong rare-earth ions-host interaction results in efficient upconversion emissions [5-7]. In addition, due to its reputation as they are good in chemical durability, good thermal stability, high refractive index, good transparency in mid-IR region and high solubility for rare earth ions borotellurite glass which, possess lower phonon energies has been proved to be the most stable hosts for obtaining efficient luminescence in rare earth compare to other oxide glasses [8, 9]. The study of upconversion process is important in order to understand the mechanisms of interaction between rare earth with the glass hosts which leads to the discovery of the new lasers based on energy transfer in the neither single ions or multi-ions material. Hence, the purpose of the present paper is to study systematically the lasing transition and the upconversion luminescence of Nd$^{3+}$/Er$^{3+}$ co-doped borotellurite glass in the visible and near infrared region. Some analysis on the Judd-Ofelt theory is also been reported and discussed with respect to the composition.

Materials and Methods

The tellurite glass of (78-x)TeO$_2$-10PbO-10Li$_2$O-2Nd$_2$O$_3$-xEr$_2$O$_3$ system is prepared by melt-quenching technique. Batches of 20g are prepared from certified reagent grades of TeO$_2$ (99.95% purity), Li$_2$CO$_3$ (97%), PbO (98% purity), Nd$_2$O$_3$ (99.995%) and Er$_2$O$_3$ (99.995%). The chemicals are firstly melted thoroughly in a platinum crucible before being heated at 1000 °C for half an hour. After the batch is completely melted, the melts was cast onto the preheated stainless steel plate followed by annealing at 300 °C for 5 hours before allowed to cool down to room temperature. The glass is then cut and polished at the thickness of about 2.0mm. Electronic absorption spectra are determined at room temperature by using a Perkin Elmer UV Spectroscopy in the range of 400 – 900 nm. The luminescence spectra are also obtained at room temperature by using Nanosecond Luminescence Spectroscopy System, Model NT340/1 Ekspla excited at 585nm using the tunable Nd: YAG laser system NT342. The signal is monitored by monochromator SP2300 equipped with photomultiplier in the photon counting mode and recorded under data acquisition unit (DAQ).

Results and Discussion

Upconversion Luminescence

The upconversion fluorescence spectrum of Nd$^{3+}$/Er$^{3+}$ co-doped tellurite glass at room temperature is presented in Figure 1. From Figure 1, it can be seen that there are six distinctive upconverted bands contributed from Nd$^{3+}$ ions are observed to be centered at 485 nm, 605 nm, 665 nm, 880 nm, 1062 nm and 1340 nm attributed from $^4G_{11/2} \rightarrow ^4I_{15/2}$, $^4G_{11/2} \rightarrow ^4I_{15/2}$, $^4I_{11/2} \rightarrow ^4I_{15/2}$, $^2F_{7/2} \rightarrow ^4I_{15/2}$, $^2F_{5/2} \rightarrow ^4I_{15/2}$ and $^2F_{5/2} \rightarrow ^4I_{15/2}$ transitions whereas, three upconverted bands contributed from Er$^{3+}$ ions to be centered at 493 nm, 524 nm and 550 nm are found originating from $^4F_{7/2} \rightarrow ^4I_{15/2}$, $^2H_{11/2} \rightarrow ^4I_{15/2}$ and $^4S_{3/2} \rightarrow ^4I_{15/2}$ transitions under the excitation at 585 nm. Similar upconversion spectra are found for all samples with different Er$_2$O$_3$ content. From these emission bands, a possible of blue, green and red emission as well as the near infrared emission spectra could be expected. It should be noted out that the blue emission band centered at 493 nm is correspond to $^4F_{7/2} \rightarrow ^4I_{15/2}$ transition. The green emission bands observed at 524 nm and 550 nm peaks are correspond to $^2H_{11/2} \rightarrow ^4I_{15/2}$ and $^4S_{3/2} \rightarrow ^4I_{15/2}$ transitions respectively. The red emission bands observed at 605 nm and 665 nm peaks are attributed from the $^2G_{11/2} \rightarrow ^4I_{15/2}$ and the $^4G_{7/2} \rightarrow ^4I_{15/2}$ transitions respectively. Meanwhile, the near infrared upconversion spectra are observed to be centered at 880 nm, 1062 nm and 1340 nm respectively.
Meanwhile, the possible upconversion mechanism for the glasses has been shown in Figure 2. From the schematic energy level it could be seen that as the Nd$^{3+}$ ions are pumped with 585 nm excitation wavelength through the ground state absorption (GSA) they excites to the $^2G_{7/2}$ level. The Nd$^{3+}$ ions are found to relax to metastable $^2H_{11/2}$ level before re-excited to the $^4G_{11/2}$ level through the excited state absorption (ESA) process. The Nd$^{3+}$ ions are found to undergone stepwise upconversion process. This has been confirmed by Kumar et.al (2007) in their works revealed that the resulting fluorescence is due to step wise absorption of two photons [1,2]. As they populated the $^4G_{11/2}$ level, some of the Nd$^{3+}$ ions relaxed radiatively to $^4I_{15/2}$ and $^4I_{11/2}$ level emitting the red emission spectra centered at 665 nm. Meanwhile, some of the Nd$^{3+}$ ions are found relax non-radiatively to lower level $^4G_{7/2}$ and $^4F_{3/2}$. The Nd$^{3+}$ ions that populated the $^4G_{7/2}$ are then decay to $^4I_{13/2}$ by emitting the near infrared emission as they decay to $^4I_{9/2}$ (880 nm), $^4I_{11/2}$ (1062 nm) and $^4I_{13/2}$ (1340 nm) level respectively.

![Figure 1. A typical upconversion luminescence spectrum of the (78-x)-10PbO-10Li$_2$O-2Nd$_2$O$_3$-xEr$_2$O$_3$ glass system.](image-url)

Normalised Intensity (abr.units) vs. wavelength (nm)

$^4G_{7/2} \rightarrow ^4I_{13/2}$

$^4G_{11/2} \rightarrow ^4I_{15/2}$

$^2H_{11/2} \rightarrow ^4I_{15/2}$

$^4F_{7/2} \rightarrow ^4I_{15/2}$

$^4F_{9/2} \rightarrow ^4I_{11/2}$

$^4F_{13/2} \rightarrow ^4I_{15/2}$

$^4F_{15/2} \rightarrow ^4I_{9/2}$

$^4I_{11/2} \rightarrow ^4I_{15/2}$

$^4I_{13/2} \rightarrow ^4I_{15/2}$

$^4I_{9/2} \rightarrow ^4I_{15/2}$
As the Nd$^{3+}$ ions relaxed from $^4G_{11/2}$ level their respective energy is transferred to Er$^{3+}$ ions that populated the $^4F_{7/2}$ level. In this work, an efficient excitation energy transfer (ET) has been observed between Nd$^{3+}$ as a donor and Er$^{3+}$ as the acceptor. This has been confirmed by Nazabal et al (2003), Kumar et al (2008) and later by Lakshminarayan et al (2009) in their works [10-12]. At this level, some Er$^{3+}$ ions are relax directly to $^4I_{15/2}$ level radiatively by emitting near infrared emission spectra centered at 732 nm. However, some Er$^{3+}$ ions are found to relax non-radiatively to $^2H_{11/2}$ and $^4S_{3/2}$ level. From the $^2H_{11/2}$ level the Er$^{3+}$ ions relaxed to $^4I_{15/2}$ thus emitting weak green spectra centered at 524 nm. Meanwhile, for the Er$^{3+}$ ions that populated $^4S_{3/2}$ level decay directly to the ground level $^4I_{15/2}$ by generates green spectra centered at 547 nm.

Judd-Ofelts Analysis

Table 1 shows results of radiative lifetime, τ_r, stimulated emission cross-section, σ_{eff}, and non-radiative relaxation, W_{nr}. From Table 1, it could be seen that the radiative lifetime of the glass is ranging from 0.812 ms to 1.248 ms with respect to mol% of Er$_2$O$_3$ content. According to Judd-Ofelt theory the fluorescent level relaxation generally involves the transitions from upper-levels to all probable low-lying levels therefore, the radiative lifetime of the transitions could be estimated from the equation 1:

$$\tau_r (\Psi J) = \left[A_r (\Psi J)^{-1}\right]$$

whereas A_r is total radiative probability. As depicted from Table 1, it can be observed that results of stimulated emission cross-section are ranging from 0.812×10^{20} cm2 to 1.248×10^{20} cm2 depending on the mol% of Er$_2$O$_3$ content. Similar trend has also been observed and discussed by other researcher [13-15]. The emission cross-section which is the laser gain per unit population inversion is the relevant spectroscopy parameter for laser application.
The stimulated emission cross section, σ_{em} has been measured for different emission bands using the following expression as proposed by Fuchtbauer-Ladenburg (equation 2) [17]:

$$\sigma_{em} = \frac{\lambda^4 A}{8\pi n^2 c \Delta \lambda}$$

whereas A is the radiative transition probability and $\Delta \lambda$ is the fluorescence band width. Meanwhile, has been observed in Table 1, it could be seen that the non-radiative relaxation, W_{nr}, is found varies from 0.144 ms$^{-1}$ to 0.180 ms$^{-1}$ with respect to composition. From these results, it is obvious that the results for co-doped glasses (S42-S45) are slightly higher compare to the S41 glass which only has Nd$^{3+}$ as single dopant this is due to the fact that an existence of Nd$^{3+}$ as a single dopant has less ion-ion interaction and ion-lattice coupling compare to co-doped glasses which has Nd$^{3+}$/Er$^{3+}$ ions. Romanowski (1990) in his works notice that the non-radiative decay rate is dependent upon the strength of ion-lattice coupling, phonon spectrum, sample temperature as well as the energy separation to the next lower lying level [18]. Recently, works done by Meisong et. al confirmed that the non-radiative rate could also been affected from the multiphonon relaxation rate, self-quenching rate and relaxation rate induced by certain transition metal ions and other rare earth ions [19]. The fluorescence decay rate is governed by the probability of the radiative and non-radiative relaxation described by following expression in equation 3:

$$W_T = W_R + W_{NR}$$

Table 1. A results of radiative lifetime, τ_R, stimulated emission cross-section, σ_{eff}, and non-radiative relaxation, W_{nr} of (78-x)TeO$_2$ - 10PbO - 10Li$_2$O-2Nd$_2$O$_3$-xEr$_2$O$_3$ glass system under the 1062nm ($^4F_{3/2} \rightarrow ^4I_{11/2}$) emission band.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Nominal Composition (mol%)</th>
<th>τ_R (ms)</th>
<th>σ_{eff} (x10$^{-50}$ cm2)</th>
<th>W_{nr} (ms$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TeO$_2$ PbO Li$_2$O Nd$_2$O$_3$ Er$_2$O$_3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S41</td>
<td>78.0 10.0 10.0 2.0 -</td>
<td>2.234</td>
<td>0.812</td>
<td>0.144</td>
</tr>
<tr>
<td>S42</td>
<td>77.5 10.0 10.0 2.0 0.5</td>
<td>2.279</td>
<td>0.917</td>
<td>0.149</td>
</tr>
<tr>
<td>S43</td>
<td>77.0 10.0 10.0 2.0 1.0</td>
<td>2.341</td>
<td>0.893</td>
<td>0.154</td>
</tr>
<tr>
<td>S44</td>
<td>76.5 10.0 10.0 2.0 1.5</td>
<td>1.981</td>
<td>1.248</td>
<td>0.180</td>
</tr>
<tr>
<td>S45</td>
<td>76.0 10.0 10.0 2.0 2.0</td>
<td>2.196</td>
<td>0.942</td>
<td>0.149</td>
</tr>
</tbody>
</table>

Conclusion

Nd$^{3+}$/Er$^{3+}$ co-doped tellurite glasses has successfully been synthesized by using melt-quenched techniques. From the emission spectra, it is found that there are six distinct upconverted bands contributed from Nd$^{3+}$ ions are observed to be centered at 485 nm, 605 nm, 665 nm, 880 nm, 1062 nm and 1340 nm attributed from $^4F_{3/2} \rightarrow ^4I_{11/2}$, $^4G_{11/2} \rightarrow ^4I_{15/2}$, $^4G_{9/2} \rightarrow ^4I_{13/2}$, $^4F_{3/2} \rightarrow ^4I_{13/2}$, $^4F_{3/2} \rightarrow ^4I_{11/2}$ and $^4F_{3/2} \rightarrow ^4I_{9/2}$ transitions whereas, three upconverted bands contributed from Er$^{3+}$ ions to be centered at 493 nm, 524 nm and 550 nm are found originating from $^4F_{7/2} \rightarrow ^4I_{15/2}$, $^4I_{11/2} \rightarrow ^4I_{15/2}$ and $^4S_{5/2} \rightarrow ^4I_{15/2}$ transitions under the excitation at 585 nm. The possible upconversion luminescence mechanism has shown that through the ground state absorption (GSA) a resonant pump photon promotes the Nd$^{3+}$ ions from the $^1I_{63/2}$ ground state to the $^2G_{7/2}$ excited state level. The Nd$^{3+}$ ions which are unstable relax non-radiatively to the $^2I_{15/2}$ level. Then a second pump photon resonantly re-excites the Nd$^{3+}$ ions to the $^2G_{11/2}$ excited level through the excited state absorption (ESA). The ions that populated the $^2G_{11/2}$ are unstable since they are found to undergone relaxation process by which correspond to the emission peaks observed at 450nm, 485 nm, 560nm, 605nm. Some of the ions may also non-radiatively transit from $^2G_{11/2}$ to $^2F_{3/2}$ then emits a photon at 880nm, 1062nm and 1340nm. Meanwhile, the Judd-Ofelts analysis has been employed to obtain the radiative lifetime, τ_R,
stressed emission cross-section, \(\sigma \) and non-radiative relaxation, \(W_{nr} \). It is found that most values are dependence of Nd\(^{3+} \).

Acknowledgement

The author wishes to thanks Ministry of Education (MOE), Malaysia for the FRGS research grant and UiTM Pahang for the encouragement and support.

References