Malaysian Journal of Analytical Sciences Vol 21 No 2 (2017): 356 - 364

DOI: https://doi.org/10.17576/mjas-2017-2102-10

 

 

 

MORPHOLOGICAL PROPERTIES OF POLY(VINYLIDENE FLUORIDE-CO-TETRAFLUOROETHYLENE MEMBRANE): EFFECT OF SOLVENTS AND POLYMER CONCENTRATIONS

 

(Sifat–Sifat Morfologi Membran Kepingan Rata Poli(Vinilidena Fluorida-Ko Tetrafluoridaetilena): Kesan Pelarut dan Kepekatan Polimer)

 

Amira Mohd Nasib*, Irfan Hatim, Nora Jullok, Hameed R. Alamery

 

School of Bioprocess Engineering,

Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia

 

*Corresponding author: amira.m.nasib@gmail.com

 

 

Received: 26 August 2016; Accepted: 8 January 2017

 

 

Abstract

Poly(vinylidene fluoride-co-tetrafluoroethylene) (PVDF-co-PTFE) flat sheet membranes were prepared via phase inversion  process by means of immersion precipitation. The effects on the microstructure of prepared membranes by using different solvents and the effect of polymer solution composition (polymer concentration) on the membrane morphologies and the membrane porosity were studied. Three different solvents were employed, which were, N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and N,N-dimethylformamide (DMF). Different polymer concentrations were used; 20 wt.%, 25 wt.% and 30 wt.%. Brookfield viscometer was used to measure the viscosity for each polymer solution before the membrane was casting. The morphological study for the cross-sectional area of PVDF-co-PTFE membrane was carried out by using scanning electron microscope (SEM). The membrane porosity was determined by using the weight difference and density resulted from the immersing of dry membrane into octanol for 15 seconds. The results showed that the polymer concentration was a particularly important parameter. At different polymer concentration, the precipitant plays an important role and finally influence the prepared membrane microstructure. At higher concentration of PVDF-co-PTFE polymer, the prepared membrane possessed a sponge-like membrane structures, whereas at lower concentration, a finger-like structure was obtained. It was also found that, the membrane porosity decreases with the increasing of polymer concentration. The effect of different solvent reflected to different morphologies of the prepared flat sheet membranes. Prepared membrane with more sponge-like structure indicated a weak dissolution solvent was used. Hence, a small amount of water needed to induce precipitation and reduced the precipitation rate.

 

Keywords:  PVDF-co-PTFE polymer, phase inversion, polymer concentration, membrane morphology

 

Abstrak

Membran kepingan rata poli (vinilidena fluorida-ko-tetrafluoridaetilena) (PVDF-ko-PTFE) telah disediakan dengan kaedah fasa penyongsangan menggunakan fasa pemisah bukan pelarut teraruh (FPBT). Kesan ke atas mikrostruktur membran tersedia dengan menggunakan pelarut yang berbeza dan kesan komposisi larutan penuangan (kepekatan polimer) ke atas morfologi membran dan keliangan membran telah dikaji. Tiga pelarut yang berbeza digunakan ialah N,N-dimetilasetamida (DMAs), N-metil-2-pirolidon (NMP) dan N,N-dimetilformamida (DMF). Kepekatan polimer yang berbeza akan digunakan, iaitu pada 20 wt.%, 25 wt.% dan 30 wt.%. Brookfield viskometer digunakan untuk mengukur kelikatan lasrutan polimer sebelum membran diacukan. Kajian morfologi bagi kawasan keratan rentas membran PVDF-co-PTFE telah dijalankan dengan menggunakan mikroskop elektron pengimbas (SEM). Analisis keputusan keliangan ditentukan dengan  perendaman membran kering di dalam oktanol selama 15 saat. Keputusan menunjukkan bahawa kepekatan polimer adalah parameter penting. Pada kepekatan polimer yang berbeza, bahan pemendak memainkan peranan yang penting dan akhirnya mempengaruhi mikrostruktur membran tersedia. Pada kepekatan polimer PVDF-ko-PTFE yang lebih tinggi, membran tersedia memiliki struktur membran seperti span, sedangkan pada kepekatan yang lebih rendah, struktur seperti-jejari telah diperolehi. Ia juga mendapati bahawa, keliangan membran menurun dengan peningkatan kepekatan polimer. Penggunaan pelarut yang berbeza terkesan kepada berlainan morfologi membran kepingan rata yang tersedia. Membran tersedia dengan struktur seperti span menunjukkan pelarut pelarutan lemah telah digunakan. Oleh itu, jumlah air yang sedikit diperlukan untuk mendorong mendakan dan mengurangkan kadar mendakan.

 

Kata kunci:  PVDF-ko-PTFE polimer, fasa pemisah, kepekatan polimer, morfologi membran

 

References

1.       Liu, F., Hashim, N. A., Liu, Y., Abed, M. M. and Li, K. (2011). Progress in the production and modification of PVDF membranes. Journal of Membrane Science, 375(1): 1 - 27.

2.       Mulder, J. (2012). Basic principles of membrane technology. Springer Science & Business Media.

3.       Guillen, G. R., Pan, Y., Li, M. and Hoek, E. M. (2011). Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review. Industrial & Engineering Chemistry Research, 50(7): 3798 - 3817.

4.       Khayet, M. and Matsuura, T. (2011). Membrane distillation: Principles and applications. Elsevier, Amsterdam.

5.       See-Toh, Y. H., Ferreira, F. C. and Livingston, A. G. (2007). The influence of membrane formation parameters on the functional performance of organic solvent nanofiltration membranes. Journal of Membrane Science, 299(1): 236 - 250.

6.       Gevers, L. E., Aldea, S., Vankelecom, I. F. and Jacobs, P. A. (2006). Optimisation of a lab-scale method for preparation of composite membranes with a filled dense top-layer. Journal of Membrane Science, 281(1): 741 - 746.

7.       Ji, G.-L., Zhu, B.-K., Cui, Z.-Y., Zhang, C.-F. and Xu, Y.-Y. (2007). PVDF porous matrix with controlled microstructure prepared by TIPS process as polymer electrolyte for lithium ion battery. Polymer, 48(21): 6415 - 6425.

8.       Marbelia, L., M. R. Bilad, A. Piassecka, P.S. Jishna, P.V. Naik & I.F. Vankelecom, (2016). Study of PVDF asymmetric membranes in a high-throughput membrane bioreactor (HT-MBR): Influence of phase inversion parameters and filtration performance. Separation and Purification Technology, 162: 6 - 13.

9.       Ahmad, A., Ramli, W., Fernando, W. and Daud, W. R. W. (2012). Effect of ethanol concentration in water coagulation bath on pore geometry of PVDF membrane for membrane gas absorption application in CO2 removal. Separation and Purification Technology, 88: 11 - 18.

10.    Buonomenna, M., Macchi, P., Davoli, M. and Drioli, E. (2007). Poly (vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties. European Polymer Journal, 43(4): 1557 - 1572.

11.    Souzy, R. and Ameduri, B. (2005). Functional fluoropolymers for fuel cell membranes. Progress in Polymer Science, 30(6): 644 - 687.

12.    Drobny, J. G. (2008). Technology of fluoropolymers. CRC Press, Florida.

13.    Cui, Z., Drioli E. and Lee, Y. M. (2014). Recent progress in fluoropolymers for membranes. Progress in Polymer Science, 39(1): 164 - 198.

14.    Alkhudhiri, A., Darwish, N. and Hilal, N. (2012). Membrane distillation: A comprehensive review. Desalination, 287: 2 - 18.

15.    Kang, G.-D. and Cao, Y.-M. (2014). Application and modification of poly (vinylidene fluoride)(PVDF) membranes – A review. Journal of Membrane Science, 463: 145 - 165.

16.    Deowan, S. A., Galiano, F., Hoinkis, J., Johnson, D., Altinkaya, S. A., Gabriele, B., Hilal, N., Drioli, E. and Figoli, A. (2016). Novel low-fouling membrane bioreactor (MBR) for industrial wastewater treatment. Journal of Membrane Science, 510: 524 - 532.

17.    Zhan, X., Li, J., Huang, J.and Chen, C. (2010). Enhanced pervaporation performance of multi-layer PDMS/PVDF composite membrane for ethanol recovery from aqueous solution. Applied Biochemistry and Biotechnology, 160(2): 632 - 642.

18.    Mansourizadeh, A., Ismail, A. F., Abdullah, M. S. and Ng, B. C. (2010). Preparation of polyvinylidene fluoride hollow fiber membranes for CO2 absorption using phase-inversion promoter additives. Journal of Membrane Science, 355(1): 200 - 207.

19.    Wang, J., Zheng, L., Wu, Z., Zhang, Y. and Zhang, X. (2016). Fabrication of hydrophobic flat sheet and hollow fiber membranes from PVDF and PVDF-CTFE for membrane distillation. Journal of Membrane Science, 497: 183 - 193.

20.    Ameduri, B. (2009). From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: Recent developments and future trends. Chemical Reviews, 109(12): 6632 - 6686.

21.    Feng, C., Shi, B., Li, G. and Wu, Y. (2004). Preparation and properties of microporous membrane from poly (vinylidene fluoride-co-tetrafluoroethylene)(F2.4) for membrane distillation. Journal of Membrane Science, 237(1): 15 - 24.

22.    Ooi, B., Yatim, N., Ahmad, A. and Lai, S. (2012). Preparation of polyvinylidene fluoride membrane via dual coagulation bath system and its wettability study. Journal of Applied Polymer Science, 124(S1): 225 - 232

23.    García-Fernández, L., García-Payo, M. and Khayet, M. (2014). Effects of mixed solvents on the structural morphology and membrane distillation performance of PVDF-HFP hollow fiber membranes. Journal of Membrane Science, 468: 324 - 338.

24.    Peng, N., Chung, T.-S. and Wang, K. Y. (2008). Macrovoid evolution and critical factors to form macrovoid-free hollow fiber membranes. Journal of Membrane Science, 318(1): 363 - 372.

25.    Li, Q., Xu, Z. L. and Yu, L.Y. (2010). Effects of mixed solvents and PVDF types on performances of PVDF microporous membranes. Journal of Applied Polymer Science, 115(4): 2277 - 2287.

26.    Hołda, A. K., Aernouts, B., Saeys W. and Vankelecom, I. F. (2013). Study of polymer concentration and evaporation time as phase inversion parameters for polysulfone-based SRNF membranes. Journal of Membrane Science, 442: 196 - 205.

 




Previous                    Content                    Next