Malaysian Journal of Analytical Sciences Vol 21 No 2 (2017): 484 - 495

DOI: https://doi.org/10.17576/mjas-2017-2102-24

 

 

 

MOLECULAR WEIGHT CUT-OFF DETERMINATION OF PRESSURE FILTRATION MEMBRANES VIA COLORIMETRIC DETECTION METHOD

 

(Penentuan Berat Sekatan Molekul Bagi Membran Penurasan TekananMelalui Kaedah Pengesanan Kolorimetri)

 

Izzati Izni Yusoff, Rosiah Rohani*, Abdul Wahab Mohammad

 

Department of Chemical and Process Engineering,

 Faculty of Engineering and Built Environment,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: rosiah@ukm.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

Molecular weight cut-off (MWCO) of commercial and in-house fabricated membranes is obtained at 90% rejection of various types of solutes with different molecular weights (MWs). PEG quantification methods have been favorably employed to determine membranes’ MWCO. Most of the quantification methods utilizing high-end equipment using high performance liquid chromatography (HPLC) and low-end colorimetric method. HPLC method requires an established chromatographic technique using specific diluents, columns and detectors while the most referred colorimetric method requires a few processing steps with concentration up to 7.5 ppm by using UV spectrophotometer. In this work, a newly modified colorimetric method was established to conduct a simple measurement for a membrane’s MWCO. The newly modified method has an excellent linearity for the calibration curves which R2 values are closed to 1 with concentration of up to 150 ppm. A MWCO determination test conducted using different commercial membranes for confirming this newly modified method found that similar MWCO values were obtained as given by the membrane’ manufacturers. In conclusion, this newly modified method is simpler than the formerly used colorimetric method, reliable and applicable for determining the MWCO of membranes ranging from UF to NF at a higher range of PEG concentrations (>150 ppm).

 

Keywords:  molecular weight cut-off, polyethylene glycol, spectrophotometric, colorimetric, membrane

 

Abstrak

Berat sekatan molekul (MWCO) bagi membran komersial dan yang dihasilkan sendiri diperolehi pada 90% penolakan pelbagai jenis bahan larut dengan berat molekul yang berbeza (MWs). Kaedah kuantifikasi menggunakan PEG adalah yang paling digemari digunakan bagi menentukan MWCO daripada membran yang di sintesis. Kebanyakan kaedah menggunakan peralatan atasan seperti kromatografi cecair berprestasi tinggi (HPLC) dan kaedah bawahan seperti kaedah kolorimetri. Kaedah HPLC memerlukan teknik kromatografi yang tertubuh menggunakan bahan pencair, tiang dan pengesan tertentu manakala kaedah kolorimetri memerlukan beberapa langkah pemprosesan dengan kepekatan hanya dalam julat sehingga 7.5 ppm menggunakan spektrofotometer UV. Oleh yang demikian dalam kajian ini, satu kaedah kolorimetri baru yang diubahsuai telah ditubuhkan untuk mengukur MWCO membran. Kaedah ini mempunyai kelinearan yang sangat baik, di mana nilai R2 menghampiri 1 dengan kepekatan sehingga 150 ppm. Ujian penentuan MWCO dijalankan menggunakan beberapa membran komersial yang berbeza untuk mengesahkan kaedah baru diubahsuai ini didapati bahawa nilai MWCO yang sama telah diperolehi bagi membran, seperti yang diberikan oleh pengeluar membran. Kesimpulannya, kaedah yang baru diubahsuai ini adalah lebih mudah daripada kaedah kalorimetri yang dahulunya digunakan, boleh dipercayai dan diguna pakai bagi menentukan MWCO daripada membran NF sehingga membran UF malah pada julat kepekatan PEG yang lebih tinggi.

 

Kata kunci:  berat sekatan molekul, polietilena glikol, spektrofotometer, kolorimetri, membran

 

References

1.       Alam, J., Dass, L. A., Alhoshan, M. S., Mostafa Ghasemi and Mohammad, A. W. (2011). Development of polyaniline-modified polysulfone nanocomposite membrane. Applied Water Science, 2(1): 37 - 46.

2.       Zhao, Q., Quanfu, A. F., Ji, Y., Qian, J. and Gao, C. (2011). Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications. Journal of Membrane Science, 379(1-2): 19 - 45.

3.       Prafulla, G. B., Sapkal, V. S. and Sapkal, R. S. (2012). The optimization and production polyethersulfone ultrafiltration flat sheet membranes using lithium chloride as additives. International Journal of Engineering Research and Development 1(12): 65 - 68.

4.       Uludag, H., Paul, D.V. and Patrick, A. T. (2000). Technology of mammalian cell encapsulation. Advanced Drug Delivery Reviews, 42: 29 - 64.

5.       Derakhsheshpoor, R., Homayoonfal, M., Akbari, A. and Mehrnia, M. R. (2013). Amoxicillin separation from pharmaceutical wastewater by high permeability polysulfone nanofiltration membrane. Journal of Environmental Health Science and Engineering, 11(1): 9 - 19.

6.       Idris, A. and Zain, N. M. (2006). Effect of heat treatment on the performance and structural details of polyethersulfone ultrafiltration membranes. Jurnal Teknologi, 44: 27 - 40.

7.       Kim, K. J., Fanen, A. G., Ben Aimb, R., Liub, M. G., Jonsson, G., Tessaro, C. I. C., Broekd, A. P. and Bargemand, D. (1994). A comparative study of techniques used for porous membrane characterization: Pore characterization. Journal of Membrane Science, 87: 35 - 46.

8.       Nakao, S.-I. (1994). Review: Determination of pore size distribution 3. Filtration membranes. Journal of Membrane Science, 96: 131 - 165.

9.       Changzsheng, Z., Xuesong, Z. and Yilun, Y. (2000). Determination of pore size and pore size distribution on the surface of hollow-fiber filtration membranes: A review of methods. Desalination, 129: 107 - 123.

10.    Kang, E., Lee, Y., Chon, K. and Cho, J. (2014). Effects of hydrodynamic conditions (diffusion vs. convection) and solution chemistry on effective molecular weight cut-off of negatively charged nanofiltration membranes. Desalination, 352: 136 - 141.

11.    Hassan, A. R. and Ismail, A. F. (2004). Characterization of nanofiltration membranes by the solute transport method: some practical aspects in determining of mean pore size and pore size distributions. Regional Symposium on Membrane Science and Technology. Puteri Pan Pacific Hotel, Johor Bharu, Malaysia: pp. 1 - 13.

12.    Rohani, R., Hyland, M. and Patterson, D. (2011). A refined one-filtration method for aqueous based nanofiltration and ultrafiltration membrane molecular weight cut-off determination using polyethylene glycols. Journal of Membrane Science, 382(1-2): 278 - 290.

13.    Felo, M. and DeFrees, S. (2012). Nucleotide Sugar Purification using membranes in google patent. Novo Nordisk A/S, Bagsvaerd (DK): United States. 27.

14.    Cheng, T. L., Chuang, K. H., Chen, B. M. and Roffler, S. R. (2012). Analytical measurement of PEGylated molecules. Bioconjugate Chemistry, 23(5): 881 - 899.

15.    Kolate, A., Baradia, D., Patil, S., Vhora, I., Kore, G. and Misra, A. (2014). PEG - A versatile conjugating ligand for drugs and drug delivery systems. Journal of Control Release, 192: 67 - 81.

16.    Sabde, A. D., Trivedi, M. K., Ramachandhran, V., Hanra, M. S. and Misra, B. M. (1997). Casting and characterization of cellulose acetate butyrate based UF membranes. Desalination, 114: 223 - 232.

17.    Idris, A., Mat Zain, N. and Noordin, M. Y. (2007). Synthesis, characterization and performance of asymmetric polyethersulfone (PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives. Desalination, 207(1-3): 324 - 339.

18.    Padaki, M., Isloor, A. M. and Wanichapichart, P. (2011). Polysulfone/N-phthaloylchitosan novel composite membranes for salt rejection application. Desalination, 279(1-3): 409 - 414.

19.    Prafulla, G. B., Sapkal, R. S. and Sapkal, V. S. (2008). Influence of ethanol concentration on the performance of polyethersulfone ultrafiltration membranes. International Journal of ChemTech Research, 4(4): 1518 - 1521.

20.    Shirley, J., Mandale, S. and Kochkodan, V. (2014). Influence of solute concentration and dipole moment on the rejection of uncharged molecules with nanofiltration. Desalination, 344: 116 - 122.

21.    Fella, C. (2008). Dynamic and effective gene vectors via ph-sensitive peg-shielding. Thesis Doctor of Philosophy. Faculty of Chemistry and Pharmacy, Ludwig Maximilian University of Munich, Miltenberg.

22.    Christopher, B., Drewes, J. E., Pei, X. and Gary, A. (2004). Factors affecting the rejection of organic solutes during NF/RO treatment - A literature review. Water Research, 38: 2795 - 2809

23.    Bernadisiute, U., Antanelis, T., Vareikis, A. and Makuska, R. (2008). Iodination of poly(ethylene glycol) by a mixture of triphenyl phosphite and iodomethane. Chemija, 19(2): 43 - 49.

24.    Moulay, S. (2013). Molecular iodine/polymer complexes. Journal of Polymer Engineering, 33(5): 389 - 443.

25.    Shaffer, C. B. and Critchfield, F. H. (1947). Solid polyethylene glycols (carbowax compounds) quantitative determination in biological materials. Analytical Chemistry, 19(1): 32 - 35.

26.    Barker, T. H., Klinger, M. M., Feldman, D. S., Fuller, G. M. and Hagood, J. S. (2001). Spectrophotometric analysis for determining the average number of poly(ethylene) glycol molecules on PEGylated proteins utilizing a protein digestion step. Analytical Biochemistry, 290(2): 382 - 385.

27.    Lozzi, I., Pucci, A., Pantani, O. L., D’Acqui, L. P. and Calamai, L. (2008). Interferences of suspended clay fraction in protein quantitation by several determination methods. Analytical Biochemistry, 376: 108 - 114.

28.    Wuelfing, W. P., Kosuda, K., Templeton, A. C., Harman, A., Mowery, M. D. and Reed, R. A. (2006). Polysorbate 80 UV/vis spectral and chromatographic characteristics – defining boundary conditions for use of the surfactant in dissolution analysis. Journal of Pharmaceutical and Biomedical Analysis, 41: 774 - 782.

29.    Tam, C. M. and Tremblay, A. Y. (1991). Membrane pore characterization-comparison between single and multicomponent solute probe techniques. Journal of Membrane Science, 57: 271 - 287.

30.    Rissler, K. (1996). High-performance liquid chromatography and detection of polyethers and their mono(carboxy)alkyl and -arylalkyl substituted derivatives. Journal of Chromatography A, 742: 1 - 54.

 

 

 




Previous                    Content                    Next