SYNTHESIS AND CHARACTERIZATION OF OXADIAZOLE DERIVATIVES FROM BENZIMIDAZOLE

(Sintesis dan Perincian Terbitan Oksadiazol Dari Benzimidazol)

Norizan Ahmat1,2*, Nik Khairunissa Nik Abdullah Zawawi1,2, Muhammad Taha1,2, Nor Hadiani Ismail1,2, Noraishah Abdullah1

1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
2Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia

*Corresponding author: noriz118@salam.uitm.edu.my

Received: 24 February 2015; Accepted: 27 October 2015

Abstract
Heterocyclic compounds of benzimidazole and oxadiazole are considered as important class of compounds in medicinal chemistry because of their interesting diversified biological activities. A series of new benzimidazole bearing oxadiazole derivatives have been conveniently synthesized by intermolecular oxidative cyclization of benzimidazole benzoyl hydrazide promoted by iodobenzene diacetate as an oxidant. The structures of the synthesized compounds were characterized by spectroscopic methods namely 1H Nuclear Magnetic Resonance (NMR), Infrared (IR), Mass Spectrometry (MS) and melting point.

Keywords: synthesis, benzimidazole, oxadiazole, hydrazide, nuclear magnetic resonance

Introduction
Benzimidazole and oxadiazole have received attention in recent years due to widespread applications notably in the field of medicinal chemistry due to their privileged biological activity. Recently, benzimidazole derivatives have been reported as antidiabetic [1], antimicrobial [2-3], antiviral [4-6] antispasmodic [7] and antiasthmatic [8] agents. Similarly, oxadiazole derivatives are also recognized for their pharmacological importance and are reported to possess wide spectrum of activities such as antibacterial [9-11], antifungal [12] anti-inflammatory [13-14] analgesic [15], anticonvulsant [16-17], hypoglycemic [18] and antancer [19] properties. The synthesis of both compounds has emerged as an essential need for development of new pharmaceutical entities.
In the present study, a series of novel oxadiazoles were synthesized from benzimidazole and their physical characterization are reported. The structures of the synthesized compounds were characterized using different spectroscopic methods namely ¹H Nuclear Magnetic Resonance (NMR), Infrared (IR), Mass Spectrometry (MS) and melting point.

Materials and Methods
Melting point was taken on Buchi M-560 melting point instrument and was uncorrected. IR spectra were recorded on a Spectrum One FT-IR spectrometer (Perkin Elmer), using KBr discs and values were signified in cm⁻¹. The ¹H NMR and ¹³C NMR spectra were measured on Bruker 500 Ultrashield Plus NMR (500 MHz) in DMSO-d₆ as solvent, using tetramethylsilane (TMS) as an internal standard, and chemical shifts are expressed as ppm. ESI MS were determined on Agilent 6330 Ion Trap, using positive/negative mode. HR-ESI-MS were determined on Agilent 6224 TOF-LC/MS using positive mode.

Synthesis of methyl 4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)benzoate (a)
Sodium metasulfite adduct was synthesized according to literature protocol [20]. Equimolar solution of 4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)benzoate obtained was filtered, washed with diethyl ether and dried to afford the adduct and 4,5-disubstituted-1,3,4-oxadiazoles (15-28).

Synthesis of 4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)benzohydrazide (b)
A solution of compound (a) (40 mmol) in methanol (50 ml) was refluxed for 12 hours in the presence of hydrazine hydrate (95%) mixture (10 ml). The reaction mixture was evaporated and the residue was washed with water, filtered, dried, and crystallized.

General procedure for the synthesis of 4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl) benzohydrazide Schiff bases (1-14)
Equimolar mixture of 4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl) benzohydrazide (0.280 g, 0.01 mol) selected aldehyde (0.01 mol), in n-butanol (25 mL) containing acetic acid (1 mL) was heated under reflux for 3 hours. The reaction mixture was filtered, dried and crystallized.

General procedure for the synthesis of 2,5-disubstituted-1,3,4-oxadiazoles (15-28)
Compounds 1-14 (100 mg, ±0.25 mmol) were dissolved in DMF (5 ml) and iodobenzenediacetate (IBD) (±0.27 mmol) were added [21]. The content was stirred overnight and the progress of reaction was monitored by thin layer chromatography. Cold water was added and the precipitate obtained was filtered, washed with diethyl ether and dried to afford 15-28.

Results and Discussion

Characterization: methyl 4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)benzoate (a)
Light brown solid; yield (96%); m.p. 208.9 °C; IR(KBr) (νmax, cm⁻¹): 2954, 1720, 1273, 1107. ¹H NMR (500 MHz, DMSO) δ: 2.33 (s, 6H, CH₂-5,6-benzimidazole), 3.88 (s, 3H, OCH₃-benzoate), 7.39 (s, 2H, H-4,7-benzimidazole), 8.09 (d, J = 8.4 Hz, 2H, Ar), 8.27 (d, J = 8.4 Hz, 2H, Ar). ESI MS (m/z): 280.1 (M⁺).

4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)benzohydrazide (b)
Light brown solid; yield (93%); m.p. 316.5 °C; IR(KBr) (νmax, cm⁻¹): 3020, 1625, 1560, 1350. ¹H NMR (500 MHz, DMSO) δ: 2.33 (s, 6H, CH₂-5,6-benzimidazole), 4.56 (s, 2H, NH₂), 7.32 (s, 1H, H-7-benzimidazole), 7.46 (s, 1H, H-4-benzimidazole), 7.98 (d, J = 7.5 Hz, 2H, Ar), 8.21 (d, J = 7.5 Hz, 2H, Ar), 9.88 (s, 1H, NH-hydrazide), 12.74 (s, 1H, NH-benzimidazole). ESI MS (m/z): 280.1 (M⁺).

(E)-4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)-N’-(3-fluorobenzylidene) benzohydrazide (1)
Light brown solid; yield 89%; m.p. 324.3 °C; IR(KBr) (νmax, cm⁻¹): 3465, 1657, 1557, 1276, 1237. ¹H NMR (500 MHz, DMSO) δ: 2.34, 2.35 (s, 6H, CH₂-5,6-benzimidazole), 7.31 (m, 2H, Ar), 7.55 (m, 4H, Ar), 8.09 (d, J = 7.7 Hz, 2H, Ar), 8.29 (d, J = 8.0 Hz, 2H, Ar), 8.51 (s, 1H, CH=N), 12.05 (s, 1H, NH-hydrazide), 12.80 (s, 1H, NH-benzimidazole). ESI MS (m/z): 386.2 (M⁺).
(E)-4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)-N'-[2-hydroxybenzylidene] benzyldrazide (2)
Light brown solid; yield (90%); m.p. 352.7 °C; IR(KBr) (cm⁻¹): 3427, 1623, 1291. ¹H NMR (500 MHz, DMSO) δ: 2.35 (6H, CH₃-5,6-benzimidazole), 6.99 − 6.92 (m, 2H, Ar), 7.33 (t, J = 7.7 Hz, 1H, Ar), 7.41 (s, 2H, H-4,7-benzimidazole), 7.58 (d, J = 7.4 Hz, 1H, Ar), 8.11 (d, J = 8.2 Hz, 2H, Ar), 8.30 (d, J = 8.2 Hz, 2H, Ar), 8.69 (s, 1H, CH=N), 11.28 (s, 1H, NH-hydrazide), 12.19 (s, 1H, NH-benzimidazole). ESI MS (m/z): 384.3 (M⁺).

(E)-4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)-N'-[3-hydroxybenzylidene] benzhydrazide (3)
Light yellow solid; yield (90%); m.p. 316.1 °C; IR(KBr) (cm⁻¹): 3200, 1642, 1560, 1271. ¹H NMR (500 MHz, DMSO) δ: 2.34 (6H, CH₃-5,6-benzimidazole), 7.13 (d, J = 7.2 Hz, 1H, Ar), 7.24 (s, 1H, Ar), 7.28 (t, J = 7.7 Hz, 1H, Ar), 7.41 (s, 2H, H-4,7-benzimidazole), 8.08 (d, J = 7.9 Hz, 2H, Ar), 8.28 (d, J = 8.0 Hz, 2H, Ar), 8.41 (s, 1H, CH=N), 9.66 (s, 1H, OH), 11.88 (s, 1H, NH-hydrazide), 12.80 (d, J = 1.0 Hz, 1H, NH-benzimidazole). ESI MS (m/z): 434.3 (M⁺).

(E)-N'-[(3,4-dimethoxybenzylidene)-4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl) benzyldrazide (4)
Light yellow solid; yield (92%); m.p. 316.4 °C; IR(KBr) (cm⁻¹): 3434, 1658, 1564, 1272. ¹H NMR (500 MHz, DMSO) δ: 2.35, 2.34 (6H, CH₃-5,6-benzimidazole), 3.84 (6H, OCH₃-3,4-Ar), 7.05 (d, J = 8.2 Hz, 1H, Ar), 7.23 (d, J = 7.8 Hz, 1H, Ar), 7.33 (s, 1H, Ar), 7.38 (s, 1H, Ar), 7.47 (s, 1H, Ar), 8.07 (d, J = 8.1 Hz, 2H, Ar), 8.28 (d, J = 8.1 Hz, 2H, Ar), 8.42 (s, 1H, CH=N), 11.83 (s, 1H, NH-hydrazide), 12.81 (s, 1H, NH-benzimidazole). ESI MS (m/z): 428.3 (M⁺).

(E)-4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)-N'-(4-nitrobenzylidene) benzyldrazide (5)
Light yellow solid; yield (92%); m.p. 323.6 °C; IR(KBr) (cm⁻¹): 3269, 1637, 1560, 1519, 1343, 1282. ¹H NMR (500 MHz, DMSO) δ: 2.33, 2.35 (6H, CH₃-5,6-benzimidazole), 7.32 (s, 1H, H-7), 7.46 (s, 1H, H-4), 8.00 (d, J = 8.1 Hz, 2H, Ar), 8.09 (d, J = 7.7 Hz, 2H, Ar), 8.32 − 8.27 (m, 4H, Ar), 8.57 (s, 1H, CH=N), 12.23 (s, 1H, NH-hydrazide), 12.83 (s, 1H, NH-benzimidazole). ESI MS (m/z): 413.3 (M⁺).

(E)-4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)-N'-(4-fluorobenzylidene) benzyldrazide (6)
Light brown solid; yield (94%); m.p. 330.7 °C; IR(KBr) (cm⁻¹): 3256, 1630, 1287, 1236. ¹H NMR (500 MHz, DMSO) δ: 2.34 (6H, CH₃-5,6-benzimidazole), 7.32 (t, J = 8.6 Hz, 2H, Ar), 7.40 (s, 2H, Ar), 7.87 − 7.78 (m, 2H, Ar), 8.08 (d, J = 8.0 Hz, 2H, Ar), 8.28 (d, J = 8.1 Hz, 2H, Ar), 8.49 (s, 1H, CH=N), 11.96 (s, 1H, NH-benzimidazole). ESI MS (m/z): 386.9 (M⁺).

(E)-4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)-N'-(4-methoxybenzylidene) benzyldrazide (7)
Light brown solid; yield (91%); m.p. 276.0 °C; IR(KBr) (cm⁻¹): 3234, 1611, 1512, 1258. ¹H NMR (500 MHz, DMSO) δ: 2.34 (6H, CH₃-5,6-benzimidazole), 3.82 (s, 3H, OCH₃), 7.04 (d, J = 8.6 Hz, 2H, Ar), 7.51 − 7.29 (m, 2H, Ar), 7.71 (d, J = 8.5 Hz, 2H, Ar), 8.08 (d, J = 8.2 Hz, 2H, Ar), 8.28 (d, J = 8.2 Hz, 2H, Ar), 8.44 (s, 1H, CH=N), 11.83 (s, 1H, NH-benzimidazole). ESI MS (m/z): 398.9 (M⁺).

(Z)-N'-(4-chlorobenzylidene)-4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)benzyldrazide (8)
Light brown solid; yield (90%); m.p. 338.7 °C; IR(KBr) (cm⁻¹): 3253, 1634, 1565, 1286, 669. ¹H NMR (500 MHz, DMSO) δ: 2.34, 2.36 (6H, CH₃-5,6-benzimidazole), 7.33 (s, 1H, Ar), 7.47 (s, 1H, Ar), 7.55 (d, J = 8.0 Hz, 2H, Ar), 7.79 (d, J = 8.1 Hz, 2H, Ar), 8.08 (d, J = 7.9 Hz, 2H, Ar), 8.28 (d, J = 8.0 Hz, 2H, Ar), 8.49 (s, 1H, CH=N), 12.01 (s, 1H, NH-hydrazide), 12.80 (s, 1H, NH-benzimidazole). ESI MS (m/z): 402.3 (M⁺).

(E)-4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)-N'-(pyridin-4-ylmethylene) benzhydrazide (9)
Light brown solid; yield (90%); m.p. 306.7 °C; IR(KBr) (cm⁻¹): 3277, 1634, 1560, 1288. ¹H NMR (500 MHz, DMSO) δ: 2.33 (6H, CH₃-5,6-benzimidazole), 7.40 (s, 2H, Ar), 7.69 (s, 2H, Ar), 8.10 (d, J = 7.2 Hz, 2H, Ar), 8.30 (d, J = 7.9 Hz, 2H, Ar), 8.48 (s, 1H, CH=N), 8.67 (s, 2H, Ar), 12.22 (s, 1H, NH-benzimidazole). ESI MS (m/z): 369.3 (M⁺).

(E)-N'-(3-chlorobenzylidene)-4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl) benzyldrazide (10)
Light brown solid; yield (91%); m.p. 358.5 °C; IR(KBr) (cm⁻¹): 3422 (NH), 1651, 1564, 1282, 704. ¹H NMR (500 MHz, DMSO) δ: 2.33 (6H, CH₃-5,6-benzimidazole), 7.40 (s, 2H, Ar), 7.49 (s, 2H, Ar), 7.71 (s, 1H, Ar), 7.81
Norizan et al: SYNTHESIS AND CHARACTERIZATION OF OXADIAZOLE DERIVATIVES FROM BENZIMIDAZOLE

Pale yellow powder, yield: 0.07 g (75%); m.p.: 346.5 ºC. IR (KBr) (νmax, cm⁻¹): 3308, 1611, 1317, 1262, 1070, 999, 848. ¹H NMR (500 MHz, DMSO) δ: 2.34, 2.36 (s, 6H, CH₂-5,6-benzimidazole), 7.34 (s, 1H, Ar), 7.48 (s, 1H, Ar), 7.54 (td, 1H, J = 8.6, 1.9 Hz), 7.55 (t, 1H, J = 7.6 Hz, Ar), 7.72 (dd, 1H, J = 13.8, 8.0 Hz, Ar), 8.03 (dd, 2H, J = 15.7, 8.6 Hz, Ar), 8.33 (d, 2H, J = 8.5 Hz, Ar), 8.38 (d, 2H, J = 8.4 Hz, Ar), 12.9 (s, 1H, NH). HR-ESI-MS: m/z 384.2288 (M⁺).

2-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)-N'-3-(3-fluorophenyl)-1,3,4-oxadiazole (15)

Pale yellow powder, yield: 0.081 g (81%); m.p.: 375.7 ºC. IR (KBr) (νmax, cm⁻¹): 3235, 1612, 1317, 1256, 1155, 1062. ¹H NMR (500 MHz, DMSO) δ: 2.33, 2.36 (s, 6H, CH₂-5,6-benzimidazole), 7.18 – 7.05 (m, 2H, Ar), 7.34 (s, 1H, Ar), 7.54 – 7.24 (m, 2H, Ar), 7.97 (dt, 1H, J = 10.1, 5.1 Hz, Ar), 8.26 (d, 2H, J = 8.5 Hz, Ar), 8.38 (d, 2H, J = 8.5 Hz, Ar), 10.16 (s, 1H, OH). HR-ESI-MS: m/z 382.2325 (M⁺).

3-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)-1,3,4-oxadiazole (17)

Pale yellow powder, yield: 0.082 g (82%); m.p.: 369.9 ºC. IR (KBr) (νmax, cm⁻¹): 3236, 1610, 1315, 1262, 1069, 1008. ¹H NMR (500 MHz, DMSO) δ: 2.33 (s, 6H, CH₂-5,6-benzimidazole), 7.06 (d, 1H, J = 6.6 Hz, Ar), 7.40 (s, 2H, Ar), 7.45 (t, 1H, J = 7.8 Hz, Ar), 7.54 (s, 1H, Ar), 7.59 (d, 1H, J = 7.5 Hz, Ar), 8.25 (d, 2H, J = 8.3 Hz, Ar), 8.35 (d, 2H, J = 8.3 Hz, Ar), 10.04 (s, 1H, OH). HR-ESI-MS: m/z 382.1843 (M⁺).

2-(3,4-dimethoxyphenyl)-5-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)-1,3,4-oxadiazole (18)

Pale yellow powder, yield: 0.076 g (76%); m.p.: 293.4 ºC. IR (KBr) (νmax, cm⁻¹): 3255, 1611, 1315, 1275, 1106, 1025. ¹H NMR (500 MHz, DMSO) δ: 2.33, 2.35 (s, 6H, CH₂-5,6-benzimidazole), 3.88, 3.92 (s, 6H, OCH₂-4°+)/Ar, 7.20 (d, 1H, J = 8.5 Hz, Ar), 7.39 (s, 2H, Ar), 7.65 (d, 1H, J = 1.9 Hz, Ar), 7.76 (dd, 1H, J = 8.4, 2.0 Hz, Ar), 8.28 (d, 2H, J = 8.5 Hz, Ar), 8.36 (d, 2H, J = 8.5 Hz, Ar), 12.87 (s, 1H, NH). HR-ESI-MS: m/z 426.2690 (M⁺).
2-(4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)phenyl)-5-(4-nitrophenyl)-1,3,4-oxadiazole (19)
Pale yellow powder, yield: 0.076 g (76%); m.p.: 361.2 °C; IR (KBr) (νmax, cm⁻¹): 3302, 1612, 1523, 1340, 1264, 1108, 1082. ¹H NMR (500 MHz, DMSO) δ: 2.34, 2.36 (s, 6H, CH₃-5,6-benzimidazole), 7.35 (s, 1H, Ar), 7.49 (s, 1H, Ar), 8.33 (d, 2H, J = 8.4 Hz, Ar), 8.40 (d, 2H, J = 8.4 Hz, Ar), 8.45, 8.48 (d, 4H, J = 8.9 Hz, Ar), 12.90 (s, 1H, NH). HR-ESI-MS: m/z 411.2255 (M⁺).

2-(4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)phenyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (20)
Pale yellow powder, yield: 0.083 g (83%); m.p.: 372.7 °C; IR (KBr) (νmax, cm⁻¹): 3292, 1610, 1318, 1264, 1164, 1002, 845. ¹H NMR (500 MHz, DMSO) δ: 2.34, 2.36 (s, 6H, CH₃-5,6-benzimidazole), 7.34 (s, 1H, Ar), 7.49 (d, 2H, J = 9.0 Hz, Ar), 7.54 (d, 2H, J = 9.0 Hz, Ar), 8.26 (dd, 2H, J = 8.8, 5.4 Hz, Ar), 8.30 (d, 2H, J = 8.5 Hz, Ar), 8.38 (d, 2H, J = 8.5 Hz, Ar), 12.90 (s, 1H, NH). HR-ESI-MS: m/z 384.2288 (M⁺).

2-(4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)phenyl)-5-(4-methoxyphenyl)-1,3,4-oxadiazole (21)
Pale yellow powder, yield: 0.077 g (77%); m.p.: 369.7 °C; IR (KBr) (νmax, cm⁻¹): 3280, 1611, 1317, 1264, 1093, 1016, 844. ¹H NMR (500 MHz, DMSO) δ: 2.34, 2.36 (s, 6H, CH₃-5,6-benzimidazole), 7.35 (s, 1H, Ar), 7.48 (s, 1H, Ar), 7.74 (d, 2H, J = 8.5 Hz, Ar), 8.20 (d, 2H, J = 8.5 Hz, Ar), 8.30 (d, 2H, J = 8.4 Hz, Ar), 8.37 (d, 2H, J = 8.5 Hz, Ar), 12.92 (s, 1H, NH). HR-ESI-MS: m/z 400.2044 (M⁺).

2-(4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)phenyl)-5-(pyridin-4-yl)-1,3,4-oxadiazole (22)
Pale yellow powder, yield: 0.068 g (68%); m.p.: 373.7 °C; IR (KBr) (νmax, cm⁻¹): 3051, 1612, 1571, 1321, 1272, 1061, 1002. ¹H NMR (500 MHz, DMSO) δ: 2.35 (s, 6H, CH₃-5,6-benzimidazole), 7.41 (s, 2H, Ar), 8.10 (d, 2H, J = 5.5 Hz, Ar), 8.33 (d, 2H, J = 8.4 Hz, Ar), 8.39 (d, 2H, J = 8.4 Hz, Ar), 8.89 (d, 2H, J = 4 Hz, Ar). HR-ESI-MS: m/z 367.1948 (M⁺).

2-(3-chlorophenyl)-5-(4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)phenyl)-1,3,4-oxadiazole (24)
Pale yellow powder, yield: 0.071 g (71%); m.p.: 356.2 °C; IR (KBr) (νmax, cm⁻¹): 3053, 1614, 1316, 1266, 1032, 1003, 847. ¹H NMR (500 MHz, DMSO) δ: 2.33, 2.35 (s, 6H, CH₃-5,6-benzimidazole), 7.34 (s, 1H, Ar), 7.48 (s, 1H, Ar), 7.69 (t, 1H, J = 8, 7.5 Hz, Ar), 7.75 (d, 1H, J = 8 Hz, Ar), 8.14 (d, 1H, J = 7.5 Hz, Ar), 8.22 (s, 1H, Ar), 8.32 (d, 2H, J = 8 Hz, Ar), 8.37 (d, 2H, J = 8 Hz, Ar), 12.89 (s, 1H, NH). HR-ESI-MS: m/z 400.2009 (M⁺).

2-(4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)phenyl)-5-(o-tolyl)-1,3,4-oxadiazole (25)
Pale yellow powder, yield: 0.083 g (83%); m.p.: 348.1 °C; IR (KBr) (νmax, cm⁻¹): 3179, 1614, 1317, 1287, 1055, 1000. ¹H NMR (500 MHz, DMSO) δ: 2.34, 2.36 (s, 6H, CH₃-5,6-benzimidazole), 2.73 (s, 3H, CH₃-2°Ar), 7.34 (s, 1H, Ar), 7.52 – 7.44 (m, 3H, Ar), 7.56 (td, 1H, J = 7.5, 1.1 Hz, Ar), 8.13 (d, 1H, J = 7.6 Hz, Ar), 8.28 (d, 2H, J = 8.5 Hz, Ar), 8.38 (d, 2H, J = 8.4 Hz, Ar), 12.88 (s, 1H, NH). HR-ESI-MS: m/z 380.2535 (M⁺).

4-(5-(4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)phenyl)-1,3,4-oxadiazol-2-yl)phenol (26)
Pale yellow powder, yield: 0.079 g (79%); m.p.: 335 °C; IR (KBr) (νmax, cm⁻¹): 3200, 1609, 1315, 1263, 1079, 1016. ¹H NMR (500 MHz, DMSO) δ: 2.34 (s, 6H, CH₃-5,6-benzimidazole), 7.00 (d, 2H, J = 8.5 Hz, Ar), 7.41 (s, 2H, Ar), 8.01 (d, 2H, J = 8.5 Hz, Ar), 8.25 (d, 2H, J = 8.3 Hz, Ar), 8.36 (d, 2H, J = 8.3 Hz, Ar), 10.40 (s, 1H, Ar). HR-ESI-MS: m/z 382.2328 (M⁺).

2-(4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)phenyl)-5-(pyridin-3-yl)-1,3,4-oxadiazole (27)
Pale yellow powder, yield: 0.073g (73%); m.p.: 327.9 °C; IR (KBr) (νmax, cm⁻¹): 3326, 1611, 1565, 1317, 1257, 1054, 999. ¹H NMR (500 MHz, DMSO) δ: 2.34, 2.35 (s, 6H, CH₃-5,6-benzimidazole), 7.36 (m, 2H, Ar), 7.48 (s, 1H, Ar), 8.00 (t, 1H, J = 4.6 Hz, Ar), 8.25 (d, 2H, J = 8.4 Hz, Ar), 8.37 (d, 2H, J = 8.4 Hz, Ar), 12.91 (s, 1H, NH). HR-ESI-MS: m/z 367.1932 (M⁺).
2-(4-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)phenyl)-5-(m-tolyl)-1,3,4-oxadiazole (28)

Pale yellow powder, yield: 0.079 g (79%); m.p.: 315.4 °C; IR (KBr) (ν_{max}, cm⁻¹): 3198, 1612, 1314, 1274, 1080, 999.¹H NMR (500 MHz, DMSO) δ: 2.33, 2.35 (s, 6H, CH₃-5,6-benzimidazole), 2.45 (s, 3H, CH₃-3'-Ar), 7.33 (s, 1H, Ar), 7.48 (d, 2H, J = 9.3 Hz, Ar), 7.54 (t, 1H, J = 7.6 Hz, Ar), 7.97 (d, 1H, J = 7.6 Hz, Ar), 8.00 (s, 1H, Ar), 8.28 (d, 2H, J = 8.4 Hz, Ar), 8.37 (d, 2H, J = 8.4 Hz, Ar), 12.88 (s, 1H, NH). HR-ESI-MS: m/z 380.2536 (M⁺).

The synthesis of the target compounds began with the synthesis of sodium metasulfite adduct according to the literature protocol [5]. The resulting sulfite adduct was refluxed with 4,5-dimethyl-O-phenylenediamine in DMF for 6 h to give the arylester substituted benzimidazole. The benzohydrazide of benzimidazole was formed by refluxing arylester of benzimidazole with methanolic hydrazine hydrate (Scheme 1). The synthesis of benzimidazole benzohydrazide Schiff bases (1-14) was accomplished by reacting different aldehydes with benzimidazole benzohydrazide in n-butanol in the presence of a catalytic amount of acetic acid as shown in Scheme 1. A series of new 2, 5-disubstituted-1,3,4-oxadiazoles (Table 1) have been accomplished in excellent yields by the oxidation of various aryl aldehydes with one equivalent of iodosobenzene diacetate (IBD) in DMF. Compounds 15-28 were synthesized based on the reported procedure.

![Scheme 1](image)

Scheme 1. Synthesis of oxadiazole derivatives from benzimidazole benzoyl hydrazide
Table 1. Benzimidazole benzohydrazide bearing oxadiazole derivatives

<table>
<thead>
<tr>
<th>Comp. No.</th>
<th>R</th>
<th>Comp. No.</th>
<th>R</th>
<th>Comp. No.</th>
<th>R</th>
<th>Comp. No.</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 15</td>
<td>3’ F</td>
<td>5, 19</td>
<td>4’ NO₂</td>
<td>9, 23</td>
<td>4’ N</td>
<td>13, 27</td>
<td>3’ N</td>
</tr>
<tr>
<td>2, 16</td>
<td>2’ OH</td>
<td>6, 20</td>
<td>4’ F</td>
<td>10, 24</td>
<td>5’ Cl</td>
<td>14, 28</td>
<td>5’</td>
</tr>
<tr>
<td>3, 17</td>
<td>3’ OH</td>
<td>7, 21</td>
<td>4’ OCH₃</td>
<td>11, 25</td>
<td>2’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4, 18</td>
<td>2’ H₃CO</td>
<td>8, 22</td>
<td>4’ OCH₃</td>
<td>12, 26</td>
<td>4’ OH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The IR spectra of the synthesized compounds exhibited characteristic absorption bands at 1600 – 1700 cm⁻¹ and 3100 – 3300 cm⁻¹ due to carbonyl or C=N; and NH group, respectively. The ¹H NMR spectra of compounds 1-14 showed two singlets due at N=CH and NH, respectively. The structure of all compounds was confirmed by their spectral data (IR, ¹H NMR, LCMS) and melting point. The characterization of products 15-28 was based upon a careful comparison of their IR and ¹H NMR spectra with those of 1-14. IR spectra of 15-28 were found to be transparent in the region of NH stretch and CO stretch. In ¹H NMR spectra of 15-28 the disappearance of their singlet due to N=CH and NH proton confirms the oxidation of 1-14 into 15-28.

Conclusion

A series of new 2,5-disubstituted-1,3,4-oxadiazoles derivatives of benzimidazole (15-28) were synthesized in good yield and characterized by ¹H NMR, IR, MS spectroscopic methods and melting point. A further study to acquire information concerning the pharmacological activity is in progress.

Acknowledgement

The authors would like to acknowledge Faculty of Pharmacy, Universiti Teknologi MARA Puncak Alam, Ministry of Education Malaysia and Universiti Teknologi MARA for the financial support under RAGS grant 600-RMI/RAGS/5/3/(2/2012).

References

Norizan et al: SYNTHESIS AND CHARACTERIZATION OF OXADIAZOLE DERIVATIVES FROM BENZIMIDAZOLE

