Malaysian Journal of Analytical Sciences Vol 21 No 1 (2017): 261 - 266

DOI: http://dx.doi.org/10.17576/mjas-2017-2101-30

 

 

 

EFFECTS OF AGITATION CONDITIONS ON BACTERIAL CELLULOSE PRODUCTION BY Acetobacter xylinum 0416 IN FERMENTATION OF MATURED COCONUT WATER MEDIUM

 

(Kesan Goncangan ke atas Penghasilan Selulosa Bakteria oleh Acetobacter xylinum 0416 Melalui Fermentasi Air Kelapa Tua)

 

Faezah Esa, Norliza Abd. Rahman*, Mohd Sahaid Kalil, Siti Masrinda Tasirin

 

Department of Chemical and Process Engineering,

Faculty of Engineering and Built Environment,

University of Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: norlizajkkp@ukm.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

Bacterial cellulose (BC), a pure form of three-dimensional biopolymer is gaining extensive interest due to its unique physical and mechanical properties. The effects of different agitation conditions on BC synthesis by Acetobacter xylinum 0416 have been compared. Fermentations were carried out at 150 and 200 rpm using rotatory incubator shaker and rotatory shaker in a constant temperature room of 30 ºC. Matured coconut water was used as a sustainable medium due to its low cost and availability. The medium was adjusted to pH 4.5 or pH 5.5 and BC pellets were collected after 7 days of fermentation. The constant temperature room appeared to has fluctuate degree of heat during fermentation up to 37 °C and suppressed the BC production. In rotatory incubator shaker, the BC produced have insignificant different in comparison to pH and rotation speed. These results indicate that matured coconut water has potential as the carbon source for BC synthesis and optimization of fermentation temperature is important to produce enormous yield of BC.

 

Keywords:  bacterial cellulose, matured coconut water, fermentation, agitation speed

 

Abstrak

Selulosa bakteria (SB) iaitu sejenis tiga-dimensi biopolimer sedang mendapat tumpuan yang meluas disebabkan oleh sifat fizikal dan mekanikalnya yang unik. Kesan goncangan yang berbeza terhadap sintesis SB oleh bakteria Acetobacter xylinum 0416 telah dibandingkan. Proses fermentasi telah dilakukan pada kelajuan 150 rpm dan 200 rpm menggunakan inkubator penggoncang berputar yang tertutup dan inkubator penggoncang berputar terbuka yang terletak di dalam bilik malar pada suhu tetap 30 °C. Air kelapa tua digunakan sebagai medium mapan kerana mudah diperoleh pada kos yang rendah. Media ini dilaraskan pada pH 4.5 atau pH 5.5 dan pelet BS dikumpulkan selepas 7 hari fermentasi. Suhu bilik malar didapati berubah-ubah sepanjang fermentasi sehingga meningkat kepada 37 °C dan membantutkan penghasilan SB. Melalui penggunaan inkubator penggoncang berputar yang tertutup, SB yang terhasil mempunyai perbezaan kuantiti yang tidak signifikan dari segi pH dan kelajuan goncangan. Keputusan ini menunjukkan air kelapa tua mempunyai potensi sebagai sumber karbon bagi sintesis SB dan pengoptimuman suhu fermentasi adalah penting untuk menghasilkan SB yang banyak.

 

Kata kunci:  bakteria selulosa, air kelapa tua, fermentasi, kelajuan goncangan.

 

References

1.       Ummartyotin, S. and Manuspiya H. (2015). A critical review on cellulose: From fundamental to an approach on sensor technology, Renewable and Sustainable Energy Reviews, 41: 402 – 412.

2.       Sengun, I. Y. and Karabiyikli, S. (2011). Importance of acetic acid bacteria in food industry. Food Control, 5: 647 – 656.

3.       Wu, J., Zheng, Y., Song, W., Luan, J., Wen, X., Wu, Z., Chen, X., Wang, Q. and Guo. S. (2014). In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydrate Polymer, 102: 762 – 771.

4.       Pérez, C. D., De’Nobili, M. D., Rizzo, S. A., Gerschenson, L. N., Descalzo, A. M. and Rojas, A. M. (2013). High methoxyl pectin–methyl cellulose films with antioxidant activity at a functional food interface. Journal of Food Engineering, 116: 162 – 169.

5.       Lin, S. B., Chen, L. C. and Chen, H. H. (2011). Physical characteristics of surimi and bacterial cellulose composite gel. Journal of Food Process Engineering, 34: 1363 – 1379.

6.       Shi, Z., Zhang, Y., Phillips, G. O. and Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35: 539 – 545.

7.       Zhou, T., Chen, D., Jiu, J., Nge, T. T., Sugahara, T., Nagao, S., Koga, H. and Nogi. M. (2013). Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes. Polymer Letters, 7(9): 756 – 766.

8.       Gadim, T. D. O., Figueiredo, A. G. P. R., Rosero-Navarro, N. C., Vilela, C., Gamelas, J. A. F., Barros-Timmons, A., Neto, C. P., Silvestre, A. J. D., Freire, C. S. R. and Figueiredo, F. M. L. (2014). Nanostructured bacterial cellulose–poly(4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity. ACS Applied Material Interfaces, 6(10): 7864 – 7875.

9.       Sivapragasam A. (2008). Coconut in Malaysia – Current development and potential for re-vitalization. 2nd International Plantation Industry Conference and Exhibition (IPICEX2008).

10.    Food and Agriculture Organization of The United Nations Statistics Division (2015). Access from http://faostat3.fao.org/compare/E [28 July 2015].

11.    Prades, A., Dornier, M., Diop, N. and Pain, J. P. (2011). Coconut water uses, composition and properties: A review. Fruits, 67 (2):87 – 107.

12.    Jagannath, A., Kalaiselvan, A., Manjunatha, S. S., Raju, P. S. and Bawa, A. S. (2008). The effect of pH, sucrose and ammonium sulphate concentrations on the production of bacterial cellulose (Nata-de-coco) by Acetobacter xylinum. World Journal of Microbiology and Biotechnology, 24: 2593 – 2599.

13.    Vandamme E. J., de Baets, S., Vanbaelen, A., Joris, K. and de Wulf, P. (1998). Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability, 59: 93 – 99.

14.    Cavka, A., Guo, X., Tang, S. Winestrand, S., Jonsson, L. J. and Hong, F. (2013). Production of bacterial cellulose and enzyme from waste fiber sludge. Biotechnology for Biofuels. 6: 25 – 35.

15.    Huang, C., Yang, X. Y., Xiong, L., Guo, H. J., Luo, J., Wang, B., Zhang, H. R., Lin, X. Q. and Chen, X. D. (2013). Evaluating the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus. Letters in Applied Microbiology, 60(5): 491 – 496.

16.    Hu, Y. and Catchmark, J. M. (2010). Formation and characterization of spherelike bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain. Biomacromolecules, 11:1727 – 1734.

 




Previous                    Content                    Next