Malaysian Journal of Analytical Sciences Vol 21 No 2 (2017): 416 - 425

DOI: https://doi.org/10.17576/mjas-2017-2102-17

 

 

 

REMOVAL AND RECOVERY OF CHROMIUM(VI) ION VIA TRI-N-OCTYL METHYLAMMONIUM CHLORIDE-KEROSENE POLYPROPYLENE SUPPORTED LIQUID MEMBRANE

 

 (Penyingkiran dan Pemulihan Semula Kromium(VI) melalui Membran Cecair Berpenyokong Tri-n-oktil metilammonium klorida-kerosin-polipropilena)

 

Raja Norimie Raja Sulaiman1 and Norasikin Othman1, 2*

 

1Faculty of Chemical and Energy Engineering

2Centre of Lipids Engineering and Applied Research (CLEAR),

Ibnu Sina Institute of Scientific and Industrial Research (IBNU SINA-ISIR)

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

 

*Corresponding author: norasikin@cheme.utm.my

 

 

Received: 26 August 2016; Accepted: 8 January 2017

 

 

Abstract

The presence of chromium in the natural water can be toxic to aquatic organism and is one of the major environmental problems. Therefore, the removal and recovery of chromium from industrial wastewater is very crucial to accomplish the standard discharge concentration limit. Supported liquid membrane is one of the processes which combines the extraction and recovery process in one single stage. This paper presents an experimental study on the removal and recovery of chromium ions from acidic aqueous solutions through a flat-sheet supported liquid membrane (FSSLM) system. Through this system, chromium ions were transported from feed phase into stripping phase via Tri-n-octyl-methylammoniumchloride (TOMAC)-kerosene-polypropylene supported liquid membrane (SLM). The liquid membrane phase was prepared by dissolving the corresponding volume of the carrier, TOMAC in organic diluent of kerosene. The stripping agent used was sodium hydroxide (NaOH) solution whereas the membrane support used was commercial Accurel polypropylene membrane with good features of 100 µm thickness, porosity of 72% and effective pore size of 0.10 µm. The chromium ion concentration in the feed and stripping phases as a function of time was analysed using an atomic absorption spectrometry (AAS). The effects of different operational variables such as TOMAC concentration in the membrane phase, NaOH concentration in the stripping phase and pH of the aqueous feed phase were investigated. The result demonstrated that about 90 and 98% of 150 ppm of chromium was removed and recovered, respectively at favorable condition of 1.0 M TOMAC, 0.5 M NaOH and pH 2 of the feed phase.

 

Keywords:  supported liquid membrane, chromium, removal, recovery, acidic aqueous solution

 

Abstrak

Kehadiran kromium di dalam sumber air semula jadi adalah toksik kepada organisma akuatik dan salah satu masalah utama alam sekitar. Oleh itu, penyingkiran dan pemulihan semula kromium daripada air sisa industri adalah sangat perlu untuk memenuhi had kepekatan piawaian pelepasan. Membran cecair berpenyokong adalah salah satu proses yang menggabungkan penyingkiran dan pemulihan semula dalam satu peringkat proses. Kertas kerja ini membentangkan satu kajian eksperimen tentang penyingkiran dan pemulihan semula ion kromium dari larutan berasid melalui sistem helaian rata membran cecair berpenyokong (FSSLM). Melalui sistem ini, ion kromium dibawa dari fasa suapan ke fasa pelucutan melalui Tri-n-oktil-metilammonium klorida (TOMAC)–kerosin-polipropilena membran cecair berpenyokong (SLM). Fasa cecair membran telah disediakan dengan melarutkan sejumlah pembawa, TOMAC dalam pelarut organik kerosin. Ejen pelucutan yang digunakan adalah larutan sodium hidroksida (NaOH) manakala membran sokongan yang digunakan ialah Accurel polipropilena membran komersial yang mempunyai ciri-ciri yang baik dengan ketebalan 100µm, keliangan 72% dan saiz liang 0.10 µm. Kepekatan ion kromium dalam fasa suapan dan fasa pelucutan terhadap fungsi masa dianalisis menggunakan spektrometri penyerapan atom (AAS). Kesan pembolehubah operasi yang berbeza seperti kepekatan TOMAC dalam fasa membran, kepekatan NaOH dalam fasa pelucutan dan pH fasa suapan telah dikaji. Keputusan menunjukkan bahawa sekitar 90 dan 98% daripada 150 ppm kromium telah disingkirkan dan dipulihkan semula pada 1.0 M TOMAC, 0.5 M NaOH dan pH 2 fasa luaran.

 

Kata kunci:  membran cecair berpenyokong, kromium, penyingkiran, pemulihan semula, larutan berasid

 

References

1.       Malaysia Environmental Quality Report (Industrial Effluent) Regulations (2009). Malaysian Department of Environment, P.U. (A) 434.

2.       Cavaco, S. A., Fernandes, S., Margarida, M. and Ferreira, M. (2007). Removal of chromium from electroplating industry effluents by ion exchange resins. Journal of Hazardous Materials, 144: 634 – 638.

3.       Unnithan, M. R. and Anirudhan, T. S. (2001). The kinetics and thermodynamics of sorption of chromium (VI) onto the iron(III) complex of a carboxylated polyacrylamide-grafted sawdust. Industrial & Engineering Chemistry Research, 40(12): 2693 – 2701.

4.       Kul, M. and Oskay, K. O. (2015). Separation and recovery of valuable metals from real mix electroplating wastewater by solvent extraction. Hydrometallurgy, 155: 153 – 160.

5.       Sadyrbaeva, T. Z. (2016). Removal of chromium (VI) from aqueous solutions using a novel hybrid liquid membrane-electrodialysis process. Chemical Engineering and Processing, 99: 183 – 191.

6.       Othman, N., Harrudin, N., Idris, A., Ooi, Z. Y., Fatiha, N. and Sulaiman, R. N. R. (2016). Fabrication of polypropylene membrane via thermally induced phase separation as a support matrix of tridodecylamine supported liquid membrane for Red 3BS dye removal. Desalination and Water Treatment, 57: 12287 – 12301.

7.       Noah, N. F. M., Othman, N. and Jusoh, N. (2016). Highly selective transport of palladium from electroplating wastewater using emulsion liquid membrane process. Journal of the Taiwan Institute of Chemical Engineers, 64: 134 – 141.

8.       Harrudin, N., Othman, N., Sin, A. L. E. and Sulaiman, R. N. R. (2015). Selective removal and recovery of Black B reactive dye from simulated textile wastewater using the supported liquid membrane process. Environmental Technology, 36(3): 271 – 280.

9.       Harruddin, N., Othman, N., Idris, A., Ooi, Z. Y. and Goto, M. (2014). Supported liquid membrane extraction of reactive dye using fabricated polypropylene membrane. Journal of Chemical Engineering of Japan, 47(10): 761 – 769.

10.    Ruhela,  R., Panja, S., Sharma, J. N., Tomar,  B. S., Tripathi, S. C., Hubli, R. C. and Suri, A. K. (2012). Facilitated transport of Pd(II) through a supported liquid membrane (SLM) containing N, N, N, N-tetra-(2 ethylhexyl) thiodiglycolamide T (2EH) TDGA: A novel carrier. Journal of Hazardous Materials, 229 – 230: 66 – 71.

11.    Agreda, D. D., Garcia-Diaz, I., Lopez, F. A. and Alguacil, F. J. (2011). Supported liquid membranes technologies in metals removal from liquid effluents. Revision Metal, 47 (2):146 – 168.

12.    Parhi, P. K. (2013). Supported liquid membrane principle and its practices: A short review. Journal of Chemistry: 1 – 11.

13.    Goyal, R. K., Jayakumar, N. S. and Hashim, M. A. (2011). Chromium removal by emulsion liquid membrane using [BMIM]+[NTf2] as stabilizer and TOMAC as extractant. Desalination, 278: 50 – 56.

14.    Eyupoglu, V., Surucu, A. and Kunduracioglu, A. (2015). Synergistic extraction of Cr(VI) from Ni(II) and Co(II) by flat sheet supported liquid membranes using TIOA and TBP as carriers. Polish Journal of Chemical Technology, 17(2): 34 – 42.

15.    Raut, D. R., Mohapatra, P. K. and Manchanda, V. K. (2012). A highly efficient supported liquid membrane system for selective strontium separation leading to radioactive waste remediation. Journal of Membrane Science, 390 – 391: 76 – 83.

16.    Björkegren, S. (2012). A study of the heavy metal extraction process using emulsion liquid membranes. Master Thesis. Chalmers University of Technology, Sweden.

17.    Nayl, A. A. and Aly, H. F. (2015). Solvent extraction of V(V) and Cr(III) from acidic leach liquors of ilmenite using Aliquat 336. Transactions of Nonferrous Metals Society of China, 25: 4183 − 4191.

18.    Kumar, A., Manna, M. S., Ghoshal, A. K. and Saha, P. (2016). Study of the supported liquid membrane for the estimation of the synergistic effects of influential parameters on its stability Journal of Environmental Chemical Engineering, 4: 943 – 949.

19.    Bey, S., Criscuoli, A., Simone, S., Figoli, A., Benamor, M. and Drioli, E. (2011). Hydrophilic PEEK-WC hollow fibre membrane contactors for chromium (VI) removal. Desalination, 283: 16 – 24.

20.    Alguacil, F. G., Diaz, I. G. and Lopez, F. (2013). Transport of Cr (VI) using an advanced membrane technology and (PJMTH+NO3-) ionic liquid derived from amine Primene JMT as green chemicals. Desalination and Water Treatment, 51: 7201 – 7207.

21.    Venkateswaran, P. and Palanivelu, K. (2005). Studies on recovery of hexavalent chromium from plating wastewater by supported liquid membrane using tri-n-butyl phosphate as carrier. Hydrometallurgy, 78:107 – 115.

 




Previous                    Content                    Next