ANNEALING EFFECT ON THE PHOTOELECTROCHEMICAL PROPERTIES OF BiVO₄ THIN FILM ELECTRODES

(Kesan Sepuh Lindap terhadap Sifat Fotoelektrokimia Elektrod Filem Nipis BiVO₄)

Siti Nur Farhana Mohd Nasir¹*, Mohd Asri Mat Teridi¹, Mehdi Ebadi¹, Jagdeep Singh Sagu², Mohamad Yusof Sulaiman¹, Norasikin Ahmad Ludin¹, Mohd Adib Ibrahim¹

¹Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
²Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom

*Corresponding author: farhanaana98@gmail.com

Received: 4 February 2015; Accepted: 29 September 2015

Abstract
Monoclinic bismuth vanadate (BiVO₄) thin film electrodes were fabricated on fluorine-doped tin oxide via aerosol-assisted chemical vapour deposition (AACVD). Annealing and without annealing effect of thin films were analysed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet–visible spectrophotometry (UV-Vis) and current-voltage measurement. All BiVO₄ thin films showed an anodic photocurrent. The sample of BiVO₄ annealed at 400 °C exhibited the highest photocurrent density of 0.44 mA cm⁻² vs. Ag/AgCl at 1.23 V.

Keywords: BiVO₄ thin film, AACVD, PEC water splitting, annealing

Introduction
Practical semiconductor photoelectrodes for water splitting application have been receiving attention for several decades. The important aspect to make the photoelectrodes water splitting is the materials. The materials have to exhibit a direct bandgap excitation of visible light which then generates photocharge carriers [1,2]. In addition, the semiconductor materials should be abundant, affordable and have chemical and photochemical stability [2-4]. In order to obtain superior photo-conversion properties, the materials must have good charge mobility of one-dimensional structure thin films [5, 6]. Bismuth vanadate (BiVO₄), which is an n-type photoanode with bandgap of 2.4 eV, has a suitable valence band position to photoxidize water and attracted attention as one of the promising photoanodes.
Chemical bath deposition [7], hydrothermal [8] and spin-coating [9] are general methods used to fabricate BiVO₄. However, these methods frequently lead to non-homogenous coverage. Therefore, Aerosol-Assisted Chemical Vapour Deposition (AACVD) offers an alternative technique to synthesize thin films. Moreover, this method helps to control the porosity, crystallinity, agglomeration and chemical homogeneity by the parameters modification [10]. Furthermore, the films obtained by AACVD will have strong adhesion, owing to the droplet size precursor of the aerosol [11]. In this work, we fabricate BiVO₄ thin films using AACVD, and study the annealing effect on the photoelectrochemical properties of BiVO₄ thin films electrodes.

Materials and Methods
Fluorine-doped tin oxide (FTO) glass substrates (TEC 8, ~8Ω/sq Pilkington) were used for this experiment. Initially, the FTO glass substrates were cleaned ultrasonically for 10 minutes in deionized water, acetone and isopropanol, and dried. Then, the FTO was placed on a hot plate at temperature 440-450 °C. 0.2 M of precursor was prepared from bismuth nitrate pentahydrate (Bi(NO₃)₃.5H₂O) and 0.2 M vanadylacetylacetonate (C₁₀H₁₅O₅V) that were dissolved in ethylene glycol and methanol, respectively. Then, these two solutions were mixed homogenously before the deposition process. To generate the aerosol, 20 ml of the precursor was added to a 50 ml round-bottom flask and immersed in the piezoelectric modulator of an ultrasonic humidifier. Each electrode was deposited for a period of 90 minutes, with a 1.2 cm distance from the nozzle to the substrate. Finally, the films were subjected to the annealing process at 400 °C, 500 °C and 600 °C, for 30 minutes in air.

The phases and crystalline structure of BiVO₄ films were analysed by XRD (model Bruker D8 Advance) in the 2θ range from 20° - 60°. Photoelectrochemical (PEC) measurement was carried out using a potentiostat/galvanostat Autolab PGSTAT 204, connected to a three-electrode configuration of a 1 M Na₂SO₄ electrolyte, an Ag/AgCl (3M KCl) reference electrode and a Pt wire counter electrode, in a quartz container. The electrochemical measurement was conducted under dark and incident light intensity of 100 mWcm⁻². PEC measurement was performed on a 1.0 cm² area of the working electrode. Optical absorbance spectra were performed using a PerkinElmer UV Winlab 6.0.2.0738 / Lambda35 1.27 spectrophotometer.

Results and Discussion
The structure and crystallinity of BiVO₄ thin films are shown in Figure 1. The BiVO₄ diffraction peaks observed at 2θ = 28.82°, 30.55°, 34.50°, 35.22°, 39.78°, 42.47°, 46.71°, 47.31°, 50.32° and 53.25° affirm the samples have a monoclinic clinobisvanite BiVO₄ structure (JCPDS file No. 00-014-0688). This structure was photocatalytically active and most prevalent under normal conditions [12]. The intensity peak of the plane (-121) was slightly reduced when the annealing temperature was increased in the following order: as-deposited < 600 °C < 500 °C < 400 °C. The less pronounced diffraction peak intensity of FTO at (101) plane in BiVO₄ samples annealed at 400 °C, indicates that high compact films were obtained as the BiVO₄ thin films were overlapped with the FTO peak. The peak pattern for planes (110), (200) and (211) showed similar behaviour for the same reason. In contrast, the sudden increase in the diffraction peak of the (101) plane at 500 °C and 600 °C was caused by the fade yellow of BiVO₄ films formation as the annealing temperatures were increased. The yellowish BiVO₄ thin films started to fade when the annealing temperature was 500 °C, and the films were almost transparent at 600 °C. Hence, diffraction peaks of FTO became dominant at these elevated temperatures. Moreover, the result obtained from XRD can be used to calculate the grain size of BiVO₄ using a Sherrer equation 1 as follows:

\[
\text{Grain size} = \frac{k \lambda}{\beta \cos \theta}
\]

where, λ is the X-ray wavelength of 0.15406 nm, β is the full width at half-maximum (FWHM) of the (-121) diffraction peak, θ is the Bragg angle, and k is a constant. Table 1 shows the increase in grain size with the increase in annealing temperature. Although all samples showed a crystalline monoclinic phase based on the XRD pattern, the half-widths and intensities of the peaks show small variations in the structural parameters of the thin films [13].
Table 1. Crystallite size and photocurrent density of as-deposited, annealed at 500, 550 and 600 °C of BiVO₄ thin films.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Crystallite size (Å)</th>
<th>J_sc (mA/cm²) at 1.23 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>As-deposited</td>
<td>211.1</td>
<td>0.20</td>
</tr>
<tr>
<td>500 °C</td>
<td>236.4</td>
<td>0.07</td>
</tr>
<tr>
<td>550 °C</td>
<td>260.1</td>
<td>0.04</td>
</tr>
<tr>
<td>600 °C</td>
<td>293.1</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Figure 1. X-ray diffraction (XRD) peaks of FTO and BiVO₄ thin films
The effect of annealing temperature on PEC performance of BiVO$_4$ was recorded by a three-electrode configuration, using a 1.5 AM solar simulator. From the plot of the photocurrent density as a function of the applied voltage (Figure 2), the highest photocurrent density was obtained by BiVO$_4$ that were subjected to the annealing treatment at 400 °C. As can be seen in Figure 2, the BiVO$_4$ shows a good photocatalytic response both under dark and visible light irradiation. The characteristic pattern of the photocurrent clearly shows that BiVO$_4$ produced higher anodic potential (n-type). However, the photocurrent density decreased significantly from 0.07 mACm$^{-2}$ to 0.01 mACm$^{-2}$, when the annealing temperature increased to 600 °C, as shown in Table 1. As discussed earlier, samples annealed at 600 °C produced more transparent films than others. Therefore, less amount of light was absorbed by BiVO$_4$ films [14]. In addition, the light screening effect of FTO (owing to the high transparency of samples annealed at 600 °C) also contributed to the photocurrent reduction [15].

Figure 2. Photocurrent densities under dark, simulated and chopped conditions in 1 M NaSO$_4$ vs. Ag/AgCl (3M KCl) of BiVO$_4$ annealed at 400 °C

The optical characterization of BiVO$_4$ thin films was studied using UV-Vis spectroscopy. The absorbance spectra (Figure 3) shows the absorption edge ~537 nm of BiVO$_4$ thin films annealed at 400 °C. The bandgap estimation was calculated using a Tauc plot derived from UV-Vis absorbance spectra, which corresponds to the bandgap energy of 2.31 eV, as shown in the inset of Figure 3. This value is close to the bandgap energy of BiVO$_4$ (2.4 eV) [16].
Figure 3. Absorbance of BiVO$_4$ annealed at 400 °C film and estimation of bandgap by Tauc plot

Conclusion

BiVO$_4$ thin films with a monoclinic structure were prepared successfully using aerosol-assisted chemical vapour deposition (AACVD). The BiVO$_4$ thin films that were subjected to the annealing treatment in air at different temperature exhibited an anodic photocurrent and were photoelectrochemically active. PEC performance of the samples annealed at 400 °C showed an increased photocurrent density than the samples annealed at 500 °C, 600 °C and as-deposited. It is believed that the photoelectroactivity properties can be improved further by the optimization of various parameters, in order to obtain effective and ideal photoelectrodes.

Acknowledgement

This work was supported by the Government of Malaysia, and University Grant of the National University of Malaysia (Grant GGPM-2013-026) and FRGS/2/2013/TK06/UKM/03/1 and SERI Colloquium 2014.

References