Malaysian Journal of Analytical Sciences Vol 21 No 1 (2017): 188 - 196

DOI: http://dx.doi.org/10.17576/mjas-2017-2101-22

 

 

 

CHEMICAL AND PHYSICAL CHARACTERIZATION OF OIL PALM EMPTY FRUIT BUNCH

 

(Pencirian Kimia dan Fizikal Bagi Tandan Kosong Buah Kelapa Sawit)

 

Nurul Suraya Rosli1, Shuhaida Harun1,2*, Jamaliah Md Jahim1,2, Rizafizah Othaman3

 

1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment

2Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment

3School of Chemical Sciences and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: harun.shuhaida@ukm.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

The interest in Oil Palm Empty Fruit Bunch (OPEFB) as a promising feedstock for bioconversion into value added products is growing fast, thus a thorough analysis of its component becomes necessary. In this study, the biomass chemical composition and physical feature of OPEFB was analysed to explore and understand the potential of OPEFB as bioconversion feedstock. National Renewable Energy Laboratory (NREL) standard protocols were used to characterize and determine the chemical composition of OPEFB. Through this protocol, the structural and non-structural constituents and their compositions were determined based on unextracted and extracted native OPEFB. Structural constituents include the carbohydrate, such as the glucan, xylan and arabinan, and lignin accounted for 31.2%, 18.7%, 2.7%, and 27.7%, while the non-structural constituents mainly refer to ash and extractives accounted for 0.10% and 11.87%. In addition, Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD) analysis were also used to further characterize the chemical structure of OPEFB. The FTIR spectral peaks representing the functional groups cellulose, hemicellulose and lignin were observed. Through XRD analysis, the crystallinity index of native OPEFB fiber was calculated around 40%, while it was 37% for the powder form OPEFB.  Nevertheless, the physical feature or surface morphology of the OPEFB fiber has been study by using Scanning Electron Microscopy (SEM). It shows a rigid strand’s surface and the presence of silica bodies which commonly found in woody plant.

 

Keywords:  lignocellulose, composition, morphology, spectroscopy, crystallinity

 

Abstrak

Minat terhadap tandan kosong buah kelapa sawit (OPEFB) sebagai bahan mentah secara penukaran bio telah menjanjikan hasil produk tambah nilai yang berkembang pesat, oleh itu suatu analisis yang menyeluruh komponennya menjadi keperluan. Dalam kajian ini, komposisi kimia biomas dan ciri-ciri fizikal OPEFB dianalisis untuk meneroka dan memahami potensi OPEFB sebagai bahan mentah untuk penukaran bio. Protokol piawai National Renewable Energy Laboratory (NREL) telah digunakan untuk mencirikan dan menentukan komposisi kimia OPEFB. Melalui protokol ini, juzuk struktur atau bukan struktur dan komposisi mereka telah ditentukan. Juzuk struktur termasuk karbohidrat, seperti glukan, xilan dan arabinan dan lignin menyumbang kepada 31.2%, 18.7%, 2.7%, dan 27.7%, manakala juzuk bukan struktur terutamanya merujuk kepada abu dan ekstraktif menyumbang kepada 0.10% and 11.87%. Di samping itu, analisis Spektroskopi Inframerah Transformasi Fourier (FTIR) dan belauan sinar-X (XRD) juga digunakan untuk mencirikan lagi struktur kimia OPEFB. Puncak spektrum FTIR yang mewakili kumpulan berfungsi daripada selulosa, hemiselulosa dan lignin telah diperhatikan. Melalui analisis XRD, indeks penghabluran gentian OPEFB asli dikira sekitar 40%, manakala ia adalah 37% untuk OPEFB berbentuk serbuk. Walau bagaimanapun, ciri atau permukaan fizikal morfologi serat OPEFB asli yang telah dikaji dengan menggunakan Mikroskopi Imbasan Elektron (SEM). Ia menunjukkan permukaan helaian yang tegar dan kehadiran badan-badan silika yang biasa ditemui dalam tumbuhan berkayu.

 

Kata kunci:  lignoselulosa, komposisi, morfologi, spektroskopi, penghabluran

 

References

1.       Hassan, O., Tang, P. L., Maskat, M. Y., Md. Illias, R., Badri, K., Jahim, J. and Mahadi, N. M. (2013). Optimization of pretreatments for the hydrolysis of oil palm empty fruit bunch fiber (EFBF) using enzyme mixtures. Biomass and Bioenergy, 56: 137 – 146.

2.       Rahman, S. H., Choudhury, J. P., Ahmad, A. I. and Kamaruddin, A. H. (2007). Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresource Technology, 98: 554 – 559.

3.       Astimar, A. A., Husin, M. and Anis, M. (2002). Preparation of cellulose from oil palm empty fruit bunches via ethanol digestion: Effect of acid and alkali catalyst. Journal of Oil Palm Research, 14: 9 – 14.

4.       Ming, J. L., Ming, W. L., Gunawan, C. and Dale, B. (2010). Ammonia fiber expansion (AFEX) pretreatment, enzymatic hydrolysis, and fermentation on empty palm fruit bunch fiber (EFBF) for cellulosic ethanol production. Applied Biochemical Biotechnology, 162: 1847 –1857.

5.       Hamzah, F., Idris, A. and Tan, K. S. (2011). Preliminary study on enzymatic hydrolysis of treated oil palm (Elaeis) empty fruit bunches fibre (EFB) by using combination of cellulase and beta-1,4 glucosidase. Biomass and Bioenergy, 35: 1055 – 1059.

6.       Shuit, S. H., Tan, K. T., Lee, K. T. and Kamaruddin, A. H. (2009). Oil palm biomass as a sustainable energy source: A Malaysian case study. Energy, 34(9): 1225 – 1235.

7.       Sulaiman, M. A., Abdullah, N., Gerhauser, H. and Shariff, A. (2011). An outlook of Malaysian energy, oil palm industry and its utilization of wastes as useful resource. Biomass Bioenergy, 35: 3775 – 3786.

8.       Hames, B. R., Scarlata, C., Sluiter, A., Sluiter, J. and Templeton, D. (2008). Preparation of sample for compositional analysis: Laboratory analytical procedures (LAP). Colorado, United State: National Renewable Energy Laboratory.

9.       Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J. and Templeton, D. (2005). Determine of ash in biomass: Laboratory analytical procedures (LAP). Colorado, United States: National Renewable Energy Laboratory.

10.    Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J. and Templeton, D. (2008). Determination of extractives in biomass. Golden, Colorado: National Renewable Energy Laboratory.

11.    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass. Golden Colorado: National Renewable Energy Laboratory.

12.    Sluiter, J. B., Ruiz, R. O., Scarlata, C. J., Sluiter, A. D. and Templeton, D. W. (2010). Compositional analysis of lignocellulosic feedstock:  Review and description of methods. Journal of Agricultural Food Chemistry, 58(16): 9043 – 9053.

13.    Abdul, P. M., Harun, S., Md. Jahim, J., Markom, M. and Hassan, O. (2011). Effect of column's temperature and evaluation of RID and ELSD as a suitable ion exchange HPLC detection method of simple sugars. Journal of Science and Technology, 49(58): 599 – 604.

14.    Segal, L., Creely, J. J., Martin, A. E. and Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10): 786 – 794.

15.    Thammasouk, K., Tandjo, D. and Penner, M. H. (1997). Influence of Extractives on the Analysis of Herbaceous Biomass. Journal of Agricultural and Food Chemistry, 45(2): 437 – 443.

16.    Law, K. N. and Jiang, X. (2001). Comparative papermaking properties of oil-palm empty fruit bunch. Tappi Journal, 84: 1 – 13.

17.    Law, K. N., Daud, W. W. and Ghazali, A. (2007). Morphology and chemical nature of fiber strands of oil palm empty fruit bunch (OPEFB). Bioresources, 2: 351 – 362.

18.    Lins, U., Barros, C. F., Da Cunha, M. and Miguens, F. C. (2002). Structure, morphology and composition of silicon biocomposites in the palm tree Syagrus coronata (Mart.) Becc. Protoplasma, 220: 89 – 96.

19.    Yoon, C. J. and Kim, K. W. (2008). Anatomical descriptions of silicified woods from madagascar and indonesia by scanning electron microscopy. Micron, 39(7): 815 – 831.

20.    Khalil, H. S., Ismail, H., Rozman, H. D. and Ahmad, M. N. (2001). The effect of acetylation on interfacial shear strength between plant fibres and various matrices. European Polymer Journal, 37(5): 1037 – 1045.

21.    Xiao, X., Bian, J., Li, M. F., Xu, H., Xiao, B. and Sun, R. C. (2014). Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus gigantus munro) culm by hydrothermal pretreatment. Bioresource Technology, 159: 41 – 47.

22.    Nazir, M. S., Wahjoedi, B. A., Yussof, A. W. and Abdullah, M. A. (2013). Eco-friendly extraction and characterization from oil palm empty fruit bunch. BioResources, 8(2): 2161 – 2172.

23.    Sun, Y. and Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83: 1 – 11.

24.    Ching, Y. C. and Ng, T. S. (2014). Effect of preparation conditions on cellulose from oil palm empty fruit bunch fiber. Bioresource Technology, 9(4): 6373 – 6385.

25.    Nomanbhay, S. M., Hussain, R. and Palanisamy, K. (2013). Microwave-assisted alkaline pretreatment and microwave assisted enzymatic saccharification of oil palm empty fruit bunch fiber for enhanced fermentable sugar yield. Journal of Sustainable Bioenergy System, 3: 7 – 17.

26.    Pandey, K. K. (1999). A study of chemical of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer, 71: 1969 – 1975.

27.    Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. and Sheltami, R. (2012). Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose, 19(3): 855 – 866.

 




Previous                    Content                    Next